\intDM DEFARTAMENTO DEMATEMATICA TENCO LSBOA	Reliability and Quality Control	2nd. Semester-2022/2023
	LMAC, MMA	2023/03/07-17:10
TAP30 \#1		

Duration: $\mathbf{3 0}$ minutes

- Write your number and name below.
- Add your answers to this and the following page.
- Please justify all your answers.
- This test has one page and two questions. The total of points is 4.0

Number: Name

1. A car needs wheels (component 1), an engine (component 2), a transmission (component 3), and one out of two brake systems (components 4 and 5) to function.

Admit that the components of this car system operate independently and their reliabilities are equal to $p_{i}=p(i=1, \ldots, 5)$.
(a) Identify the minimal path sets and the minimal cut sets of this system.

Provide expressions for its: i) structure function (in terms of the minimal cut sets); ii) reliability

- Minimal path sets
$\mathscr{P}_{1}=\{1,2,3,4\}, \quad \mathscr{P}_{2}=\{1,2,3,5\}, \quad p^{*}=2$ minimal path sets
- Minimal cut sets
$\mathscr{K}_{1}=\{1\}, \mathcal{K}_{2}=\{2\}, \quad \mathcal{K}_{3}=\{3\}, \quad \mathcal{K}_{4}=\{4,5\}, \quad q=4$ minimal path sets
- Structure function (in terms of the minimal cut sets)

$$
\begin{aligned}
\phi(\underline{X}) & \stackrel{T h .1 .30}{=} \\
& \prod_{j=1}^{q}\left[1-\prod_{i \in \mathcal{K}_{j}}\left(1-X_{i}\right)\right] \\
& =\quad\left[1-\left(1-X_{1}\right)\right] \times\left[1-\left(1-X_{2}\right)\right] \times\left[1-\left(1-X_{3}\right)\right] \times\left[1-\left(1-X_{4}\right)\left(1-X_{5}\right)\right] \\
& =X_{1} \times X_{2} \times X_{3} \times\left(X_{4}+X_{5}-X_{4} X_{5}\right)
\end{aligned}
$$

- Reliability

$$
\begin{array}{rll}
r(\underline{p}) \quad & = & E[\phi(\underline{X})] \\
& = & E\left[X_{1} \times X_{2} \times X_{3} \times\left(X_{4}+X_{5}-X_{4} X_{5}\right)\right] \\
& \stackrel{X_{i} \sim \sim}{i . i . d} \underset{=}{=} \text { Ber }\left(p_{i}\right) & p_{1} p_{2} p_{3}\left(p_{4}+p_{5}-p_{4} p_{5}\right) \\
& p_{i}=p & p^{3}\left(2 p-p^{2}\right) \quad\left[\equiv p^{4}(2-p)\right] .
\end{array}
$$

(b) Admit now that the components of the car system operate in a positively associated fashion. Determine the min-max lower and upper bounds to the reliability of this system.

- Min-max upper bound

[Since we are dealing with a coherent system with components operating in a positively associated fashion, we can apply Theorem 1.70 and obtain]
$r(\underline{p}) \stackrel{T h .1 .70}{\leq} \min _{j=1, \ldots, q}\left[1-\prod_{i \in \mathscr{K}_{j}}\left(1-p_{i}\right)\right]$
$r(\underline{p}) \stackrel{p_{i}=p}{=} \min _{j=1, \ldots, q}\left[1-(1-p)^{\# \mathcal{K}_{j}}\right]$
$=1-(1-p)^{\min _{j=1 \ldots}, \ldots \# K_{j}}$
$=\quad p$
$r(\underline{p}) \stackrel{T h .1 .70}{\underset{j}{i n}} \max _{j=1, \ldots, p^{*}}\left[\prod_{i \in \mathscr{P}_{j}} p_{i}\right]$
$\stackrel{p_{i}=p}{=} \max _{j=1, \ldots, p^{*}} p^{\# \mathscr{P}}$
$=p^{\min _{j=1, \ldots, p^{*}} \mathscr{S D}_{j}}$
$=p^{4}$.
2. Admit that the times to failure of the components of the car system are independent and exponentially (1.5) distributed with parameter λ.

Write down the time to failure of the car system (T) in terms of the times to failure of its components. Derive expressions for $R_{T}(t)$ and $E(T)$.

> Time to failure (components)
> $T_{i}=$ time to failure of component i
> $T_{i} \stackrel{i . i . d .}{\sim} \exp (\lambda), \quad i=1, \ldots, 5$
> $R_{i}(t)=P\left(T_{i}>t\right)=R(t)= \begin{cases}e^{-\lambda t}, & t \geq 0 \\ 1, & t<0\end{cases}$

- Time to failure (car system)
$T=\min \left\{T_{1}, T_{2}, T_{3}, \max \left\{T_{4}, T_{5}\right\}\right\}$

- Requested reliability

$R_{T}(t) \quad=\quad P(T>t)$
$=\quad R_{1}(t) \times R_{2}(t) \times R_{3}(t) \times\left\{1-\left[1-R_{4}(t)\right] \times\left[1-R_{5}(t)\right]\right\}$
$\stackrel{R_{i}(t)=R(t)}{=} \quad[R(t)]^{3} \times\left\{1-[1-R(t)]^{2}\right\}$
$=\quad[R(t)]^{3} \times\left\{[2 R(t)-R(t)]^{2}\right\}$
$=\quad[R(t)]^{4} \times[2-R(t)]$
$=e^{-4 \lambda t} \times\left(2-e^{-\lambda t}\right), \quad t>0$
$\left[\equiv \quad r(R(t), \ldots, R(t))=r\left(e^{-\lambda t}, \ldots, e^{-\lambda t}\right)\right.$.]

- Expected value of T
$E(T) \stackrel{(2.10)}{=} \int_{0}^{+\infty} R(t) d t$
$=\int_{0}^{+\infty} e^{-4 \lambda t} \times\left(2-e^{-\lambda t}\right) d t$
$=\frac{1}{2 \lambda} \int_{0}^{+\infty} 4 \lambda e^{-4 \lambda t} d t-\frac{1}{5 \lambda} \int_{0}^{+\infty} 5 \lambda e^{-\lambda t} d t$
$=\frac{1}{2 \lambda} \int_{0}^{+\infty} f_{\exp (4 \lambda)}(t) d t-\frac{1}{5 \lambda} \int_{0}^{+\infty} f_{\exp (5 \lambda)}(t) d t$
$=\frac{1}{2 \lambda} \times 1-\frac{1}{5 \lambda} \times 1$
$=\frac{3}{10 \lambda}$.

