Duration: $\mathbf{3 0}$ minutes

- Write your number and name below.
- Add your answers to this and the following page.
- Please justify all your answers.
- This test has One page and two questions. The total of points is 5.0.

Number:

Name:

1. Suppose that a product is designed to have a time to failure (in hours) with an exponential distribution with parameter λ_{1}. A proportion p of the units of the product comes out with an exponential distribution with parameter $\lambda_{2}\left(\lambda_{2}>\lambda_{1}\right)$. Suppose that all units of the product go through a burn-in for t^{\star} hours.
The time to failure of the units which did not fail during this burn-in, T^{\star}, has reliability function

$$
R^{\star}(t)= \begin{cases}1, & t<t^{\star} \\ \frac{1}{C^{\star}} \times\left[(1-p) \times e^{-\lambda_{1} t}+p \times e^{-\lambda_{2} t}\right], & t \geq t^{\star}\end{cases}
$$

where $C^{\star}=(1-p) \times e^{-\lambda_{1} t^{\star}}+p \times e^{-\lambda_{2} t^{\star}}$.
(a) Derive an expression for $E\left(T^{\star}\right)$.

- Relevant failure time

$T^{\star}=$ time of units which did not fail during the burn-in

- Requested expected value

$$
\begin{aligned}
E\left(T^{\star}\right) & \stackrel{T^{\star} \geq 0}{=} \int_{0}^{+\infty} R^{\star}(t) d t=\int_{0}^{t^{\star}} d t+\frac{1}{C^{\star}} \times \int_{t^{\star}}^{+\infty}\left[(1-p) \times e^{-\lambda_{1} t}+p \times e^{-\lambda_{2} t}\right] d t \\
& =t^{\star}-\frac{1}{C^{\star}} \times\left(\frac{1-p}{\lambda_{1}} \times e^{-\lambda_{1} t}+\frac{p}{\lambda_{2}} \times\left. e^{-\lambda_{2} t}\right|_{t^{\star}} ^{+\infty}\right) \\
& =t^{\star}+\frac{1}{C^{\star}} \times\left(\frac{1-p}{\lambda_{1}} e^{-\lambda_{1} t^{\star}}+\frac{p}{\lambda_{2}} \times e^{-\lambda_{2} t^{\star}}\right) \\
& =t^{\star}+\frac{1}{\lambda_{1} \lambda_{2} C^{\star}} \times\left[(1-p) \lambda_{2} \times e^{-\lambda_{1} t^{\star}}+p \lambda_{1} \times e^{-\lambda_{2} t^{\star}}\right]
\end{aligned}
$$

(b) Assume from now on that $\lambda_{1}^{-1}=10000, \lambda_{2}^{-1}=100, p=0.05$, and $t^{\star}=200$. Suppose these values led to: $E\left(T^{\star}\right) \simeq 10128.6$; a decreasing plot of $\left[R^{\star}(t)\right]^{1 / t}$, for $t \in(0,+\infty)$. Comment on these results.

- Comment on $E\left(T^{\star}\right)=10128.6$

A unit surviving t^{\star} hours of burn-in is expected to operate an additional $E\left(T^{\star}\right)-t^{\star}$ hours in the field. If $\lambda_{1}^{-1}=10000,1 / \lambda_{2}^{-1}=100$, and $p=0.05$, then a unit surviving $t^{\star}=200$ hours of burn-in, is expected to operate an additional $E\left(T^{\star}\right)-t^{\star} \simeq 10128.6-200=9928.6$ hours in the field.

- Comment on the plot of $\left[R^{\star}(t)\right]^{1 / t}$

According to Definition 3.32, a decreasing plot of $\left[R^{\star}(t)\right]^{1 / t}$, for $\in(0,+\infty)$, means that the r.v. T^{\star} is IHRA (increasing hazard rate in average).
(c) Capitalize on the stochastic ageing behaviour of T^{\star} to provide: an upper bound to $\sqrt{V\left(T^{\star}\right)}$; a lower bound for the expected failure time of a 3 -out-of- 5 system with units with failure times i.i.d. to T^{\star}.

- Requested upper bound to $S D\left(T^{\star}\right)$

Since $T^{\star} \in I H R A$, we can invoke Corollary 3.54 and write

$$
C V\left(T^{\star}\right)=\frac{\sqrt{V\left(T^{\star}\right)}}{E\left(T^{\star}\right)} \leq 1 \quad \Leftrightarrow \quad S D\left(T^{\star}\right)=\sqrt{V\left(T^{\star}\right)} \leq E\left(T^{\star}\right) \simeq 10128.6
$$

- Individual failure times

$T_{i}^{\star}=$ failure time of valve $i \stackrel{i . i . d .}{\sim} T^{\star}, \quad i=1, \ldots, 5$
$E\left(T_{i}^{\star}\right)=\mu_{i}=\mu^{\star} \simeq 10128.6, \quad i=1, \ldots, 5$

- System

3-out-of-5 system
$T T=$ failure time of the 3 -out-of- 5 system

- Lower bound for $E(T T)$

Since $T_{i}^{\star} \stackrel{\text { i.i.d. }}{\sim} T^{\star} \in I H R A$, we can apply Theorem 3.69 and provide a lower bound to $\mu=$ $E(T T)$ depending on the $p^{*}=\binom{5}{3}=10$ minimal path sets, all with cardinality 3:
$\mu \geq \max _{j=1, \ldots, p^{*}}\left\{\left(\sum_{i \in \mathscr{P}_{j}} \mu_{i}^{-1}\right)^{-1}\right\} \stackrel{\mu_{i}=\mu^{\star}}{=} \max _{j=1, \ldots, p^{\star}}\left\{\left(\frac{\# \mathscr{P}_{j}}{\mu^{\star}}\right)^{-1}\right\}=\frac{\mu^{\star}}{\min _{j=1, \ldots, p^{\star}}\left\{\# \mathscr{P}_{j}\right\}}=\frac{\mu^{\star}}{3} \simeq 3376.2$.
[The subsets with cardinality 3 from the set $\{1,2,3,4,5\}$ are: $\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\}$, $\{1,3,5\},\{1,4,5\},\{2,3,4\},\{2,3,5\},\{2,4,5\},\{3,4,5\}$.]
[Alternatively, we could have capitalize on the fact that $T_{i}^{\star} \stackrel{i . i . d .}{\sim} \operatorname{IHRA} \stackrel{\text { Prop.3.36 }}{\Rightarrow} T_{i}^{\star} \stackrel{i . i . d .}{\sim} N B U E$ and invoke instead Theorem 3.65, which leads to the same lower bound to $E(T T)$.]
2. A mechanical engineer concluded that the exponential model fits 20 failure times quite well. The complete data set led to a ML estimate of the expected time to failure equal to $\hat{\lambda}^{-1}=3543.37$ hours.

Identify the pivotal quantity you would use to obtain a 95% confidence interval (CI) for the expected time to failure. Determine this CI (BUT DO NOT DERIVE IT).

- Distribution assumption

It is fairly reasonable to admit that the failure times T_{i} are such that:
$T_{i} \stackrel{i . i . d .}{\sim} T \sim \operatorname{exponential}(\lambda), \quad i=1, \ldots, n(n=20)$.

- Life test

Complete data is available!
$\hat{E}(T)=\hat{\lambda}^{-1}=\frac{\sum_{i=1}^{n} t_{i}}{n}=3543.37$
$\hat{\lambda}=[\hat{E}(T)]^{-1}=\frac{1}{3543.37}$

- 95% confidence interval (CI) for $E(T)=\frac{1}{\lambda}$
- Pivotal quantity
$Z=2 \lambda \sum_{i=1}^{n} T_{i} \sim \chi_{(2 n)}^{2}$

- Requested CI

Since

$$
C I_{95 \%}(\lambda) \stackrel{(5.22)}{=}\left[\frac{\hat{\lambda} \times F_{\chi_{(2 n)}^{2}}^{-1}(\alpha / 2)}{2 n}, \frac{\hat{\lambda} \times F_{\chi_{(2 n)}^{2}(1-\alpha / 2)}^{-1}}{2 n}\right]=\left[\lambda_{L}, \lambda_{U}\right]
$$

we get the requested CI:

$$
\begin{aligned}
C I_{95 \%}(1 / \lambda) & =\left[\frac{1}{\lambda_{U}}, \frac{1}{\lambda_{L}}\right] \\
& =\left[\frac{\hat{\lambda}^{-1} \times 2 n}{\left.F_{\chi_{(2 n)}^{-1}(1-\alpha / 2)}^{2}, \frac{\hat{\lambda}^{-1} \times 2 n}{F_{\chi_{(2 n)}^{-1}(\alpha / 2)}^{-2}}\right]}\right. \\
& =\left[\frac{3543.37 \times 2 \times 20}{59.34}, \frac{3543.37 \times 2 \times 20}{24.43}\right] \simeq[2388.52,5801.67] .
\end{aligned}
$$

