
Deep Learning
MSc in Computer Science and Engineering

MSc in Electrical and Computer Engineering

Final exam — February 12, 2022

Version A

Instructions

• You have 120 minutes to complete the exam.

• Make sure that your test has a total of 11 pages and is not missing any sheets, then write
your full name and student n. on this page (and your number in all others).

• The test has a total of 19 questions, with a maximum score of 100 points. The questions
have different levels of difficulty. The point value of each question is provided next to the
question number.

• Please provide your answer in the space below each question. If you make a mess, clearly
indicate your answer.

• The exam is open book and open notes. You may use a calculator, but any other type of
electronic or communication equipment is not allowed.

• Good luck.

Part 1 Part 2 Part 3, Pr. 1 Part 3, Pr. 2 Total

32 points 18 points 25 points 25 points 100 points



Part 1: Multiple Choice Questions (32 points)

In each of the following questions, indicate your answer by checking a single option.

1. (4 points) An RNN-based sequence-to-sequence model with an attention mechanism trans-
lates an input sentence of M words into an output sentence with N words. How does the
number of computational operations (algorithmic complexity) increase as a function of M
and N?

◻ O(M +N)

∎ O(MN)

◻ O(max(M,N)2)

◻ O(MN)

Solution: The correct option is O(MN), since for each of the N generated words we need
to attend to M representations for the source words.

2. (4 points) A model is trained for 30 epochs with gradient descent and it leads to the following
plot for its training and test losses:

0 5 10 15 20 25 30
Epoch number

22

23

24

25

26

27

28

29 train loss
test loss

Which of the following statements is a plausible explanation for what could be happening?

◻ The model is underfitting the training data.

∎ The model is overfitting the training data.

◻ The model generalizes well to unseen examples.

◻ None the above.

Solution: The training error is decreasing, while the test error is increasing, which suggests
that the model is overfitting the training data.

3. (4 points) A neural network is overfitting its training data. What strategies could mitigate
this?

∎ Increase the dropout probability.

Deep Learning Page 2 of 11



◻ Decrease the amount of training data.

◻ Increase the number of hidden units.

◻ All the above.

Solution: More regularization should help, and this can be achieved by increasing the
dropout probability.

Deep Learning Page 3 of 11



4. (4 points) Let ∨,∧,⊕ denote respectively the OR, AND, and XOR Boolean logical operators,
and ¬ denote Boolean negation. Assume Boolean values are represented as −1 (False) and
+1 (True). Which of these logical functions cannot be learned by a single perceptron with
inputs A and B?

∎ (A ∧ ¬B) ∨ (¬A ∧B)

◻ (A ⊕ B) ∧A

◻ A ∨B

◻ ¬A ∧B

Solution: The answer is (A ∧ ¬B) ∨ (¬A ∧B), which is equal to A⊕B.

5. (4 points) Let L(w) = 1
2 ∑i(yi −w

⊺φ(xi))
2 be the loss function corresponding to a linear

regression problem. Which equation represents the stochastic gradient descent update for
w?

∎ w(k+1) ←w(k) + η(yi −w
⊺φ(xi))φ(xi)

◻ w(k+1) ←w(k) + η∑i(yi −w
⊺φ(xi))φ(xi)

◻ w(k+1) ←w(k) + η(yi − sign(w⊺φ(xi)))φ(xi), where sign(⋅) is the sign function

◻ w(k+1) ←w(k) +η(yi −σ(w
⊺φ(xi)))φ(xi), where σ(z) = 1/(1+ e−z) is the sigmoid

function.

Solution: Stochastic gradient updates depend only on a single example (or a mini-batch
of examples). The option w(k+1) ←w(k) + η∑i(yi −w

⊺φ(xi))φ(xi) corresponds to gradient
descent on the full batch.

6. (4 points) Which one of the following statements is true?

◻ Convolutional layers are equivariant to translations and rotations.

◻ Neural networks with a single hidden layer with linear activations are universal
approximators.

◻ Auto-encoders with non-linear activations and a squared loss are equivalent to
PCA.

∎ None of the above.

Solution: Convolutional layers are equivariant to translations, but not rotations. Neural
networks with a single hidden layer with linear activations are equivalent to linear classi-
fiers, which are not universal approximators. Auto-encoders with linear activations would
correspond to PCA.

7. (4 points) Consider the following computation graph, where σ(z) = 1/(1+e−z) is the sigmoid
function. What is the derivative of y with respect to x?

Deep Learning Page 4 of 11



y y = ab

a a = 3x + σ(x) b b = x2 − e−x + 3

x

∎ b(3 + σ(x)(1 − σ(x))) + a(2x + e−x).
◻ a(3 + σ(x)(1 − σ(x))) + b(2x + e−x).
◻ 3 + σ(x)(1 − σ(x)) + 2x + e−x.
◻ 0.

Solution: It is b(3 + σ(x)(1 − σ(x))) + a(2x + e−x):

∂y

∂a
= b,

∂y

∂b
= a

∂a

∂x
= 3 + σ(x)(1 − σ(x)),

∂b

∂x
= 2x + e−x

∂y

∂x
=
∂y

∂a

∂a

∂x
+
∂y

∂b

∂b

∂x
= b(3 + σ(x)(1 − σ(x))) + a(2x + e−x).

8. (4 points) Which one of the following statements is false?

∎ Gradient clipping can prevent vanishing gradients.
◻ Transformer models can be used for computer vision applications.
◻ Distributed representations generally require fewer dimensions than local (one-hot)

representations.
◻ Upper level layers (closer to the output) tend to learn more abstract representa-

tions (shapes, forms, objects) compared to bottom level layers.

Solution: Gradient clipping can prevent exploding gradients, not vanishing gradients.

Part 2: Short Answer Questions (18 points)

Please provide brief answers (1-2 sentences) to the following questions.

1. (6 points) Explain how dropout regularization works.

Solution: At training time, for each example neurons are dropped randomly with proba-
bility p (i.e. their activations are masked to become zero) and the remaining activations are
scaled by 1/(1 − p). This forces each neuron to depend less on other neurons’ activations.

2. (6 points) Explain the role and need for positional encoding in transformers.

Deep Learning Page 5 of 11



Solution: Without positional encodings, the self-attention in transformers is insensitive to
the word positions being queried: permuting the words leads to a similar permutation in the
self-attention responses. In order for transformers to be sensitive to the word order, each
word embedding is augmented with a positional embedding.

3. (6 points) Mention one advantage of contextualized word embeddings (e.g. BERT) over
static word embeddings (e.g. word2vec or GloVe).

Solution: Contextualized word embeddings can assign different representations to the same
word being used in different contexts; this is particularly useful for polysemic words (such
as “bank” which can be a river bank or a financial institution).

Part 3: Problems (50 points)

Problem 1: Convolutional Neural Networks (25 points)

In their retail store, Yolanda and Zach currently use a card punching system to register the entry
and exit times of their 6 employees. However, they heard about recent advances in computer
vision systems and decided to replace that system by face recognition using CNNs.

To train the system, they collected a large dataset of pictures from their 6 employees, Alice,
Berta, Chad, Diane, Eric, and Frank. Each picture in the dataset is a 192×256 grayscale picture,
similar to those depicted in Fig. 1, and is labeled according to the corresponding employee.

Class A Class B Class C Class D Class E Class F

192× 256 px 192× 256 px 192× 256 px 192× 256 px 192× 256 px 192× 256 px

Figure 1: Sample pictures from the 6 classes that the CNN must recognize. Alice corresponds
to class A, Berta to class B, etc.

1. (4 points) Briefly explain in 1-2 sentences why a CNN is an adequate choice of architecture
for Yolanda and Zach’s task (image classification).

Solution: CNNs take advantage of the spacial structure of the image, unlike standard feed-
forward networks. Moreover, convolutional and pooling layers exploit the fact that the same
feature may appear in different parts of the image, enabling the network to process those
occurrences in a similarly way.

2. (7 points) Suppose that, in their classifier, their use the following architecture:

Conv.

ReLU

Image

Max pool.

Conv.

ReLU

Max Pool. Fully conn.

Conv.

ReLU

Max pool.

Deep Learning Page 6 of 11



which is specified using the following Pytorch code snippet:

nn.Sequential(
nn.Conv2d(1, 5, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(5, 10, kernel_size=5, stride=1, padding=0),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(10, 20, kernel_size=2, stride=2, padding=0),
nn.ReLU(),
nn.MaxPool2d(kernel_size=5, stride=2),
nn.Flatten(),
nn.Linear(2800, 6))

Fill in the following table with the adequate values.

Layer Output size N. weights N. biases

Input 192 × 256 × 1 0 0

1st conv. layer 192 × 256 × 5 45 5

1st pooling layer 96 × 128 × 5 0 0

2nd conv. layer 92 × 124 × 10 1250 10

2nd pooling layer 46 × 62 × 10 0 0

3rd conv. layer 23 × 31 × 20 800 20

3rd pooling layer 10 × 14 × 20 0 0

Output layer 6 × 1 16,800 6

3. (7 points) Consider the diagram in Fig. 2, containing the brightness values for the first
window of pixels in one of the images in the dataset.

0.5 0.3 0.2

...

0.4

0.3 0.2 0.4

0.60.4

... ... ...

... ... ... ...

...

...

...

Figure 2: Brightness values for one of the images in the dataset.

Suppose that, after training, one of the filters in the first convolutional layer is defined by

Deep Learning Page 7 of 11



the parameters

K =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 −1
1 0 −1
1 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

b = 0.5.

For the filter provided, compute the the top-left-most value after the pooling layer. Do not
forget that the first convolutional layer includes a padding of size 1 (use zeros as the padding
value).

Solution: The input of the max-pool layer corresponding to the provided pixels is given by

hconv = ReLU([
−0.5 0.2
−0.9 0.0

] + 0.5)

= [
0.0 0.7
0.0 0.5

] .

At the output of the pooling layer, we thus have

hpool = 0.7.

4. (7 points) Suppose that Yolanda and Zach decide to add some skip connections to their
network, as indicated in the diagram:

Conv.

ReLU

Image

Max pool.

Conv.

ReLU

Max Pool. Fully conn.

Conv.

ReLU

Max pool.

+

Repeat Question 3, but now considering the skip connection indicated in the diagram above.

Solution: The input of the first max-pool layer corresponding to the provided pixels is
given by

hconv = ReLU([
−0.5 0.2
−0.9 0.0

] + 0.5) + [
0.5 0.3
0.3 0.2

]

= [
0.5 1.0
0.3 0.7

] .

At the output of the pooling layer, we thus have

hpool = 1.0.

Problem 2: Sequence-to-Sequence Models (25 points)

Bartholomew (known to his friends as Bart) had an idea for a project: building a system to
summarize news articles into a short sentence (e.g., a tweet). He collected a dataset with news
documents and their corresponding tweets, which he will use to train a summarization model.

Deep Learning Page 8 of 11



1. (7 points) Bart’s sister (Lisa) is taking a course on deep learning and she recommended
using a sequence-to-sequence architecture based on a recurrent neural network (RNN) for
this problem. Bart tested a simple RNN-based sequence-to-sequence model (without any
attention mechanism) on a small-scale experiment. He is using a very small vocabulary (7
words, including the <stop> symbol), shared between the source and target, and using
the same embedding vectors for both sides. The embedding vectors are

xDeep = [0,1]⊺, xlearning = [1,0]⊺, xworks = [−1,−1]⊺,

x!!! = [2,−1]⊺, x#deep = [−1,2]⊺, xlol = [0,−1]⊺, x<stop> = [1,1]⊺.

The initial hidden state of the RNN, h0, is all-zeros. The input-to-hidden matrix is

Whx =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 −1
2 0
1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The recurrent matrix Whh is the identity matrix. All biases are vectors of zeros. The RNN
uses relu activations.

Compute the last state of the encoder RNN, h4, for the input document “Deep learning
works”. Show all your calculations.

Deep learning works 〈stop〉

X Y

X

h1 h2 h3 h4 h5

Solution: We have:

h1 = relu(WhxxDeep +Whhh0)

= relu([−1,0,1]⊺ + [0,0,0]⊺)

= [0,0,1]⊺.

h2 = relu(Whxxlearning +Whhh1)

= relu([0,2,1]⊺ + [0,0,1]⊺)

= [0,2,2]⊺.

h3 = relu(Whxxworks +Whhh2)

= relu([1,−2,−2]⊺ + [0,2,2]⊺)

= [1,0,0]⊺.

h4 = relu(Whxx<stop> +Whhh3)

= relu([−1,2,2]⊺ + [1,0,0]⊺)

= [0,2,2]⊺.

Therefore the last state is h4 = [0,2,2]⊺.

Deep Learning Page 9 of 11



2. (8 points) Assume that in the previous question we obtained h4 = [0,2,2]⊺. Assume that
the decoder RNN has the same parameters as the encoder RNN, and the hidden-to-output
matrix is

Wyh =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −1 0
0 1 −1
−2 1 0
0 0 −1
1 2 0
0 0 0
−2 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The target word probabilities at time step t are given by softmax(Wyhht), where ht is the
corresponding state of the decoder RNN.

Compute the first two words of the generated tweet using greedy decoding.

Solution: We have:

y1 = argmax(Wyhh4)

= argmax([−2,0,2,−2,4,0,2]) =#deep.

h5 = relu(Whxx#deep +Whhh4)

= relu([−2,−2,1]⊺ + [0,2,2]⊺)

= [0,0,3]⊺.

y2 = argmax(Wyhh5)

= argmax([0,−3,0,−3,0,0,3]) = < stop >.

The generated words are “#deep <stop>”.

3. (6 points) After playing with this network for a while, Bart realized that it didn’t work
well for long documents and therefore decided to add an attention mechanism. In the first
decoding step, using scaled dot-product attention with h4 as the query vector and h1,
h2, h3 as the key and value vectors, compute the attention probabilities and the resulting
context vector (use h1 = [0,0,1]⊺, h2 = [0,2,2]⊺, h3 = [1,0,0]⊺, h4 = [0,2,2]⊺).

Solution: We have:

s1 =
1

√
3
[0,2,2]⊺[0,0,1] =

2
√
3

s2 =
1

√
3
[0,2,2]⊺[0,2,2] =

8
√
3

s3 =
1

√
3
[0,2,2]⊺[1,0,0] = 0

Z = exp(
2

√
3
) + exp(

8
√
3
) + exp(0) = 105.546

p = softmax([s1, s2, s3]) = exp([s1, s2, s3])/Z = [.030, .960, .009]

c = h1p1 +h2p2 +h3p3 = [.009,1.921,1.951].

Deep Learning Page 10 of 11



4. (4 points) Lisa’s friend, Allison, who is also knowledgeable about deep learning, told Bart
about transformers and large pretrained models. Give one example of a pretrained model
that Bart could use for this task and the necessary steps to use it.

Solution: Bart could use a pretrained decoder-only (e.g., GPT) or encoder-decoder model
(e.g., T5, BART) and fine-tune it on the data he has available. Alternatively he could use
the model without any fine-tuning and use prompting at test time. A possible prompt would
be “<document> TL;DR: <answer>”. Note: an encoder-only model (e.g. BERT) would
not be suitable, since this an auto-regressive generation task.

Deep Learning Page 11 of 11


