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Announcements

Deadline for Homework 1 is Friday, December 23, 23:59

• Please submit your solutions and code in Fenix.

• No late days allowed!!

• Solutions will be posted the day after.
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Today’s Roadmap

Today’s lecture is about:

• Representation learning.

• Principal component analysis (PCA) and auto-encoders.

• Denoising auto-encoders.

• Distributed representations.

• Word embeddings and negative sampling.

• Multilingual and contextual word embeddings.
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Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Conclusions
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Representations

• A key feature of NNs is their ability to learn representations φ(x)

• Standard linear models require manually engineered features φ(x)

• Representations are useful for several reasons:

(i) They can make our models more expressive and more accurate

(ii) They may allow transferring representations from one task to another

• We talked about (i) when discussing the multi-layer perceptron

• In this lecture, we’ll focus on (ii)
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Hierarchical Compositionality
Key Idea: deep(er) NNs learn coarse-to-fine representation layers.

Vision:

• pixels → edges → textons → motifs → parts → objects → scenes

Speech:

• samples → spectral bands → formants → motifs → phonemes → words

Text:

• characters → words → phrases → sentences → stories

(Inspired by Marc’Aurelio Ranzato and Yann LeCun)
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Hierarchical Compositionality

Feature visualization of convolutional NNs trained on ImageNet

(Zeiler and Fergus, 2013)
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The Mammalian Visual Cortex is Hierarchical

(LGN = lateral geniculate nucleus; PIT = posterior inferotemporal area; AIT = anterior

inferotemporal area; PFC = prefrontal cortex; PMC = premotor cortex; MC = motor cortex)
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What Is Learned in Each Layer

• Layers closer to inputs learn low-level representations (corners, edges)

• Layers farther away from inputs learn more abstract representations
(shapes, forms, objects)

• This holds, not only for images, but also text, sounds, ...
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Distributed Representations (Hinton, 1984)

This is a central concept in neural networks.

Key questions:

• How can a NN so effectively represent objects, if it has only a few
hidden units (i.e. much fewer than possible objects)?

• What is each hidden unit actually representing?

• How can a NN generalize to objects that is has not seen before?

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 12 / 65



Distributed Representations (Hinton, 1984)

This is a central concept in neural networks.

Key questions:

• How can a NN so effectively represent objects, if it has only a few
hidden units (i.e. much fewer than possible objects)?

• What is each hidden unit actually representing?

• How can a NN generalize to objects that is has not seen before?

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 12 / 65



Distributed Representations (Hinton, 1984)

This is a central concept in neural networks.

Key questions:

• How can a NN so effectively represent objects, if it has only a few
hidden units (i.e. much fewer than possible objects)?

• What is each hidden unit actually representing?

• How can a NN generalize to objects that is has not seen before?

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 12 / 65



Distributed Representations (Hinton, 1984)

This is a central concept in neural networks.

Key questions:

• How can a NN so effectively represent objects, if it has only a few
hidden units (i.e. much fewer than possible objects)?

• What is each hidden unit actually representing?

• How can a NN generalize to objects that is has not seen before?

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 12 / 65



Local vs Distributed Representations
Consider two alternative representations:

• Local (one-hot) representations (one dimension per object)

• Distributed representations (one dimension per property)

(Inspired by Moontae Lee and Dhruv Batra)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 13 / 65



Distributed Representations

Key idea: no single neuron “encodes” everything; groups of neurons (e.g.
in the same hidden layer) work together!

cf. the grandmother cell
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The Power of Distributed Representations

• Distributed representations are more compact (there can be O(expN)
objects combining N properties)

• They are also more powerful, as they can generalize to unseen objects
in a meaningful way:

(Inspired by Moontae Lee and Dhruv Batra)
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The Power of Distributed Representations

• Hidden units should capture diverse properties of objects (not all
capturing the same property)

• Usually ensured by random initialization of the weights

• Initializing all the units to the same weights would never break the
symmetry!

• Side note: a NN computes the same function if we permute the
hidden units within a layer (order doesn’t matter, only diversity)

Next: how to learn useful object representations from raw inputs (no labels)?
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Example: Unsupervised Pre-Training

• Training deep NNs (with many hidden layers) can be challenging

• This has been a major difficulty with NNs for a long time

• Initialize hidden layers using unsupervised learning
(Erhan et al., 2010):

- Force network to represent latent structure of input distribution

- Encourage hidden layers to encode that structure

- This can be done with an auto-encoder!
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Data Manifold

Key idea: learn the manifold where the input objects live

(Image credit: Hugo Larochelle)

Learn representations that encode well points in that manifold
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Auto-Encoders

Auto-encoder: feed-forward NN trained to reproduce its input at the output

• Encoder: h(x) = g(Wx + b)

• Decoder: x̂ = W>h(x) + c

• Loss function (for x ∈ RD):

L(x̂ ; x) = ‖x̂ − x‖2

• Objective (dropping the biases):

Ŵ = arg min
W

∑
i

‖W>g(Wxi )−xi‖2
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The Simplest Auto-Encoder: Linear

What happens if the activation function g is linear?

(From “An Introduction to Statistical Learning” by James, Witten, Hastie, Tibshirani)
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An Important Tool: Singular Value Decomposition

• Any rank-r matrix A ∈ Rm×n can be written as A = UΣV T

X columns of U ∈ Rm×r are an orthonormal basis of R(A);

X columns of V ∈ Rn×r are an orthonormal basis of R(AT );

X Σ = diag(σ1, ..., σr ) is a r × r diagonal matrix;

X σ1, ..., σr are square roots of the eigenvalues of ATA or AAT ;

X σ1, ..., σr are called singular values.

• Orthonormality of U and V : UTU = I and V TV = I .
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Singular Value Decomposition (SVD)

• A = UΣV T , where U ∈ Rm×r and V ∈ Rn×r .

Picture credits: Mukesh Mithrakumar
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Singular Value Decomposition (SVD)

• M = UΣV T , where U ∈ Rm×r and V ∈ Rn×r .

Picture credits: Wikipedia
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Linear Auto-Encoder
Let X ∈ RN×D be the data matrix (N > D),

Assume W ∈ RK×D with K < D (no biases, assuming X is centred)

We want to minimize
N∑
i=1

‖xi − x̂i‖2
2 = ‖X − X̂‖2

F = ‖X − XW>W ‖2
F

where ‖ · ‖2
F is the Frobenius matrix norm and W>W has rank K .

From the Eckart-Young theorem, the minimizer is truncated SVD of X>:

X̂> = UKΣKV>K ,

where ΣK is a diagonal matrix containing the top K singular values of
X>, and the columns of UK are the corresponding left singular vectors.

The solution is W = U>K , which gives as desired:

X̂> = W>WX> = UKU>K UΣV> = UKΣKV>K .

This is called principle component analysis (PCA)
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PCA: EigenFaces
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Auto-Encoders

PCA fits a linear manifold (affine space) to the data

By using non-linear activations, we obtain more sophisticated codes (i.e.
representations).

We need some sort of regularization to:

• encourage a smooth representation (small perturbations of the input
will lead to similar representations)

• avoid overfitting to the training data
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Some Variants of Auto-Encoders

• Sparse auto-encoders: use many hidden units, but add a `1

regularization term to encourage sparse representations of the input

• Denoising auto-encoders: regularize by adding noise to the input;
the goal is to learn a smooth representation function that allows to
output the denoised input (inspired by image denoising)

• Stacked auto-encoders: several auto-encoders on top of each other

• Variational auto-encoders: a generative probabilistic model that
minimizes a variational bound (this will be covered in another lecture!)
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Regularized Auto-Encoders

• To regularize auto-encoders, regularization may be added to the loss

• The goal is then to minimize L(x̂;x) + Ω(h,x)

• For example:

- regularizing the code Ω(h,x) = λ‖h‖2

- regularizing the derivatives Ω(h,x) = λ
∑

i ‖∇xhi‖2

• The encoder and decoder parameters may be shared or not.
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Sparse Auto-Encoders

• Most auto-encoders learn low-dimensional codes, e.g., they reduce
input dimensionality (bottleneck shape K < D).

• One exception are sparse auto-encoders:

- Sparse auto-encoders incorporate a sparsity penalty Ω(h) on the code
layer, e.g., Ω(h) = λ‖h‖1

- Typically the number of hidden units is large, e.g., larger than the input
dimension

- The sparsity penalty encourages sparse codes, where most hidden units
are inactive.
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Stochastic Auto-Encoders

• In this case, the encoder and decoder are not deterministic functions,
but involve some noise/randomness

• Uses distribution pencoder(h | x) for the encoder and a distribution
pdecoder(x | h) for the decoder

• The auto-encoder can be trained to minimize

− log pdecoder(x | h).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 31 / 65



Stochastic Auto-Encoders

• In this case, the encoder and decoder are not deterministic functions,
but involve some noise/randomness

• Uses distribution pencoder(h | x) for the encoder and a distribution
pdecoder(x | h) for the decoder

• The auto-encoder can be trained to minimize

− log pdecoder(x | h).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 31 / 65



Stochastic Auto-Encoders

• In this case, the encoder and decoder are not deterministic functions,
but involve some noise/randomness

• Uses distribution pencoder(h | x) for the encoder and a distribution
pdecoder(x | h) for the decoder

• The auto-encoder can be trained to minimize

− log pdecoder(x | h).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 31 / 65



Denoising Auto-Encoders

• Use a perturbed version of the input, x̃ = x+ n, where n is random
noise (e.g. Gaussian noise n ∼ N(0, σ2I ))

• Instead of minimizing 1
2‖x̂− x‖

2, minimize 1
2‖x̂− x̃‖

2

• This is a form of implicit regularization that ensures smoothness: it
forces the system to represent well not only the data points, but also
their perturbations
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Denoising Auto-Encoders

(From Goodfellow et al.’s book.)
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Denoising Auto-Encoders
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Why Do We Use Auto-Encoders?

Historically, training deep neural networks was hard

One of the initial successful uses of auto-encoders was for unsupervised
pre-training (Erhan et al., 2010).
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Unsupervised Pre-Training

A greedy, layer-wise procedure:

• train one layer at a time, from first to last, with unsupervised criterion
(e.g. an auto-encoder)

• fix the parameters of previous hidden layers

• previous layers viewed as feature extraction

Pre-training initializes the parameters in a region such that the near local
optima overfit less the data.
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Fine-Tuning

Once all layers are pre-trained:

• add output layer

• train the whole network using supervised learning

Supervised learning is performed as in a regular feed-forward network:

• forward propagation, backpropagation, and update

• all parameters are “tuned” for the supervised task at hand

• representation is adjusted to be more discriminative
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Other Applications of Auto-Encoders

• Dimensionality reduction

• Information retrieval and semantic hashing (via binarizing the codes)

• Conversion of discrete inputs to low-dimensional continuous space
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Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Conclusions
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Word Representations

• Learning representations of words in natural language;

• Also called word embeddings;

• An extremely successful application of representation learning;

• Still an active area of research.
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Distributional Similarity

Key idea: represent a word by means of its neighbors

• “You shall know a word by the company it keeps” (J. R. Firth, 1957)

• One of the most successful ideas of modern statistical NLP!

For example:

• Adjectives are normally surrounded by nouns

• Words like book, newspaper, article, are commonly surrounded by
reading, read, writes, but not by flying, eating, sleeping
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Word Embeddings

• Obtain (lower dimensional) vector representations of words.

• Two possible methods:

X Factorization of a co-occurrence word/context matrix (latent semantic
analysis, etc.)

X Directly learn low-dimensional vectors by training a network to predict
the context of a given word

• We focus on the latter, namely word2vec (Mikolov et al., 2013), which
follows previous ideas (Bengio et al., 2003; Collobert et al., 2011).
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Neural Language Model (Bengio et al., 2003)

(Image credits: Quoc Le)
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Neural Language Model (Bengio et al., 2003)

Embedding matrix: assigns a vector to every word in the vocabulary.

Learning the embeddings:

• Each word is associated with a vector (word embedding)

• Given the context (previous K words), predict the next word

• The word embeddings in the context window are concatenated into a
vector that is fed to neural network

• The output layer is a huge softmax assigning probabilities to each
word in the vocabulary

• The network is trained by SGD with backpropagation including the
embedding matrix.

Variants of this model outperform smoothed K -th order Markov models
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Some Insights

• Often, we are not concerned with language modelling (the addressed
task), but with the quality of the embeddings learned

• If we don’t care about language modelling,

X We don’t need to have a “left-to-right model” where we try to predict
the next word given the context

X We don’t need to predict the probability of every word, just make sure
that the true word is more likely than a random one

• These insights underlie the word2vec model of Mikolov et al. (2013).
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Word2Vec (Mikolov et al., 2013)

• Considers a context window around each word in the sentence.

• Word2vec comes with two variants:

X skip-gram: predict surrounding context words in a window of length m
of every word

X continuous bag-of-words (CBOW): predict the central word from the
context

• We focus on the skip-gram model (more widely used).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 46 / 65



Word2Vec (Mikolov et al., 2013)

• Considers a context window around each word in the sentence.

• Word2vec comes with two variants:

X skip-gram: predict surrounding context words in a window of length m
of every word

X continuous bag-of-words (CBOW): predict the central word from the
context

• We focus on the skip-gram model (more widely used).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 46 / 65



Word2Vec (Mikolov et al., 2013)

• Considers a context window around each word in the sentence.

• Word2vec comes with two variants:

X skip-gram: predict surrounding context words in a window of length m
of every word

X continuous bag-of-words (CBOW): predict the central word from the
context

• We focus on the skip-gram model (more widely used).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 46 / 65



Skip-Gram

• Objective: maximize the log probability of any context word given
the central word:

J(Θ) =
1

T

T∑
t=1

∑
−m≤j≤m, j 6=0

log pΘ(xt+j | xt)

• There are 2 sets of parameters (2 embedding matrices) Θ = (u, v):

X Embeddings uo for each word o appearing as the center word

X Embeddings vc for each word c appearing as context of another word

• Uses a log-bilinear model: pΘ(xt+j = c | xt = o) ∝ exp(u>o vc)

• Every word gets two vectors

• In the end, we use the u as the word embeddings, discarding v
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The Large Vocabulary Problem

• Recall that

pΘ(xt+j = c | xt = o) =
exp(uo

Tvc)∑
c ′ exp(uo

Tvc ′)

• This is a softmax over the entire vocabulary (often > 50000)

• With large vocabularies, this leads to very slow training. Possible
workarounds:

X Stochastic sampling

X Noise contrastive estimation

X Negative sampling

• More details in https://arxiv.org/pdf/1410.8251.pdf

• We focus on negative sampling.
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Negative Sampling

Key idea:

• Replace the huge softmax by binary logistic regressions for a true pair
(center word and word in its context window) and k of random pairs
(center word, random word):

Jt(Θ) = log σ(u>o vc) +
k∑

i=1

log σ(−u>o vji ), ji ∼ P(x)

• Several strategies for the sampling distribution (uniform, unigram
frequency, etc.)

• Negative sampling is a simple form of unsupervised pre-training.
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Linear Relationships

• Work embeddings are good at encoding dimensions of similarity

• Word analogies can be solved well simply via subtraction in the
embedding space

• Syntactically:

xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

• Semantically:

xshirt − xclothing ≈ xchair − xfurniture

xking − xman ≈ xqueen − xwoman
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Visualization

• Typical embedding dimensions are in the hundreds (e.g. 300)

• How can we visualize these embeddings?

• Simple way: project them in 2D with something like PCA

• Most used: t-SNE (t-distributed stochastic neighbor embedding
(Maaten and Hinton, 2008)))
https://lvdmaaten.github.io/tsne
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Word Analogies (Mikolov et al., 2013)

(Slide credit to Richard Socher)
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Other Methods for Obtaining Word Embeddings

GloVe: Global Vectors for Word Representation (Pennington et al., 2014)

• https://nlp.stanford.edu/projects/glove

• Training is performed on aggregated global word-word co-occurrence
statistics from a corpus

FastText (Bojanowski et al., 2016): embeds also character n-grams for
generating embeddings for out-of-vocabulary words

• https://fasttext.cc (from FAIR)

• open-source, free, lightweight library that allows users to learn text
representations and text classifiers

• contains multi-lingual word vectors for 157 different languages
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GloVe Visualizations: Company → CEO

(Slide credit to Richard Socher)
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GloVe Visualizations: Superlatives

(Slide credit to Richard Socher)
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Word Embeddings: Some Open Problems

• Can we have word embeddings for multiple languages in the same
space?

• How to capture polysemy?

• These word embeddings are static, can we compute embeddings
on-the-fly depending on the context?
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Cross-Lingual Word Embeddings

(From Hermann and Blunsom (2014).)
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Cross-Lingual Word Embeddings

• Use a corpus of parallel sentences in two languages

• Define a composition function to obtain a sentence representation
given word embeddings

• Apply a loss function that encourages the sentence representions in
the two languages to be similar

• Negative sampling works here too: true pair vs fake pair.
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Cross-Lingual Word Embeddings

Other approaches:

• Define a bilingual dictionary and apply canonical correlation analysis
(Faruqui and Dyer, 2014)

• Task-specific embeddings with convex optimization (Ferreira et al.,
2016)

• Learn the two embeddings separately, and then apply a linear
transformation to put them in a shared space (Artetxe et al., 2017)

• Adversarial training (Lample et al., 2018)

This is a very active area of research!
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Contextual Embeddings

Words can have different meanings, depending on the context

In 2018, a model called ELMo learned context-dependent embeddings and
achieved impressive results on 6 NLP downstream tasks (Peters et al.,
2018)

Key idea:

• Pre-train a BILSTM language model on a large dataset (we’ll see in a
later class what this is)

• Save all the encoder parameters at all layers, not only the embeddings

• Then, for your downstream task, tune a scalar parameter for each
layer, and pass the entire sentence through this encoder.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2022 60 / 65



BERT, GPT, etc.

Some time later, a Transformer-based model (BERT) achieved even better
performance:

Huge improvements in multiple NLP tasks!

(Trained on 64 TPU chips!!)

Other related models include GPT-2, GPT-3, etc.

This will be covered in a later lecture!
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Outline

1 Representation Learning

Hierarchical Compositionality

Distributed Representations

Auto-Encoders

Word Embeddings

2 Conclusions
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Conclusions

• Neural nets learn internal representations that can be transferred
across tasks

• Distributed representations are exponentially more compact and allow
generalizing to unseen objects

• Deeper neural nets exhibit hierarchical compositionality: upper level
layers learn more abstract/semantic representations than bottom level
layers

• Auto-encoders are an effective means for learning representations

• Word embeddings are continuous representations of words that are
extremely useful in NLP
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Thank you!

Questions?
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