
1

SIGA: Integrated Queue Management System
Gonçalo António Rendeiro da Silva, Student 67492, MEEC IST

Abstract—Academic services at Instituto Superior Técnico are
currently managed with manual ticket dispensers. After obtaining
a ticket, customers wait their turn in one queue, devoid of waiting
time estimates. Staff is unaware of the growth of this queue.
Service operation activity is not recorded.

With the goal of improving and modernize these services, a
queue management product, the SIGA System, is designed and
implemented in this work. It provides more information to both
customers and staff while keeping record of all service related
activities. It is adaptable to other contexts and can integrate with
other existing systems (e.g. authentication, CRM).

Index Terms—Queue Management, Ticket Dispenser, Backof-
fice Interfaces, Web Application, Mobile Integration

I. INTRODUCTION

Numbered tickets, served by ticket dispensers, are probably
the simplest existing technology for managing waiting lines.
A staff member operating a queued service can simply call
the next ticket aloud and register the last called number.
Alternatively, this same operator can press a button that makes
a speaker signal the call and a LED display to show the ticket
number being called. This latter example is representative
of the current queue management systems deployed in the
academic services at Instituto Superior Técnico, where only
one queue is formed by the customers, independent of the
issues they might want to solve.

With this current technology the waiting customers have no
way to know when their ticket is about to be called. They
can only look at the current number in the LCD display, and
make an educated guess by watching its progress, not being
automatically of the current average time estimate. This forces
them to wait near the service, possible for long, or otherwise
they risk losing their turn.

Likewise, there is no means of providing automatic feed-
back to the staff about current queue growth or about the effec-
tiveness of their queue operation, based on tickets dispensed
and customers served.

No record of the overall activity of the services is taken.
Recording service activity data in the long run is useful to
detect patterns in the service operation, like periods of higher
affluence of customers, periods of lower service efficiency or
any others patterns that might be found. By having this bulk
data, its analysis could pinpoint the weak points of the system
and where to act in order to improve the service.

Although the current technological state of our school’s
service management tools is not the most advanced, this
does not reflect the state of currently existing queue man-
agement solutions. Several entities, like hospitals or public
services, already have queue management solutions that are
more sophisticated, dividing their customers in several queues
related to their issues, and providing them with average wait
time estimates. Several queue management solutions can be

found across the web, such as Sedco solutions1, Qminder2

and Lonsto solutions3, presenting varying functionality. From
these three, Qminder is the solution that best fits our problem,
and the only one to disclose its pricing, which is placed at
250 dollars per month and per branch. For the three academic
services at IST, this would ammount to 750 dollars per month.

An internally developed system has several advantages.
First, being a tool developed in IST, it can be used by
our community with pedagogical purpose: through continuous
iterations and improvements, future interested students can
contribute to this product and learn with it. Second, the
control of costs and functionality shifts to our side, and by
developing it we can better control its cost-effectiveness, a part
of our system requirements, along with functionality needed
for systems integration (e.g. authentication, user databases,
CRM). Last but not least, our academic services and current
infrastructure also permits deployment of this system to be
tested and improved with real service operation data. So, after
proven in our environment, the ability to sell the developed
system as a product to interested entities is also a plus.

As such, with the initial goal of optimizing our school ser-
vices and provide a much better experience both for customers
and staff, a server-based integrated queue management system
is designed and implemented to be deployed in three academic
services of IST.

This comprises interfaces for the backoffice operation in the
form of a web application, to be used by the staff, providing
information of queue growth upon ticket dispensing, and the
ability to call tickets from several queues. Staff is responsible
for configuring (creating, deleting or editing) the possible
queues.

These backoffices work along with a ticket dispenser kiosk
which enables users to get numbered tickets for different
types of queues that reflect the issues they want to solve, and
provides them with average time estimates for each queue.
They can also consult the current queue status on a display
near the service, and remotely if needed.

Also, upon integration with an existing user database,
authenticated users are allowed to obtain virtually dispensed
tickets and get notifications about queue status on a mobile
application.

Software is selected such that integration with existing
user databases or existing Costumer Relationship Management
(CRM) software is feasible.

Being a server based solution, the operations that occur in
this system are properly stored in a database, and thus service
activity operation is recorded and can be queried any time.

1http://www.sedco-online.com/en/content/queuing-and-routing
2https://www.qminderapp.com/
3http://www.lonsto.co.uk/pc/6/queue-management/

ticket-controlled-queuing-systems.html

2

In overview, in this project we developed a web infrastruc-
ture providing backoffice and client interfaces and physical
and virtual ticket dispensing that together support a queue
management system offering:

1) Support for different services and different queues in each
service;

2) Interface for service operators;
3) Interface for users to get tickets;
4) Service activity logging to enable performance assess-

ment and other types of reports;
5) Basic visual statistics;
6) Enable the future implementation of additional services

that may require authenticated users (e.g. CRM).
Although the solution developed during this work stems

from the specific need of our school, its design and implemen-
tation kept the broader vision of achieving a general-purpose
product of potential interest for any service with waiting lines.

II. PROBLEM STATEMENT

At Instituto Superior Técnico, the academic services store
no information on how they manage service customers: one
queue is formed, numbered tickets are dispensed to customers
who in turn are called by their arriving order. We now
exemplify the current lack of information for the two parties
concerned (customers and staff), thus bringing to light how its
existence could improve their experience and the efficiency of
operation.

Weighting in decreased efficiency, we have the lack of
information on the operation side. Staff elements have no
way to see which issues are on higher demand as the queue
grows, thus cannot prioritize issues over others. At the end
of the day, or month, or year, there is no way to account
for statistics on service operation. This data, particularly if
obtained for a long period, can be used to improve planning
and thus bring efficiency to the operation of the service. Also,
to increase efficiency and service quality, more information
could be given to customers. Because they have no means to
know their estimated waiting time, waiting near the service
office becomes necessary.

Thus, the problem we propose to address in this work is
that of the uninformed queue management. As pointed out in
[1], having detailed information on how queues are operating
(e.g. user arrival time distribution, staff element productivity,
etc) can lead to better modelling of the service operation,
thus enabling better decisions towards its (multi-objective)
optimization (e.g. customer waiting time, staff idleness, service
utilization).

As an example, in a service with a first-come first-serve
policy, queueing theory studies point the multiple-cashier
single-queue style as the most efficient [1]. By dynamically
prioritizing one queue over others and support multiple queues
calling from different staff members, the multiple-cashier
would just happen naturally in our school scenario, because
only one physical queue would exist in practice. However,
the study in [2], considering the social aspect of the problem
and focusing on minimizing waiting times, concludes that
parallel physical queues are the best solution. Other studies,

also highlighting the social component that the operating staff
brings to this question, debate on how visual feedback might
be important for increasing staff efficiency [3] and what trade-
off can be expected from changing the intensity of service
[4][5].

With this in mind, and as before mentioned, we wish to
develop a queue management system that could provide both
the school and its students and staff with better information.
Our work sets out from a practical standpoint, without re-
stricting our system to a particular queueing theory: we wish
to develop a configurable system, where any of the above
mentioned theories and can be tested and fine tuned to the
specific needs of the service where it is to be deployed. After
deployment, it could be even used to test and find new theories
for queue management improvement, based on the acquired
data and configurable parameters.

We now proceed to describe the base features that this
system should offer to its users.

The number of services and respective queues this system
serves should be configurable by the technical administrator
that installs the system in the service provider entity (e.g. in
IST).

For the operations, it should provide the service with the
possibility of calling tickets of different issues based on either
a system’s suggestion (from a list of possible heuristics or a
default one) or by operator’s choice of a certain queue. The
term queues will refer to those different issues henceforth. An
example: Queue A - Payments; Queue B - Enrolment; Queue
C - Certificates. Staff members should be able to see real-time
queue data to help them make an informed decision on which
queue to call next user from.

In parallel, customers should be able to get a ticket for a
given queue. Also, we wish to provide the customers with
updated waiting time statistics, and even notifications to a
mobile application that is linked with the service, which can
dispense virtual tickets upon authentication and inform them
when they are about to be called.

This system should record all the operation data for further
analysis with the objective of pointing out possible improve-
ments and better informing the staff on how to prioritize
different matters (that is, manage several queues) in both real-
time and specific periods of higher demand. It should also
provide the staff with an easy to use back-office interface,
and the customers with an easy to understand queue progress
display.

Because this is a broad problem, present not only in our
school, but in all kinds of services with users waiting to be
called, we wish to develop a product that is customizable,
making it also possible to integrate with other services and
existing CRM systems and user databases.

III. FUNCTIONAL REQUIREMENTS

Functional requirements capture the intended behaviour of
a system, and thus, a way of providing a structured functional
blueprint, useful for both developers and users. To capture the
fuctional requirements, we capture the customers and clients
main goals for better guiding the interfaces development from
a user perspective.

3

A. System Actors and Their Goals

System actors and what they should be able to do with the
system (their “goals”) are now listed.

1) Staff:

• Super Admin
– Login and logout to and from the super admin interface
– Create/Modify/Delete Services for a generic service

provider entity that installs this system (e.g. for our
University: Post-Graduate Academic Service, Under-
graduate Academic Service, International Mobility Ser-
vice)

– Define service open-hours (service management)
– Define maximum number of queues for certain service

(service management)
– Define a logo for the tickets to be printed (service

management)
– Create/Edit/Delete staff members of any type
– Associate a Kiosk/Ticket Dispenser to an existing

service
The Super Admin doubles as the technical administrator
and maintainer of the whole system. This means he will
have access to all the created data and used technologies.
As an example, he may create a new user authentication
system for SIGA or integrate it with an existing one.

• Service Admin
– Login and logout to and from the service admin

interface.
– Give and remove service admin privileges to and from

operators
– View and edit Service Settings, use Operation Mode

and visualize Statistics
– Settings: Create/Edit/Delete Queues (e.g. Enrolment,

Certificate Requirement, Grade Improvement, Others
)

– Settings: Select Service Session duration period (be-
tween normal office hours or manual)

– Settings: Select heuristic for “next ticket to call” sug-
gestion from:
1) First-come,first-serve
2) Minimize average wait-time for the service

– Operation Mode: Can choose a desk and call tickets,
performing the role of the Operator.

• Operator
– Login and logout to and from the system. Upon login,

operator is prompted to select a desk number
– Call a customer (by system suggestion or from a queue)

to his desk
– Open or Close the service, that is, stops tickets creation

2) Customers:

• Kiosk Customer
– Get a ticket for a queue that categorizes this customer’s

issue
– Identified by the ticket, gets called by the service to

solve that issue
• Authenticated Customer

– Log in the appropriate service application, mobile or
web, and get a virtual ticket for a queue categorizing
this customer’s issue.

– Get notifications about that queue’s progress, until
called by the service to solve the issue, given that the
customer used the given info to approach the service
in time.

SIGA System

Service Admin

Operator

Super Admin

Request the
service to

deal with an
issue

Attend
user

Manage
Queues

Kiosk User

Authenticated
User

Manage
Users

Manage
Services

Manage
Calling

Heuristic

Open or
Close

Service

Manage
Service
Session

«extend»

Request the
service to

deal with an
issue

remotely

«include»

Change
Operator

Permissions

Consult
Statistics

Configure
Kiosk

Service
Admin also
plays
Operator
Role

«include»

«include»

«include»

Fig. 1. Simple use case diagram for the SIGA system

B. Additional Functional Requirements
1) Records: On top of the functional requirements specified

which were based on the use cases of the system, the system
shall never really delete any information that was collected.
As an example: all tickets created for the queues, even after
queues are deleted through the interface, stay stored and
accessible, for purposes of data retrieval for future analysis
and automatic report generation .

2) Security Requirements: Also, the kiosk interface shall
not have a direct internet connection, to prevent tampering
from the customers side. It should never be able to permit
clients to use it for other purposes besides getting tickets, or
staff configuration.

The kiosk must also prevent clients that may request many
tickets for the ill-purpose of wasting resources (e.g. paper),
by having an acceptable (0.5-1s) time-wait cooldown between
prints, besides blocking ticket printing request while printing
the ticket.

The printing of tickets may only be authorized to the
physical ticket dispenser or to a user that is authenticated.

3) Integration Requirements:
1) Authorization backend customization: staff should be able

to login into back-office operation with already existing
login back-end system.

2) App customers should be able to request remote tickets,
with the app and respective notification service also using
the previously integrated authentication backend.

4

C. Non-functional Requirements

This system should be easy to work with for both cus-
tomers and staff (user friendly interfaces), customizable and
deployable for different service provider entities (e.g. other
universities, hospitals, etc.) and achieve cost-effectiveness.

It should be server-based, easy to configure and scalable,
ideally enabling the remote deployment of client units that
will self-configure upon server connection, making it easier
to deploy in large organizations and extensible to provide
interfaces to devices external to this system.

IV. PROPOSED APPROACH

A. System Architecture

Our solution will be server based, providing backoffice
interfaces for the staff and client interfaces for the customers.
An overview of this system’s architecture is depicted in Figure
2.

Internet

Backoffice Interfaces

Kiosk: 3 components
(Electronic Ticket Dispenser)

Server
(running web app)

Super
Admin

Service
Admin

Operator

Networked Systems - in LAN
Internet access might exist for each but not

necessary.
All communication to be HTTP based.

1. Touch user
interface

2. Computational
unit for control

and server
connection

3. Ticket printer

Display: 2 components

1. Computational Unit for control
and server connection

2. Monitor for displaying queues
progress

Authenticateed User
in Mobile device

(Virtual ticket dispensing)

Fig. 2. System Architecture proposed approach

B. Server

The server shall be the main component of our system.
It will be used to log all interaction with the system on a
database, as well as enable the needed interfaces. In order
for this to work, each component must have a corresponding
computational unit to be able to establish a connection with
the server. It will serve the multiple back-office and customer
interfaces, for which we now present mockups and architec-
ture.

C. Backoffice and Display

1) Backoffice: Our back-office interfaces will have three
variants, one for each of the staff roles, for which we have
made mockups: the super admin in Figure 3, the service admin
inn Figure 4 and the operator in Figure 5

New Service
Creation :

Super Admin Interface

Existing Services:

Academic Unit (edit) (delete) Post-Graduate Unit (edit) (delete)

Name

Session

Max Queues

Service Admins (+)

Service Workers (+)

Upload New Logo

Add (+)

Logout

Fig. 3. Mockup of the super admin interface.

Other Settings :

Service Admin Interface

Existing Queues:

A - Tuition Payments (edit) (delete)

B - Grade Improvements (edit) (delete)

Session (edit)Service Admins (edit) Service Workers (edit)

Add Queue (+)

Consult Statistics Operation

Academic Unit Logout

Settings

Heuristics (edit)

Fig. 4. Mockup of the service admin interface.

Operator Interface

Queues:

A - Tuition Payments (Call)

B - Grade Improvements (Call)

Academic Unit LogoutDesk: 2

In Queue: 5

In Queue: 12

Call Next

Avg Wait: 5min

Avg Wait: 2min

Fig. 5. Mockup of the operator interface.

2) Display: Customers who take a physical ticket will
have a Display near the service that informs them on the
current queue status. This display is actually a monitor or TV,
connected to a computational unit that is fetching a specific
web page for queues progress for this service from our server.
A depiction of an the intended information for the Display
interface is shown in Figure 6.

D. Ticket Dispenser

There will be two ways for customers to get tickets:the
kiosk, where they select the intended queue from a touch-
screen display interface; through a mobile application, from

5

Tickets

Display

Desk

A07

Academic Unit

B42
(being called)

2

1

Fig. 6. Mockup of the Display interface.

where they can get a ticket for a queue, and receive notifica-
tions updating the status of that queue.

As one can see in Figure 2, the Kiosk will have three
main components: a touch interface, a computational unit,
and a printer. This computational unit will be responsible for
interpreting the touch-screen interfaces and communicate them
to the server (e.g. create ticket for queue A). It will also be
responsible to interpret the server response and give order for
the printer to print a ticket. The interface to be presented in
the touch-screen is depicted in Figure 7, along with a printer
and a ticket.

In 8, we see the configuration mode for the first time the
Kiosk attempts to connect to a service: it presents the existing
services, as portrayed by the ninth use case. A similar interface
shall be displayed to the authenticated user before proceeding
to the queues, and the first time a display is configured.

Academic Unit

A - Tuition Payments
Avg Wait time: 5min

B - Grade Improvements
Avg Wait time: 5min

Ticket A16

Academic Unit
Tuition Payments

(Printer)

(Touch Interface)

Fig. 7. Ticket dispenser representation, with touch screen for queue selecting
and ticket being printed by an attatched printer.

The virtual ticket can be obtained through an application,
as depicted in Figure 9. The several tickets obtained are also
depicted. Note that, as previously explained in Figure 2, this
user needs an internet connection in order to communicate
with the server.

Configuration Mode

Academic Unit

Post-Graduate Unit

(Touch Interface)

Fig. 8. Mockup interface for associating dispenser with one of the existing
services.

Academic Unit

A - Tuition Payments
Avg Wait time: 5min

B - Grade Improvements
Avg Wait time: 5min

Notification: A15 called 1 min ago

Current Tickets: A20

Fig. 9. Representation of the mobile application integration, allowing to
request tickets and receive notifications. User has taken ticket A20 and
received a notification on the last ticket called.

V. IMPLEMENTATION

A. Hardware Components

Before this project started, some hardware was already
chosen and acquired. The acquired materials included:

Kiosk metal frames As in Figures 10 and 12). This frame
is a national product, completely manufactured in Portugal, by
Partteam4.

Android Tablet This model, the SM-T5505, comes with
Android version 5.0.1 (Lollipop). Can be seen in Figure 10.

TMII-20 Epson Thermal Printers The Kiosk hols a TMII-
206 into its printer compartment, as shown in Figure 12.

RaspberryPi models 2B and 3B7, as depicted in Figure 11.
Having these items to build the kiosk, its architecture almost

outlines itself.. A diagram outlining the intended interaction is
presented in Figure 13.

B. Server Software

1) Used Web-Framework: The main framework used to
develop this project is Django8, version 1.9. This is a free
high-level web-framework that aids the developer into building
web applications faster. It uses Python9, a high-level general

4http://www.partteams.com
5http://www.samsung.com/us/support/owners/product/SM-

T550NZWAXAR
6https://www.epson.pt/products/sd/pos-printer/epson-tm-t20ii-series
7https://www.raspberrypi.org/products/
8https://www.djangoproject.com/
9https://www.python.org/

6

Fig. 10. Photo of the kiosk with fixed tablet running an application with blue
background

Fig. 11. Picture of RaspberryPis used in the implementation.

Fig. 12. Photo of the kiosk from the back, with opened doors, where we see
the tablet attached to the frame, the printer compartment.

PrinterTablet
Raspberry

Pi

Server

2. Forward request
to server (if printer
status ok*)

1. Request
ticket

3. Server
responds with
created ticket

4. Informs the
user ticket will
start printing

5. Creates a
ticket and sets
printer to print it

* Printer status is
checked in each
step

Fig. 13. Picture detailing intended kiosk components interaction

purpose language, which is interpreted and dynamic. One
of the best advantages of Python, also present in Django,
is the ease of install and usage of modules developed by
the community. Another highlight, it is Django’s good and
extensive documentation [6], that is also backed by Python’s
own [7].

2) RESTful Web services in Django: To take advantage of
the Android operative system pin mode, we opted to make an
application. However, this is not as easy as making a web page
as interface, directly accessed through the browser. Therefore,
in order to have communication between server and tablet, we
used Django Rest Framework10(also known as DRF)

This framework lets us define a Web API (application pro-
gramming interface), that is, URI endpoints that can transmit
machine to machine information in JSON format. Endpoints
were created to obtain details of services and their respective
queues, along with an endpoint enabling ticket creation.

These endpoints will also be used to deliver notifications,
as they will be the web services connecting the mobile user
to the system.

3) Security considerations: To make sure the ticket creation
endpoint is not tampered with (e.g. a user using the endpoit to
create several tickets in the server, pretending to be a kiosk),
a specific hash that needs to be set in each request is defined,
and a certificate for enabling HTTPS is recommended. Also,
the number of tickets creation per authenticated user must be
limited.

4) Front-End: Back-office and Display Interfaces: Figures
14 and 15 depict the initial status of these interfaces, made
with the help of TwitterBootstrap11. They are fully functional
but the final design is not closed: full-fledged interface designs
are still under development by the design team of our school.
A first, almost closed design, was made fully functional with
CSS3 Flexbox12. This design is presented in Figure 16). The
display is also a web application, running on a Raspberry Pi
that is connected to the internet.The final result is depicted in
Figure 17.

Fig. 14. Functional draft interface for tickets operation.

This was made using HTML/CSS with Flexbox, and AJAX
calls to poll the server for updates on tickets status.

10http://www.django-rest-framework.org/
11http://getbootstrap.com/2.3.2/
12https://www.w3.org/TR/css-flexbox-1/

7

Fig. 15. Functional draft interface for settings operation.

Fig. 16. Operation interface with a more advanced design, although still in
a preliminary version.

Also, the right-pane is available to display information
coming from an RSS feed. We used an open-source tool,
Feednami13 to integrate it.

C. Ticket Dispenser

1) Architecture: The architectural description is in figure
18

2) RaspberryPi to Tablet connection: The initial idea was
that the tablet communicated with the RaspberryPi through
inverse-tethering over USB. In short, the USB connection

13https://github.com/sekando/feednami-client

Fig. 17. Display. Next ticket for B queue has been recently called: shows in
alternate color.

PrinterTablet
Raspberry

Pi

Server

HTTP (REST API)

HTTP (REST API)

USB (Python
ESC/POS)

Fig. 18. Architecture overview of the Kiosk subsystem.

would mimic an Ethernet one, offering a private TCP/IP
connection where HTTP would be supported.

With the need to occupy the USB port only for charging,
we found other solution to provide the physical layer that
enables HTTP between the tablet and the Raspberry: a private
Wi-Fi Access Point network, generated and controlled by
the Raspberry Pi, which can be programatically configured
in the tablet, providing an out-of-the-box solution with these
elements.

For security concerns, one can define a password for this
network with WPA2 encryption14. This is so that one cannot
connect to the created Wi-Fi AP pretending to be a tablet.

As one might note in fig.19, that depicts all the needed
kiosk connections, there is no physical connection between
the RaspberryPi and tablet. The orange cable is the USB cable
that goes directly to the plugged transformer.

Fig. 19. Picture of the kiosk from the bac with connections made/

3) Printing Tickets: When handling ticket creation requests,
our Python application invokes methods to communicate with
the EPSON Printer through USB. Fortunately, an open-source
Python library was found. This library is named Python
ESC/POS15. Its most important feature used was sending an
image to the printer. This library makes use of appropriate
imaging libraries that rasterize images very quickly, taking
advantage of GPU computations if possible. Our ticket, for
purposes of increased customization (e.g. not being tied with
the available printer text fonts), is an image. The ticket design
was iteratively developed by the design team of our school.

When the user requests a ticket in the tablet, and the request
is forwarded by the Raspberry Pi to the server, if everything
goes well server-side we get a ticket response. From this
ticket response we extract the following needed information to

14http://standards.ieee.org/getieee802/download/802.11i-2004.pdf
15https://github.com/python-escpos/python-escpos

8

Fig. 20. Pictures of digitally generated tickets with Imagick

construct an image: 1) Logo to use; 2) Service name; 3) Queue
name; 4) Short Queue Name; 5) Date; 6) Hour; 7) Tolerance;
This image is created with a bash script using Imagick16, that
receives these arguments and is called within the RaspberryPi
request handler upon server ticket creation response. The final
result of our image construction, can be seen in fig. 20. Its
analogue counterpart produced by the printer is depicted in
fig. 21.

Fig. 21. Tickets in their analogue version.

4) Printer Status: One important feature that during the
development and at the time of writting was not present in
Python ESC/POS was that of assessing printer status.

So, if printer status is abnormal, it will return a response to
the tablet and the server listing the present errors, which may
be the following: 1) Offline Mode (printer turned off); 2) Cover
is Open; 3) Paper End; 4) Autocutter error; 5) Unrecoverable
error; 6) Automatically Recoverable Error;

Two other types of errors, not pertaining only to the printer,
are also checked for and sent: printer USB connection errors
and server connection errors.

5) Tablet Software: the SIGA App: Our app was developed
with the free Android Studio IDE, that easily allows the use
of Android’s Java API Framework [8] for Android application
development. The end result for the main interface, both for
Portuguese and English settings (as defined in a server running
our Django application), is shown in Figure 22.

Some third party libraries for Android were used for the
development of REST API communication on the tablet side,
one using the others: Square’s Retrofit using RxJava and
GSON.

The main interface is the one clients will use: the list of
queues for the selected service, as in Figure 22. This one
updates to changes that occur in the back-office.

16http://www.imagemagick.org/script/index.php

6) Security Considerations - Pinning Mode: This feature,
present in Lollipop (Android 5.0) and above as task pinning, is
of utmost importance for the correct operation of our system,
as previously discussed. One can manually pin one application
to the screen, which means that it will not leave the current
screen view unless one presses two specific navigation buttons
simultaneous, for a while. In our metal frame, such buttons
are not accessible, making our app never leaving the screen.
We add two protections to this one. First, the app has a boot
listener, to self launch after the tablet boots. Second, because
there is a slight delay between the OS boot and the app launch,
a password must be added to the tablet user, only known to the
super admin, so that the screen is locked unless for password
input.

7) Ticket Dispenser: Final result : The result of the integra-
tion of the several elements for the electronic ticket dispenser
is shown in Figure 22.

Fig. 22. Ticket dispenser after printing.

8) Virtual Tickets: Push notifications are a way to receive
mobile notifications (in our smartphones) from a certain ap-
plication, if we so allow.

The mockup uses a fabricated back-end (not IST’s), con-
stantly alerting users who have had requested a ticket from
a certain queue, of the updates to that queue. This was done
with the aid of FCM, and a Django Package for FCM (django-
fcm17) that simplifies the sending configurations. Much parts
of this mockup app are re-proposed from the SIGA App.

VI. TEST AND VALIDATION

A. Tickets Printing

We tested the speed with which we can print the tickets.
In a first test, we clicked continuosly on the same queue,

even when not appearing in the interface to show a printing
dialog. We created 10 tickets in one minute (and thirty mi-
croseconds), which totals an average of 6.0 seconds per ticket.

17https://github.com/Chitrank-Dixit/django-fcm

9

This measure includes the ticket printing, and the waiting for
the screen to re-establish the queues after a printing dialog.

In a second test, an analysis was made take by take, from a
total of ten measures and without continuous clicks (only after
the establishing of the screen) we measured both the printing
time after click, and the screen repositioning.

The average speed for the physical ticket creation was 1.9
seconds after button click.

The screen with the queues reappeared, in average, 1.6
seconds after the ticket printing.

Although this amounts to less than the first test, totalling
3.5 seconds for each ticket creation, the missing 2.5 seconds
can be accounted for button unresponsiveness after printing,
which was not directly measured in this second test.

Thus, without counting with virtually dispensed tickets,
4800 would be the theoretical maximum number of customers
a service session could serve, limit set by the printing ticket
speed. Virtually dispensed tickets let us overcome this maxi-
mum.

B. RESTful API Endpoints

Using the Apache Benchmark tool18, we load tested our
several REST API endpoints.

The requests were launched from an external server to the
development server, running a development webserver, WS-
GIServer/0.2, a Lenovo X220 laptop running Ubuntu 15.04,
with a Intel(R) Core(TM) i5-2540M CPU running at 2.60GHz
(dual core), 8GB of RAM and 128GB SSD.

We tested the several endpoins for a configuration of 3000
requests, accounting for a population of roughly 2000 students
making several requests at different times, with 10 concurrent
requests (that is, 10 requests being sent at the same time).

The GET requests all got similar results, the medium
response ranging from 100ms to 250ms. The requests never
failed. The percentage of requests served in a certain time for
a get request is represented by the all services endpoint and
is represented by the plot in Figure 23.

From the 3000 sent requests, none failed. with only the
ticket creation being different.

Fig. 23. Percentage bins for request duration for the Services endpoint.

The percentage of requests served in a given time is pre-
sented in the plot of Figure 24. From the 3000 sent requests,

18http://httpd.apache.org/docs/2.4/programs/ab.html

only 638 created and returned new tickets, while 2352 failed.
There is a big variance between time waits for these requests:
while 60% are below a request time of 500ms, 30% present
a minimum of 1500ms and a maximum of 3000ms, with the
remainder 10% between 500ms and 1500ms.

Fig. 24. Percentage bins for request duration for a specific queue ticket
creation endpoint.

The rate of failure for requests is quite large for ticket
creation. This is because upon creating a ticket, a transaction is
initialized in the database, and locks are made to the data, as to
ensure that no ticket can get the same number. Failed requests
reflect failed concurrent requests that tried to obtain the last
ticket given for a certain queue during database transaction
lock.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

At the end of this project, a solution to the uninformed
queue management problem was documented and prototyped.
Having in mind the needs of our school, several functional
and non-functional requirements were assessed, and use-cases
defined, to better lead the product design and implementation.
The implementation was carried out, with modern software
tools and school provided hardware, and the developed API
was tested for load and concurrency in a development environ-
ment. We feel that the base requirements were fulfilled, both
functional and non-functional, highlighting the simplicity of
the interfaces and the cost-effectiveness of this project.

The development of this project covered great amount
of different tools and technologies, which were studied and
learned, making this project an extremely enriching experi-
ence.

B. Future Work

The back-office designs can be customized, and for such,
with the help of the design team to provide improved designs,
these must be integrated in our system.

Also, the designs themselves, back-office and kiosk, can be
object of further usability testing.

On the technical side, it would be interesting to implement
our Django Application with websockets, a tecnhology that
would allow real-time information for the back-office without

10

needing to poll the server with AJAX calls or constant page
reload.

The application can be further battle tested, in an environ-
ment simulating production.

An RSS feed for displaying information on the TV Display
can be provided to integrate into our Display interface.

Also, the developed Django application can always be
extended to provide more statics and heuristics for the next
ticket to select.

In overview, future work includes
1) Add improved back-office designs
2) Back-office usability testing
3) Possible inclusion of websockets
4) Extend next-ticket heuristics (based on acquired data)
5) Assess useful statistics options (based on back-office

needs)
6) Integrate with IST mobile application
7) Test in a production or simulated production environment
8) Deploy to production
A good product is achieve upon continuous iterations. With

this project we have made the base foundations for the SIGA
system, aiming that one day, after its continuous improvement
in the context of our schools, it becomes a full fledged product,
battle tested, and ready to be deployed in schools or entities
looking for a better management of their services.

REFERENCES

[1] M. Halperin, “Waiting lines,” RQ, vol. 16, no. 4, pp. 297–299, 1977.
[Online]. Available: http://www.jstor.org/stable/41354440

[2] H. Do, M. Shunko, M. T. Lucas, and D. A. Novak, “On the
pooling of queues: How server behavior affects performance,” SSRN
Electronic Journal, 2015. [Online]. Available: http://dx.doi.org/10.2139/
ssrn.2606071

[3] K. L. Schultz, D. C. Juran, J. W. Boudreau, J. O. McClain, and L. J.
Thomas, “Modeling and worker motivation in JIT production systems,”
Management Science, vol. 44, no. 12-part-1, pp. 1595–1607, 1998.
[Online]. Available: http://pubsonline.informs.org/doi/abs/10.1287/mnsc.
44.12.1595

[4] K. S. Anand, M. F. Paç, and S. Veeraraghavan, “Quality–speed
conundrum: Trade-offs in customer-intensive services,” Management
Science, vol. 57, no. 1, pp. 40–56, 2011. [Online]. Available:
http://dx.doi.org/10.1287/mnsc.1100.1250

[5] M. Delasay, A. Ingolfsson, B. Kolfal, and K. L. Schultz, “Load effect on
service times,” Available at SSRN 2647201, 2015.

[6] Django Software Foundation, “Django documentation,” https://docs.
djangoproject.com/en/1.9/, [Online; accessed 22-April-2016].

[7] Python Software Foundation, “Python documentation,” https://docs.
python.org/3.4/, [Online; accessed 20-Jun-2016].

[8] Google Inc. and Open Handset Alliance, “Android API guide,” https:
//developer.android.com/guide/index.html, [Online; accessed 26-May-
2016].

