
Deep Learning (IST, 2022-23)

Homework 1

André Martins, Ben Peters, Margarida Campos

Deadline: Friday, December 23, 2022.

Please turn in the answers to the questions below in a PDF file, together with the
code you implemented to solve them (when applicable).

IMPORTANT: Please write 1 paragraph indicating clearly what was the
contribution of each member of the group in this project. A

penalization of 10 points will be applied if this information is missing.

Please submit a single zip file in Fenix under your group’s name.

Question 1 (35 points)

Image classification with linear classifiers and neural networks. In this exercise, you
will implement a linear classifier for a simple image classification problem, using the Kuzushiji-
MNIST dataset, which contains handwritten cursive images of 10 characters from the Hiragana
writing system (used for Japanese). Examples of images in this dataset are shown in Figure 1.
Please do not use any machine learning library such as scikit-learn or similar for
this exercise; just plain linear algebra (the numpy library is fine). Python skeleton code
is provided (hw1-q1.py).

In order to complete this exercise, you will need to download the Kuzushiji-MNIST dataset.
You can do this by running the following command in the homework directory:

python download_kuzushiji_mnist.py.

1. (a) (10 points) Implement the update_weightsmethod of the Perceptron class in hw1-q1.py.
Then train 20 epochs of the perceptron on the training set and report its performance
on the validation and test set. Plot the accuracies as a function of the epoch number.
You can do this with the command

python hw1-q1.py perceptron

Solution: Accuracies were 0.7236 on the validation set and 0.6193 on the test set.
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Figure 1: Examples of images from the Kuzushiji-MNIST dataset.

(b) (10 points) Repeat the same exercise using logistic regression instead (without regu-
larization), using stochastic gradient descent as your training algorithm. Set a fixed
learning rate η = 0.001. This can be solved by implementing the update_weights
method in the LogisticRegression class. You can do this with the command

python hw1-q1.py logistic_regression

Solution: Accuracies were 0.8251 on the validation set and 0.7028 on the test set.

2. Now, you will implement a multi-layer perceptron (a feed-forward neural network) again
using as input the original feature representation (i.e. simple independent pixel values).

(a) (5 points) Justify briefly why multi-layer perceptrons with non-linear activations are
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more expressive than the simple perceptron implemented above, and what kind of
limitations they overcome for this particular task. Is this still the case if the activation
function of the multi-layer perceptron is linear?
Solution: A multi-layered perceptron is able to learn an internal representation due
to the choice of a proper non-linear activation function in the end of each layer l.
This creates an input to the next layer of the network that cannot be reduced as a lin-
ear transformation of a particular feature transformation of the input x. This way the
network can “decide” its own transformation of the data in the lower layers in order to
simplify the separation of the dataset classes in upper layers. For this concrete case, the
single-layer perceptron is limited to the original feature representations (independent
pixel values), being unable to exploit correlations among pixels; the multi-layer percep-
tron can learn richer representations in its hidden units that correlate the information
from different pixels. If the activation function is linear, no additional expressiveness
is added and the multi-layer perceptron is as expressive as the single-layer one.

(b) (10 points) Without using any neural network toolkit, implement a multi-layer
perceptron with a single hidden layer to solve this problem, including the gradient
backpropagation algorithm which is needed to train the model. Use 200 hidden units,
a relu activation function for the hidden layers, and a multinomial logistic loss (also
called cross-entropy) in the output layer. Don’t forget to include bias terms in your
hidden units. Train the model with stochastic gradient descent with a learning rate
of 0.001. Initialize biases with zero vectors and values in weight matrices with wij ∼
N (µ,σ2) with µ = 0.1 and σ2 = 0.12 (hint: use numpy.random.normal). Run your code
with the command

python hw1-q1.py mlp

Solution: For lr = 0.001 the accuracies were 0.9373 on the validation set and 0.8610
on the test set.

Question 2 (35 points)

Image classification with an autodiff toolkit. In the previous question, you had to write
gradient backpropagation by hand. This time, you will implement the same system using a
deep learning framework with automatic differentiation. Pytorch skeleton code is provided
(hw1-q2.py) but if you feel more comfortable with a different framework, you are free to use it
instead.

1. (10 points) Implement a linear model with logistic regression, using stochastic gradient de-
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scent as your training algorithm (use a batch size of 1). Train your model for 20 epochs and
tune the learning rate on your validation data, using the following values: {0.001,0.01,0.1}.
Report the best configuration (in terms of final validation accuracy) and plot two things: the
training loss and the validation accuracy, both as a function of the epoch number. Report
the final accuracy on the test set.

In the skeleton code, you will need to implement the method train_batch() and the class
LogisticRegression’s __init__() and forward() methods.

Solution: For lr = 0.001 the accuracies were 0.8256 on the validation set and 0.7019 on the
test set.
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For lr = 0.01 the accuracies were 0.8033 on the validation set and 0.6806 on the test set.

For lr = 0.1 the accuracies were 0.7516 on the validation set and 0.6155 on the test set.

2. (15 points) Implement a feed-forward neural network with a single layer, using dropout
regularization. Make sure to include all the hyperparameters and training/model design
choices shown in Table 1. Use the values presented in the table as default. Tune each of
these hyperparameters while leaving the remaining at their default value:

• The learning rate: {0.001,0.01,0.1}.
• The hidden size: {100,200}.
• The dropout probability: {0.3,0.5}.
• The activation function: relu and tanh.

Report your best configuration, make similar plots as in the previous question, and report
the final test accuracy.

In the skeleton code, you will need to implement the class FeedforwardNetwork’s __init__()
and forward() methods.

Solution: Best configuration:

• The learning rate: 0.01
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Number of Epochs 20
Learning Rate 0.01
Hidden Size 100
Dropout 0.3
Batch Size 16
Activation ReLU
Optimizer SGD

Table 1: Default hyperparameters.

• The hidden size: 200

• The dropout probability: 0.3

• The activation function: ReLU

Accuracies were 0.9492 on the validation set and 0.8813 on the test set.
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3. (10 points) Using the same hyperparameters as in Table 1, increase the model to 2 and 3
layers. Report your best configuration, make similar plots as in the previous question, and
report the final test accuracy. (Note: in the real world, you would need to do hyperparameter
tuning for the different network architectures, but this is not required for this assignment.)

Solution: Best configuration: 2 hidden layers of size 200, with a learning rate of 0.01.

Accuracies were 0.9561 on the validation set and 0.8939 on the test set.
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Question 3 (30 points)

Multi-layer perceptron with quadratic activations. In this exercise, we will consider
a feed-forward neural network with a single hidden layer and a quadratic activation function,
g(z) = z2. We will see under some assumptions, this choice of activation, unlike other popular
activation functions such as tanh, sigmoid, or relu, can be tackled as a linear model via a
reparametrization.

We assume a univariate regression task, where the predicted output ŷ ∈ R is given by ŷ = v⊺h,
where h ∈ RK are internal representations, given by h = g(Wx), x ∈ RD is a vector of input
variables, and Θ = (W ,v) ∈ RK×D ×RK are the model parameters.

1. (10 points) Show that we can write h = AΘφ(x) for a certain feature transformation
φ ∶ RD → R

D(D+1)
2 independent of Θ and AΘ ∈ RK×

D(D+1)
2 . That is, h is a linear transfor-

mation of φ(x). Determine the mapping φ and the matrix AΘ.

Solution: Let wi be the ith column of W . We have

hi = (w⊺

i x)2 = x⊺wiw
⊺

i x = ⟪wiw
⊺

i ,xx
⊺⟫, (1)

where ⟪⟫ denotes the Frobenius inner product ⟪A,B⟫ = vec(A)⊺vec(B) = Tr(A⊺B). Let

φ(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
1

⋮
x2
D

2x1x2

⋮
2xD−1xD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w2
i1

⋮
w2
iD

wi1wi2

⋮
wi(D−1)wiD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, AΘ =
⎡⎢⎢⎢⎢⎢⎣

a⊺1
⋮
a⊺K

⎤⎥⎥⎥⎥⎥⎦
. (2)

We then have hi = a⊺iφ(x) and h =AΘφ(x).

2. (5 points) Based on the previous claim, show that ŷ is also a linear transformation of φ(x),
i.e., we can write ŷ(x;cΘ) = c⊺Θφ(x) for some cΘ ∈ R

D(D+1)
2 . Does this mean this is a linear

model in terms of the original parameters Θ?

Solution: We have ŷ = v⊺h = v⊺AΘφ(x) = c⊺Θφ(x), with cΘ =A⊺

Θv. The resulting model is
not linear in Θ, because cΘ is not a linear function of Θ: Although cΘ is a linear combination
of rows of AΘ, all entries of AΘ are quadratic – not linear – in terms of W .

3. (10 points) Assume K ≥ D. Show that for any real vector c ∈ R
D(D+1)

2 there is a choice
of the original parameters Θ = (W ,v) such that cΘ = c. That is, we can equivalently
parametrize the model with cΘ instead of Θ. Does this mean this is a linear model in
terms of cΘ? Show that an equivalent parametrization might not exist if K <D.

Solution: From above, we have v⊺h = ∑K
i=1 vihi = ∑K

i=1 vi⟪wiw
⊺

i ,xx
⊺⟫ = ⟪∑K

i=1 viwiw
⊺

i ,xx
⊺⟫ =

⟪C,xx⊺⟫, where C = W ⊺Diag(v)W is a symmetric matrix. Note that we have cΘ =
vech(C), where vech(C) denotes the half-vectorization of C, which forms a vector by col-
lecting the elements in the lower triangular part of C. We have

{C =W ⊺Diag(v)W ∣W ∈ RK×D,v ∈ RK} = {C ∈ RD×D ∣ rank(C) ≤K} , (3)
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hence if K ≥ D this set equals RD×D, from which we can obtain any cΘ ∈ R
D(D+1)

2 through
the vech operation. Together with 1.2, this means that this is a linear model in terms of cΘ.

An equivalent parametrization might not exist if K < D, since in that case ĉΘ may yield a
matrix C with rank greater than K, from which one cannot recover a pair Θ = (W ,v) ∈
RK×D ×RK .

4. (5 points) Suppose we are given training data D = {(xn, yn)}Nn=1 with N > D(D+1)
2 and

where all input vectors {xn} are linearly independent, and that we want to minimize the
squared loss

L(cΘ;D) = 1

2

N

∑
n=1

(ŷn(xn;cΘ) − yn)2.

Can we find a closed form solution ĉΘ? Comment on the fact that global minimization is
usually intractable for feedforward neural networks – what makes our problem special?

Solution: LetX ∈ RN×
D(D+1)

2 have φ(xn) as rows, and define y = (y1, . . . , yN). We want to
minimize 1

2∥XcΘ−y∥2F with respect to cΘ. This is a least squares problem whose solution is
ĉΘ =X+y = (X⊺X)−1X⊺y. This is a global optimum. What makes our problem special is
the assumption that the activation functions are quadratic. This approach would not work
for other non-linear activations.
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