
Using the Docker container for development

If you use the Docker container available, you will be able to run Quizzes Tutor quite
easily.

1. Pre-requisites:
1. You will need Docker installed in your computer. Docker is free and available

from: https://www.docker.com
2. You will need a Gitlab Access Token. You can create a Personal Access Token

by going to Preferences > Access Tokens. Direct link:
https://gitlab.rnl.tecnico.ulisboa.pt/-/profile/personal_access_tokens

The access token only needs the scope read_registry (see image below).
Click “Create personal token” and save the token.

1

https://www.docker.com
https://gitlab.rnl.tecnico.ulisboa.pt/-/profile/personal_access_tokens

2. Pulling the Docker image and creating a container
The following command should be executed in a terminal window (you can use the IDE
terminal, for example).

1. Login to RNL’s registry:

docker login https://registry.rnl.tecnico.ulisboa.pt

The Username is your IST ID (istxxxxxx) and the password is your Access Token. If
successful, you should see “Login Succeeded”

2. Pull the docker image:

docker pull
registry.rnl.tecnico.ulisboa.pt/es/quizzes-tutor

3. Create/run a container. The following command creates/runs one called qtutor, and it
exposes a port for the backend (8080), a port for the frontend (8081), and a port for
remote debugging (5005). It also mounts the local folder
/home/user/quizzes-tutor in the container as /quizzes-tutor

docker run -it -p 8080:8080 -p 8081:8081 -p 5005:5005 -v
/home/user/quizzes-tutor:/quizzes-tutor --name qtutor
registry.rnl.tecnico.ulisboa.pt/es/quizzes-tutor:latest bash

After running this command, you should see something similar to the following:

root@e952cfacf33c:/#

4. You are now in the container and you can, for example, run the backend. Let’s first start
the database server:

/etc/init.d/postgresql restart

Then, configure the required environment variables:

export POSTGRES_DB=tutordb
export POSTGRES_USER=postgres
export POSTGRES_PASSWORD=postgres
export POSTGRES_HOST_AUTH_METHOD=trust
export PSQL_INT_TEST_DB_USERNAME=postgres
export PSQL_INT_TEST_DB_PASSWORD=postgres
export cypress_psql_db_name=tutordb

2

https://registry.rnl.tecnico.ulisboa.pt

export cypress_psql_db_username=postgres
export cypress_psql_db_password=postgres
export cypress_psql_db_host=localhost
export cypress_psql_db_port=5432

And now let’s run the backend:

cd /quizzes-tutor/backend; mvn -Ptest-int
spring-boot:run

If you visit http://localhost:8080/swagger-ui/index.html , you’ll see that the backend is up.

To exit the container (in the terminal), you can execute exit or you use CTR+D.

3. Using the Docker container in IntelliJ
Once you have the container created, you can also manage the container from IntelliJ. This
tutorial assumes that you are using the Ultimate Edition, which is free for students.

1. First, go to the tab Services and confirm that you have a container with the same name
as before (in this case, qtutor).

If you do not have the Docker service configured, you can create it by clicking “Add Service” →
“Docker Connection” → “OK”.

2. If you click the container and select the tab Dashboard, you should be able to start/stop
it.

3

http://localhost:8080/swagger-ui/index.html

3. Once it is started, you can open a terminal by clicking “Terminal”:

4. In the terminal, start the backend:

5. Open a new terminal for the frontend by clicking “Terminal” again (in the Dashboard). In
the new terminal, run the frontend:

4

6. The frontend will be running when you see the following:

7. If you visit http://localhost:8081, you should see your local instance of Quizzes Tutor!

Debugging your code
1. To debug your code using IntelliJ and the application running in the Docker container, we

first need to create a new configuration. You can create one by clicking on “Edit
Configurations…” (located in the top bar):

2. Create a new Remove JVM Debug configuration:

5

http://localhost:8081

3. Name it something like “Docker Debug” and click OK:

6

4. In the Docker terminal where you started your backend, stop it and restart it with the
following command:

mvn spring-boot:run
-Dspring-boot.run.jvmArguments="-agentlib:jdwp=transport=dt_socket,se
rver=y,suspend=n,address=*:5005"

This command is the same as before, but with additional options that will enable remote
debugging.

7

5. Once the backend is running, let’s debug using the new “Docker Debug” configuration by
clicking the “green bug” button:

If this was successful, you should see the following message:

Connected to the target VM, address: 'localhost:5005', transport:
'socket'

6. We can test remote debugging by creating a new debug breakpoint. Let’s create one in
the TeacherDashboard service (TeacherDashboardService.java). Here’s an example of a
debug breakpoint in line 34:

Now, let’s use the frontend (http://localhost:8081) and visit the Demo Teacher Dashboard (Demo
As Teacher > Dashboard). The application should pause in the browser and you should be
redirected to the IDE, where you will see that the breakpoint was reached:

8

http://localhost:8081

