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Optimal Control Problem – Fixed final time; Free final state 
 

Let 𝑥 be the state of a plant with input 𝑢 defined by 

  ( , ) ( ) ,x f x u x x t T= = 0 00    u t U( )   

𝑇  given 

Find the function u , defined in the time interval  0, T  that maximizes 

J u x T L x u dt

T

( ) ( ( )) ( , )= + 
0
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Pontriagyn Principle 

Along an optimal trajectory of 𝑥, 𝑢, and 𝜆, the following necessary conditions 

for the maximization of 𝐽 are verified: 

  ( , ) ( ) ,x f x u x x t T= = 0 00  u t U( )   

( ) ( )( ) ( ) ( )( )−  =  + ( ) ( ) , , t t f x t u t L x t u tx x  

( ) ( ) =
=

 T xx x x T


( )  

At each 𝑡, the Hamiltonian defined by 

H x u f x u L x u( , , ) ( , ) ( , ) =  +  

is maximum, as a function of 𝑢, for the optimal value of 𝑢. 

Terminal condition 

of the co-state 
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The vector   is called co-state, and the corresponding differential equation is 

called the adjoint equation. 
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Penicillin Fermentation reactor 

X – Quantity of fungi per 

 unit volume 

P – Quantity of penicilin 

 per unit volume 

u – Manipulated variable, substract 

 rate (sugar) 

  

Fungi produce penicillin. 
  

 

u

água

fria

água

aquecida

ar

agitador

X, P
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A very simplified model of the fermentation 

 

 

 

X buX X= −   

 ( )P c u X= −1  

 

 

 
  

Growth due to 

“food 

Mortality 

Fungi 

production 

Production inibition due 

to substract 
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Fermentation Optimal Control Problem 

Model and initial conditions: 

�̇� = 𝑢𝑋 − 0,5𝑋 

�̇� = (1 − 𝑢)𝑋 

Objective: 

Find u t t T( ) 0   , T fixed, so that J P T= ( ) is maximum given the 

constraint 

0 1 u  

Write the adjoint equation 
  

   Initial conditions: 

X

P

( )

( )

0 1

0 0

=

=  
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The cost functional is  

( )J x T L x u dt
T

= +  ( ) ( , )
0  

In this case 

𝐽𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑒𝑟 = 𝑃(𝑇) 

Therefore  L x u( , ) = 0  

and   ( ( )) ( )x T P T= , and thus 

 







x

x x T

x T
x x

( ( )

( )
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 =

=1 2

0 1
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The co-state has two components 

   ' ( ) ( ) ( )t t t= 1 2  

Since the Lagrangian is zero: 

𝐿𝑥(𝑥, 𝑢) = [0 0] 

Since   
f x u

f x x u

f x x u

u x

u x
( , )

( , , )

( , , )

( . )

( )
=








 =

−

−











1 1 2

2 1 2

1

2

05

1    it is   
f x u

u

u
x ( , )

.
=

−

−











05 0

1 0  
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Adjoint equation 

− = +' ' ( , ) ( , )  f x u L x ux x  

f x u
u

u
x ( , )

.
=

−

−











05 0

1 0      L x ux ( , ) = 0        

In this case the adjoint equation is 

 − = − + − ( . ) ( )  1 1 205 1u u  

− =2 0  

With terminal condition 

 1 20 1( ) ( )T T= =  
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− = − + − ( . ) ( )  1 1 205 1u u                − =2 0  

 1 20 1( ) ( )T T= =  

Considering the terminal conditions 

2 1( )t =      0  t T  

And the equation for the 1st component of the co-state becomes 

e a equação para a primeira componente do co-estado reduz-se a 

− = − + − ( . ) 1 105 1u u  

Dificulty: The equation depends on u t( )  and u t( )  depends on  ( )t … 
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Hints 

a) Write the Hamiltonian for this special case. Remember that 

H x u f L( , , ) ' = +  

b) Assume that you know  ( )t . Find u t( )  that maximizes H for each t .  

   Remember the constraint 0 1 u  and assume that X  0  

c) From b) you know the shape of u t( )  as a function of t . In particular, what is 

the value of u t( )  for t  close to T ? And the corresponding equation for 1( )t  

during thgis time period? 

d) Go “backwards” in time. What happens to 1( )t ? And 𝑢𝑜𝑝𝑡𝑖𝑚(𝑡)? 
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H f L= + '  

H f X P f X P= + + 1 1 2 2 0( , ) ( , )  

H u X u X= − + −1 05 1( . ) ( )  

Can be written as 

 H u X= − + −( ) ( . ) 1 11 1 05  

The Hamiltonian H  is a linear function of u . 

Assuming X  0 , H  growing or decreasing depends just on 1 1− . 
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 H u X= − + −( ) ( . ) 1 11 1 05  

 

 

 
  

Intervalo de valores

admissíveis para u

0 1 u u10

Neste caso

u   =0
opt

Neste caso

u   =1
opt

H(u)
H(u)

1 1
 

1 1
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Since 

1 0( )T =  

for t  close to T , 1 0( )t = . Thus, since 1 1( )T  , the corresponding 

optimal control is 

u topt ( ) = 0  

Close to 𝑇, the adjoint equation becomes 

− = − + − ( . ) 1 105 1u u  

 

 ( ) . 1 105 1t = −  

  

=0 =0 
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Near the end of the optimization interval the adjoint equation becomes 

 ( ) . ( ) 1 105 1t t= −         1 0( )T =  

It has the solution 

( )1

0 51

05
1( )

.

. ( )t e t T= − −

 

 

 

u  =0 T
t

(t)
1

(t)
1

opt
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u  =0 T
t

(t)
1

(t)
1

opt

 

  "Moving" in this sense u 

becomes 1 at instant ts  in which 

1 1( )ts =  

( )
1

05
1 1

05

05 05

2 5 139

0 5

0 5
.

.

log . . ( )

log . .

. ( )

. ( )

− =

=

= −

= +  −

−

−

e

e

t T

t T o T

t T

t T

s

s

s

s
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Example for the situation in which T=5 

 

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1
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t
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uopt
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The optimal solution admits the 

following interpretation: Initially, 

all the effort is to make the 

fungi colony to grow. Due to 

the inhibition effect of the 

substrate there is no penicillin 

production. After the switching 

instant, the control variable is 

adjusted to maximize the 

penicillin production. 
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Assuming a bang-bang shape for the 

control function, the switching instant 

corresponds to the maximum. 

It is remarked that Pontryagin’s 

Principle yields not only the switching 

instant but also the shape of the 

control function. 
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Proof of Pontryagin’s Principle 
 

Objective: 

Proof using a variational technique. 
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Basic optoimal control problem 
 

Let 𝑥 be the state of a plant with manipulated input 𝑢, satisfying the state 

equation 

�̇� = 𝑓(𝑥, 𝑢)   𝑥(0) = 𝑥0   𝑡 ∈ [0, 𝑇]    𝑇 constant  u t U( )   

Optimize the function u , defined in  0, T  that maximizes 

J u x T L x u dt

T

( ) ( ( )) ( , )= + 
0
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Proof strategy 

If uopt  maximizes J u( )  any small variation u  causes a decrese in J u( ) : 

 J J u u J uopt opt= + − ( ) ( ) 0  
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Cost modification 

 J J t x t f x t u t dt

T

= −  −  ( ) ( ) ( ( ), ( ))
0

 

Since thye term between square brackets vanishes along the plant state 

trajectories, then J J=  and the u  that optimizes  J  is the same that 

optimizes J . 
 

Therefore,. We may select   such as to simplify the problem. 
 

This quantity is named co-state. 
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Hamiltonian function 

The Hamiltonian is defined by 

( ) ( ) ( )H x u f x u L x u , , , ,=  +  

With this definition, write the cost as 

  ( ) ( ) J J t x t f x t u t dt x T L x u f x u x dt

T T

= −  − = + +  −    ( ) ( ) ( ( ), ( )) ( ( ) , , 
0 0


 

or 

( ) ( ) J x T H t x t u t t x t dt

T

= + −  ( ) ( ), ( ), ( ) ( ) ( ) 
0
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Perturbation of the optimal control 
 

Let  u t t T( ), 0    be the optimal control 

Together with the initial condition, it defines the optimal state trajectory 

 x t t T( ), 0   . 

 
  

T T0 0t

u(t)
x(t)

t
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Add a small perturbation to u that defines the optimal control, to obtain a 

perturbed control function v. 
 

The variation is small in the sense that 

∫ |𝑢(𝑡) − 𝑣(𝑡)|𝑑𝑡
𝑇

0

< 𝜀 

with   a small number. 
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The state trajectory that corresponds to v deviates little from the optimal state, 

that corresponds to u. 

Let x t( ) be this state deviation. 

 

Let J  be the corresponding deviation of the objective function 

J J v J u= −( ) ( )  

Since u is optimal, this deviation is negative. 
 

T T0 0t

u(t)
x(t)

t

v(t)
x(t)+x(t)
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Variation of the objective function 

Recall that 

( ) ( ) J x T H t x t u t t x t dt

T

= + −  ( ) ( ), ( ), ( ) ( ) ( ) 
0

 

The variation is thus 

( ) ( ) ( ) ( )       J x T x T x T H x x v H x u x dt

T

= + − + + − −  ( ) ( ) ( ) , , , , 
0
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Recall the rule of integration by parts 

Since     ( )
d

dt
ab ab ab= + 

    it is        
( ) ( ) ( ) ab dt ab ab dt

T
T

T

0
0

0

 = −
 

Apply this rule with 

a x=         b =   

 =  −  −          ( ) ( ) ( ) ( ) xdt T x T x xdt

T T

0 0

0 0
 

Remark that x( )0 0=  because the variation in the optimal contyrol does not 

cause a variation in the initial condition. 
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 =  −        ( ) ( ) xdt T x T xdt

T T

0 0
 

We concluded that 

( ) ( ) ( ) ( )       J x T x T x T H x x v H x u x dt

T

= + − + + − −  ( ) ( ) ( ) , , , , 
0

 

Therefore: 

( ) ( ) ( ) ( )         J x T x T x T T x T H x x v H x u x dt

T

= + − −  + + − +  ( ) ( ) ( ) ( ) ( ) , , , , 

0

By integration by parts we could express the variation of the state derivative in 

variations of the state and the co-state .  
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( ) ( ) ( ) ( )         J x T x T x T T x T H x x v H x u x dt

T

= + − −  + + − +  ( ) ( ) ( ) ( ) ( ) , , , , 

0

 

 

Approximete by 1st order  Taylor expansions: 

( ) ( ) ( )  x T x T x T x T x Tx( ) ( ) ( ) ( ) ( )+  +   

( ) ( ) ( )H x x v H x v H x v xx    , , , , , ,+  +  
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Therefore, up to terms of 2nd order or higher: 

( )  ( )  ( ) ( )        J x T T x T H x u xdt H x v H x u dtx x

T T

= −  + +  + −  ( ) ( ) ( ) , ,  , , , ,
0 0

 

Selecting   as the solution of the adjoint equation 

( )−  = ( ) ( ), ( ), ( ) t H t x t u tx  

With terminal condition 

( ) = ( ) ( )T x Tx  

The variation of the functional is reduced to 

( ) ( )   J H t x t v t H t x t u t dt

T

= − ( ), ( ), ( ) ( ), ( ), ( )
0
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( ) ( )   J H t x t v t H t x t u t dt

T

= − ( ), ( ), ( ) ( ), ( ), ( )
0

 

 

 
  

Perturbed Optimal 
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( ) ( )   J H t x t v t H t x t u t dt

T

= − ( ), ( ), ( ) ( ), ( ), ( )
0

 

If u  is optimal, Then, at each time t: 

( ) ( )H t x t v H t x t u t ( ), ( ), ( ), ( ), ( )  

 v U  

This statement must be proved. 
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( ) ( )   J H t x t v t H t x t u t dt

T

= − ( ), ( ), ( ) ( ), ( ), ( )
0

 

Assume by contradiction that there is t1  and a function   such that 

( ) ( )H t x t t H t x t u t  ( ), ( ), ( ) ( ), ( ), ( )1 1 1 1 1 1  

Since H  is continuous, there exists an interval  t t1 1− + ,  in which this 

property holds. Select v t u t( ) ( )=  except in this interval where we do 

v t t( ) ( )=  . With this choice, 

( ) ( )   




J H t x t v t H t x t u t dt
t

t

= − 
−

+

 ( ), ( ), ( ) ( ), ( ), ( )

1

1

0  

This contradicts the assumption that u  is the optimal control.  
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Problems with equality constraints on the terminal state 

Let 𝑥 be the state of a plant with input 𝑢 defined by 

  ( , ) ( ) ,x f x u x x t T= = 0 00    u t U( )   

𝑇  given 

Find the function u , defined in the time interval  0, T  that maximizes 

J u x T L x u dt

T

( ) ( ( )) ( , )= + 
0

 

Subject to the equality constraints in the terminal state 

x T xi i( ) =     i r n= 1 2, , ,  
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Maximum Principle (Equality constraints on the terminal state) 

Along the optimal trajectory for x, u and  the following necessary conditions 

for the maximization of J are satisfied 

  ( , ) ( ) ,x f x u x x t T= = 0 00  u t U( )   

x T xi i( ) =     i r n= 1 2, , ,  

( ) ( )( ) ( ) ( )( )−  =  + ( ) ( ) , , t t f x t u t L x t u tx x  

( ) ( ) = = + +i x i
T x T i r r n ( ) , , ,1 2   

For each t, the Hamiltonian H x u f x u L x u( , , ) ( , ) ( , ) =  +  is maximum for the 

optimal value of 𝑢(𝑡). 
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Exercise: Minimum length path between 2 points 

 

What is the path with minimum length between the extreme points (a, A) and 

(b, B)? The length of the curve 𝑥 connecting the two points is 𝐽 =

∫ √1 + (�̇�(𝑡))2𝑑𝑡
𝑏

𝑎
. Formulate this as an OCP and solve it using PMP. 

  

t

A

B

a bt

x(t)
u
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Solution: Define the dynamics by 

𝑑𝑥

𝑑𝑡
= 𝑢        with initial and terminal conditions 𝑥(𝑎) = 𝐴, 𝑥(𝑏) = 𝐵 

𝐽(𝑢) = ∫ √1 + 𝑢(𝑡)2
𝑏

𝑎

𝑑𝑡 

The OCP is 

max
𝑢

𝐽(𝑢) 

s. t. �̇� = 𝑢 

             𝑥(𝑎) = 𝐴 

              𝑥(𝑏) = 𝐵 
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𝐽(𝑢) = ∫ √1 + 𝑢(𝑡)2𝑏

𝑎
𝑑𝑡   →      𝐿(𝑥, 𝑢) = √1 + 𝑢2    →    𝐿𝑥 = 0 

𝑓(𝑥, 𝑢) = 𝑢    →     𝑓𝑥 = 0 

Adjoint equation:      �̇� = 0 

Since there is a terminal condition on the state, there is no terminal condition 

on the co-state, but from the adjoint equation we know it is a constant. 

Hamiltonian:    𝐻(𝜆, 𝑥, 𝑢) = 𝜆𝑢 + √1 + 𝑢2 

Maximum condition:    
𝜕𝐻

𝜕𝑢
= 0     →    𝜆 +

𝑢

√1+𝑢2
= 0 

Since 𝜆 is a constant, the optimal control will also be a constant. The slope 𝑢 is 

constant and hence the optimal curve is a straight line. 
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Find the constant that defines the optimal control from the initial and terminal 

conditions. 

Solve the dynamics equation  �̇� = 𝑢 to get  𝑥(𝑡) = 𝑥(𝑎) + ∫ 𝑢
𝑡

𝑎
𝑑𝜎 

𝑥(𝑡) = 𝐴 + 𝑢(𝑡 − 𝑎) 

Apply the terminal condition to get 𝐵 = 𝐴 + 𝑢(𝑏 − 𝑎) or 

𝑢 =
𝐵 − 𝐴

𝑏 − 𝑎
 

 

End of exercise 
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General procedure to solve OCP with terminal state equality constraints 

1. Solve the OCP. Since there are no terminal conditions for the co-state, the 

solution is obtained up to a constant. 

2. Solve the state equation with the optimal control. This solution is 

parameterized by a constant in the control. 

3. Compute the constant using the terminal condition on the state. 
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Exercise: Mobile robot with specified terminal state 

A mobile robot moves along a line with coordinate 𝑥1, with velocity 

𝑥2 and is modelled by 

�̇�1 = 𝑥2 

�̇�2 = 𝑢 

Find the control law that minimizes the energy consumed 

𝐽(𝑢) =
1

2
∫ 𝑢2(𝑡)𝑑𝑡

1

0

 

when the robot moves between the initial and terminal states given by 

𝑥(0) = [
1
1

]    and     𝑥(1) = [
1
0

]    (return to the same place but stop). 
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Solution: 𝑓(𝑥, 𝑢) = [
𝑥2

𝑢
],     𝑓𝑥 = [

0 1
0 0

]          𝐿(𝑥, 𝑢) = −
1

2
𝑢2,      𝐿𝑥 = [0 0] 

Adjoint equation:     [−�̇�1 −�̇�2] = [𝜆1 𝜆2] [
0 1
0 0

] 

�̇�1 = 0,        �̇�2 = −𝜆1   

𝜆1 = 𝐶1,      𝜆2 = 𝐶2 − 𝐶1𝑡 

Hamiltonian:     𝐻(𝜆, 𝑥, 𝑢) = 𝜆1𝑥2 + 𝜆2𝑢 −
1

2
𝑢2 

Maximum condition:     
𝜕𝐻

𝜕𝑢
= 𝜆2 − 𝑢 = 0      𝑢∗(𝑡) = 𝜆2(𝑡) = 𝐶2 − 𝐶1𝑡 
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To compute the constants 𝐶1 and 𝐶2, solve the state equations with 𝑢 = 𝑢∗ and 

impose the initial and terminal conditions on the state. 

�̇�2 = 𝐶2 − 𝐶1𝑡 

𝑥2(𝑡) = 𝑥2(0) + ∫ (𝐶2 − 𝐶1𝜎)𝑑𝜎
𝑡

0

= 1 + 𝐶2𝑡 −
1

2
𝐶1𝑡2 

�̇�1 = 𝑥2 = 1 + 𝐶2𝑡 −
1

2
𝐶1𝑡2 

𝑥1(𝑡) = 𝑥1(0) + ∫ 𝑥2(𝜎)𝑑𝜎
𝑡

0

= 1 + ∫ [1 + 𝐶2𝜎 −
1

2
𝐶1𝜎2] 𝑑𝜎

𝑡

0

 

𝑥1(𝑡) = 1 + 𝑡 +
1

2
𝐶2𝑡2 −

1

6
𝐶1𝑡3 
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𝑥1(𝑡) = 1 + 𝑡 +
1

2
𝐶2𝑡2 −

1

6
𝐶1𝑡3 

𝑥2(𝑡) = 1 + 𝐶2𝑡 −
1

2
𝐶1𝑡2 

To compute 𝐶1 and 𝐶2, make 𝑡 = 1 (final instant) and use the terminal 

conditions. To get 

{
1 +

1

2
𝐶2 −

1

6
𝐶1 = 0

1 + 𝐶2 −
1

2
𝐶1 = 0

,        𝐶1 = −6,       𝐶2 = −4 

𝑢∗(𝑡) = 6𝑡 − 4 

 

End of exercise 
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Example: Optimal velocity transfer – minimum energy 

Solve the following OCP: 

min
𝑢

𝐽(𝑢) ∶=
1

2
∫ 𝑢2(𝑡)𝑑𝑡

𝑇

0

 

s. t.    �̇� = −𝑎𝑣 + 𝑏𝑢,    𝑎, 𝑏 > 0 

𝑣(0) = 𝑉1 

𝑣(𝑇) = 𝑉2 
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Fim do exemplo 
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Example: Optimal velocity transfer – minimum fuel 

Solve the following OCP: 

min
𝑢

𝐽(𝑢) ∶= ∫ 𝑢(𝑡)𝑑𝑡
𝑇

0

 

s. t.       �̇� = −𝑎𝑣 + 𝑏𝑢,    𝑎, 𝑏 > 0 

0 ≤ 𝑢(𝑡) ≤ �̅� 

𝑣(0) = 𝑉1 

𝑣(𝑇) = 𝑉2 

Assume that 𝑇 is large enough so that there is one control switch. 
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Free terminal time problems 

In addition to the conditions of the Maximum Principle, the following condition 

must hold: 

𝐻(𝜆(𝑇), 𝑥(𝑇), 𝑢(𝑇)) = 0 
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Example 
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Solution 

 

  



Calculus of Variations and Optimal Control  60 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 
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Example: Push cart 

Problem: Given the car with dynamic equations 

 ( ) ( )

 ( ) ( )

x t x t

x t u t

1 2

2

=

=  

Find the optimal control that satisfies the constraint u t( )  1  and brings the car 

from the initial condition  x x1 20 0( ) ( ) '  to the origin  0 0 '  in minimum time. 

 

The cost function is written 

𝐽 = ∫ 1 𝑑𝑡
𝑇

0
        T  free 
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Since the terminal state is completely fixed, there are no constraints on the 

final co-state. The co-state is thus known up to constants. The co-state 

equation is thus: 

( ) ( )( ) ( ) ( )( )−  =  + ( ) ( ) , , t t f x t u t L x t u tx x  

Since L = 1 , it follows that Lx = 0  

Since 
f x u

x

u
( , ) =











2

 it is  
f x =











0 1

0 0  

   − =










    1 2 1 2

0 1

0 0  
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   − =










    1 2 1 2

0 1

0 0  

The co-state equations are thus: 






 

1

2 1

0=

= −  

These equations have the solution 

 

  

1 1

2 2 1

( )

( ) ( )

t

t t

=

= −  

 1 2,  unknown constants 
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The Hamiltonian H f L= + '  is 

H x u x u( , , )  = + +1 1 2 2  

Since the Hamiltonian is linear on u , the optimal control is attained at the 

maximum and minimum of the admissible values for u  that are -1 and +1. 
 

In this case we want to minimize the Hamiltonian. 

For the Hamiltonian to be minimum: 

* When 2 0  the optimal control is uopt = −1  

* When 2 0  the optimal control is uopt = +1 
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There are the following possibilities: 

 

Since 2 ( )t  is a straight line,   2 2 1( )t t= − , the optimal control has at most 

one switch. 

How to find the switching instants? 

-1

+1

-1

+1

-1

+1

u(t)

u(t)

u(t)

u(t)









2

2

2

2
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Solve the state equations in a period of time in which u  is constant: 

x t x ut2 2 0( ) ( )= +  

x t x x t ut1 1 2

20 0
1

2
( ) ( ) ( )= + +

 

To obtain the corresponding orbits on the state plane, eliminate t  between 

these equations. From the first: 

( )t u x t x= −2 2 0( ) ( )  

Replace on the second: 

x t x ux t ux1 1 2

2

2

20
1

2

1

2
0( ) ( ) ( ) ( )= + −   
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x t x ux t ux1 1 2

2

2

20
1

2

1

2
0( ) ( ) ( ) ( )= + −  

The orbits are parabolas with an horizontal axis, with the concavity turned to 

the left if u = −1 and turned to the right if u = 1 . 

                                
  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

___ u=+1 

----- u=-1 
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Curva de

comutação

(x (0),x (0))

x

x2

1

1 2

u=+1
u=-1

u=+1 nesta zona

da curva de

comutação

u=-1 nesta zona
da curva de

comutação

 

Since there can be only one switch in  

the optimal control, this fact leads 

to a simple rule to select the  

control depending on the region  

of the state space where we are:  

Above the switching curve the control is -1.  

Below, it is +1. 
 

When we are over the switching curve  

in the upper branch the control is -1 and in the lower branch is +1. 
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-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-2

-1.5

-1

-0.5

0

0.5

1

u=-1

u=-1

u=+1

 
  

0 0.5 1 1.5 2 2.5 3 3.5
-1.5

-1

-0.5

0

0.5

1

1.5

x2 

x1 

u 
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u x2 x1

Mint1.mdl

Controlo de Tempo Mínimo para a origem

do carrinho de empurrar
u

To Workspace2

x

To Workspace1

t

To Workspace

MATLAB

Function

MATLAB Fcn

s

1

Integrator1

s

1

Integrator

Clock

function out=comuta(u) 

% Calcula o controlo óptimo para o 

% problema de tempo 

% mínimo para a origem do 

% carrinho de empurrar 

if u(1)<0 

   if u(2)>sqrt(-2*u(1)) 

      out=-1; 

   else 

      out=+1; 

   end; 

else 

   if u(2)>-sqrt(2*u(1)) 

      out=-1; 

   else 

      out=+1; 

   end; 

end; 

 



Calculus of Variations and Optimal Control  77 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

The Hamiltonian is constant for time invariant problems 

Consider the case in which both 𝐿 and 𝑓 do not explicitly depend on the time 𝑡. 

For the class of problems in which the optimality condition is 
𝜕𝐻

𝜕𝑢(𝑡)
= 0 and 𝑢 is 

smooth, prove that the Hamiltonian is constant in time, i. e., that 
𝑑𝐻

𝑑𝑡
= 0. 

Help: 

�̇� = 𝑓(𝑥, 𝑢),        −�̇�𝑇 = 𝜆𝑇𝑓𝑥 + 𝐿𝑥,      𝐻(𝜆, 𝑥, 𝑢) = 𝜆𝑇𝑓(𝑥, 𝑢) + 𝐿(𝑥, 𝑢) 
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𝑑𝐻

𝑑𝑡
= �̇�𝑇𝑓 + 𝜆𝑇𝑓𝑥�̇� + 𝜆𝑓𝑢𝑢 + 𝐿𝑥�̇� + 𝐿𝑢�̇� 

𝑑𝐻

𝑑𝑡
= −𝜆𝑇𝑓𝑥𝑓 − 𝐿𝑥𝑓 + 𝜆𝑇𝑓𝑥𝑓 + 𝜆𝑓𝑢�̇� + 𝐿𝑥𝑓 + 𝐿𝑢�̇� 

𝑑𝐻

𝑑𝑡
= (𝜆𝑓𝑢 + 𝐿𝑢)�̇� =

𝜕𝐻

𝜕𝑢
�̇� = 0�̇� = 0 
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Exercício 

            

Resolva este problema de controlo ótimo (maximizar 

𝐽, suponha 𝑇 > 1) e calcule a Hamiltoniana ao longo 

do tempo, sobre uma trajetória ótima para 𝜆, 𝑥 e 𝑢. 

Desenhe a evolução da Hamiltoniana como função 

de 𝑢 ao longo do tempo. 
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Solução 
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t

u

H

H(*(t1),x(t1),u)

u*(t)

T
0 u*(t)

H*

H*
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Exercício 

                

Resolva este problema de controlo ótimo (maximizar 

𝐽, suponha 𝑇 > 1) e calcule a Hamiltoniana ao longo 

do tempo, sobre uma trajetória ótima para 𝜆, 𝑥 e 𝑢. 

Desenhe a evolução da Hamiltoniana como função 

de 𝑢 ao longo do tempo. 
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t

u

H

H*

T2/2

H(*(t1),x(t1),u)u*(t)

T

T0 t1



Calculus of Variations and Optimal Control  90 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

The Linear Quadratic Problem 

Dynamics: 

( ) ( ) ( )x t Ax t bu t= +  

x x( )0 0=          u t Rm( )   

Cost functional: 

 J x t Qx t u Ru dt

T

=  + 
1

2
0

( ) ( )
       Q Q=   0      R R=   0  

Since we want to minimize J  the Lagrangian is 

L x u x Qx u Ru( , ) ( )= −  + 
1

2   

T fixo 
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Adjoint equation 

−  =  +  f Lx x  

−  =  −  ( ) ( ) ( ) t t A x t Q      subject to the terminal condition    ( )T = 0  

 

Hamiltonian 

H x u f x u L x u( , , ) ( , ) ( , ) =  +  

H x u t Ax t t bu t x t Qx t u t Ru t( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  =  +  −  − 
1

2

1

2  
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Minimum condition on the Hamiltoniana 

The Hamiltonian 

H x u t Ax t t bu t x t Qx t u t Ru t( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  =  +  −  − 
1

2

1

2  

Is a quadratic function. A necessary condition of minimum is therefore 





H

u
= 0  

or 

 −  = ( ) ( )t b u t R 0  

Thus, the optimal control verifies 

u t R b t( ) ( )= 
−1    
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Thus, the optimal trajectory verifies 

( ) ( ) ( )x t Ax t bR b t= + 
−1   

( ) ( ) ( ) t Qx t A t= −   

Subject to 

x x( )0 0=       ( )T = 0  

This is a problem in which the unknowns (𝑥 and ) are specified at two points 

(0 and 𝑇). It is said to be a Two point boundary value problem. 

How to solve it? 

  

u topt ( )
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State and co-state equations with optimal control 

x Ax bR b= + 
−1   

 = − Qx A  

Assume that there is a matrix P t( )  such that 

 = −Px  

Under this assumption, the state and co-state equations can be written as 

 x A bR b P x= − 
−1

 

  = + Q A P x  
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Let’s try to get an equation for P t( ) . We have 

 = −Px  

Differentiate 

   = − −Px Px  

Use the state and co-state equations 

( ) ( )Q A P x Px P A bR b P x+  = − − − 
− 1

 

Factorize x  

 P PA A P PbR b P Q x+ +  −  + =−1 0  
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 P PA A P PbR b P Q x+ +  −  + =−1 0  

In order that this identity holds for all x , the term between brackets must 

vanish. 
 

In this way, we arrive at the Riccati differential equation: 

− = +  −  +−P PA A P PbR b P Q1

 

P T( ) = 0               (why?) 
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Linear Quadratic (LQ) Problem 

Given a system with linear dynamics 

( ) ( ) ( )x t Ax t bu t= +         x x( )0 0=          u t Rm( )   

The control that minimizes the quadratic cost over an infinite horizon 

 J x t Qx t u Ru dt

T

=  + 
1

2
0

( ) ( )        Q Q=   0     R R=   0  

Is given by the state feedback with time varying gain: 

u t K t x t( ) ( ) ( )= −       K t R B P t( ) ' ( )= −1
 

Where 𝑃(𝑡) is a symmetric positive definite matrix that satisfies the Riccati 

differential equation  

− = +  −  +−P PA A P PbR b P Q1
   P T( ) = 0  
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Example (LQ Control of a 1st order system) 

Consider the 1st order, open loop unstable system 

( ) ( ) ( )x t x t u t= +       x( )0 1=  

Find the control law that minimizes 

 J u x t ru t dt
T

( ) ( ) ( )= +
1

2

2 2

0      T r 0 0,  

The solution is given by 

 ( ) ( ) ( )p t p t
r

p t= − + −2
1

12

          p T( ) = 0  

u t K t x t( ) ( ) ( )= −       K t
r

p t( ) ( )=
1
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When the weight in the control action, 𝑟, decreases: 

• The closed-loop becomes faster 

• The controller gain increases 
 

Increasing the horizon, 𝑇, the solution of the Riccati equation is initially a 

constant and there is a transient close to the end of 𝑇. 

 

This suggests that, when T →   the solution of the Riccati equation becomes 

connsatnt for all times and the optimal control is a constant feedback of the 

state. 
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The previous example suggests the consideration of the problem that consists 

in minimizing a cost over an infinite horizon 

 J x t Qx t u t Ru t dtLQ



= + ' ( ) ( ) ' ( ) ( )
0  

The solution is given by the constant state feedback ciontrol law 

u t Kx t( ) ( )= −      K R B P= −1 '  

where P  is the solution of the algebraic Riccati equation, given by 

PA A P PbR b P Q+  −  + =−1 0  
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If the system 

( ) ( ) ( )x t Ax t bu t= +  

Is stabilizable, i. e., if there is a vector if gains 𝐹 such that the closed-loop 

system 

( )( ) ( )x t A bF x t= −  

Is stable, then the solution of the algebraic Riccati equation is positive 

semidefinite (at least) and corresponds to the limit of the solution of the Riccati 

differential equation when 𝑇 increases. 
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Problem: Given the system defined by the block diagram 

 

 find the values of k1  and k2  that minimize 

 J x Qx t u Ru t dt= +


 ' ( ) ' ( )
0      

Q =










1 0

0 01.      R = 1 

  

1

s+1

1

s

xxu0

k k

2 1

2 1

-

+

+
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State model of the open-loop system 

X s
s

X s1 2

1
( ) ( )=

   and hence    ( ) ( )x t x1 2=  

X s
s

U s2

1

1
( ) ( )=

+  or sX s X s U s2 2( ) ( ) ( )= − +  and hence  ( ) ( ) ( )x t x t u t2 2= − +  

The open-loop state model is thus 





x

x

x

x
u

1

2

1

2

0 1

0 1

0

1









 = −


















 +
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In this case, the algebraic Riccati equation 

PA A P PBR C P Q+ − + =−' '1 0  

becomes 

 
p p

p p

p p

p p

p p

p p

p p

p p

11 12

12 22

11 12

12 22

11 12

12 22

11 12

12 22

0 1

0 1

0 0

1 1

0

1

1

1
0 1

1 0

0 01

0 0

0 0









 −









 + −


















 −



























 +









 =









.  

or 

0

0

0 0 1 0

0 01

0 0

0 0

11 12

12 22 11 12 12 22

12

2

12 22

12 22 22

2

p p

p p p p p p

p p p

p p p

−

−









 + − −









 −









 +









 =









.  
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0

0

0 0 1 0

0 01

0 0

0 0

11 12

12 22 11 12 12 22

12

2

12 22

12 22 22

2

p p

p p p p p p

p p p

p p p

−

−









 + − −









 −









 +









 =









.  

Equating the entries of the matrices in both members yields: 

p12

2 1=  

p p p p11 12 12 22 0− − =  

( )2 01 012 22 22

2p p p− − + =.  

The equation p12

2 1=  is verified by p12 1=  . However, only the positive root 

leads to a positive definite matrix 𝑃. Therefore, p12 1= . 
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p p p p11 12 12 22 0− − =  

( )2 01 012 22 22

2p p p− − + =.  

Being p12 1= , these equations become 

p p11 22 1− =  

p p22

2

222 19 0+ − =.  

The 2nd equation has roots − 1 2 9. . Again, only the positive root leads to a 

positive definite 𝑃. Thus: 

P =










17 1

1 0 7

.

.   
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P =










17 1

1 0 7

.

.  

The vector of optimal gains is given by  

K R B P= −1 '  

   K =








 =0 1

17 1

1 0 7
1 0 7

.

.
.

 

The optimal LQ control law is therefore 

( )u t x x( ) .= − +1 20 76  

This computation may also be performed with MATLAB (Control Systems 

Toolbox) using the function lqr (continuous time) or dlqr (discrete time). 
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Output quadratic regulation with infinite horizon 

Model: 

( ) ( ) ( )x t Ax t bu t= +                  y t Cx t( ) ( )=  

Cost functional 

 J y t u t dt



= +
2 2

0
( ) ( )  

Since 

y t x t C Cx t2 ( ) ' ( ) ' ( )=  

This problem reduces to the previous one by selecting Q as 

Q C C= '  
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The solution of the problem that consists of minimizing 

 J y t u t dt



= +
2 2

0
( ) ( )  

where the system is modelled by 

( ) ( ) ( )x t Ax t bu t= +                  y t Cx t( ) ( )=  

Is given by 

u t Kx t( ) ( )= −      K R B P= −1 '  

where P  is the unique positive definite solution of the algebraic Riccati 

equation 

PA A P Pbb P C C+  −  + =
1

0


'  
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In relation to this controil law, we have the following theorem: 
 

If the pair (A, B) is stabilizable, and the pair (A, C) is observable, the positive 

definite solution of the algebraic Rioccati equation exists and is unique, and 

the closed loop system is asymptotically stable. 
 

The pair (A,C) is observable if 

car

C

CA

CA

n n x

n


−



















= =

1

dim( )
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Definition 

A matrix P  is positive definite if 

x Px'  0                 x 0  

Is said to be positive semidefinite if 

x Px'  0                 x 0  
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Problem: What is the place of the closed-loop poles that corresponds to 

minimize 𝐽∞ (for SISO systems)? 

 

Answer [Chang/Letov]: The poles of the optimal closed-loop system (with 𝑻 =

∞) are the 𝒏 stable roots of the degree 𝟐𝒏 polynomial 𝜟(𝒔) 

𝛥(𝑠) = 𝑎(𝑠)𝑎(−𝑠) +
1

𝜌
𝑏(𝑠)𝑏(−𝑠) 

where 

𝑏(𝑠) = 𝐶 𝑎𝑑𝑗(𝑠𝐼 − 𝐴)𝐵 

𝑎(𝑠) = 𝑑𝑒𝑡( 𝑠𝐼 − 𝐴) 

  

Open-loop zeros 

Open-loop poles 
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𝛥(𝑠) = 𝑎(𝑠)𝑎(−𝑠) +
1

𝜌
𝑏(𝑠)𝑏(−𝑠) 

If 𝑠 = 𝑠1 is a root of 𝛥(𝑠), then: 

𝛥(𝑠1) = 𝑎(𝑠1)𝑎(−𝑠1) +
1

𝜌
𝑏(𝑠1)𝑏(−𝑠1) = 0 

Hence, for 𝑠 = −𝑠1: 

𝛥(−𝑠1) = 𝑎(−𝑠1)𝑎(𝑠1) +
1

𝜌
𝑏(−𝑠1)𝑏(𝑠1) = 0 

Meaning that if 𝑠 = 𝑠1 is a root of 𝛥(𝑠), then 𝑠 = −𝑠1 is also a root. 
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The roots of 𝛥(𝑠) are symmetric with respect to the imaginary axis. 

 

 

Since the poles of the controlled system are given by the roots of 𝛥(𝑠) on the 

left-hand plane, then the system controlled with the LQ law with an infinite 

horizon is asymptotically stable. 
  

We can always 

select n  stable 

poles 
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Solution of the LQ (𝑻 = ∞) problem by pole placement  

The solution of the infinite horizon LQ problem may be done as follows: 

1. Compute the polynomial 

𝛥(𝑠) = 𝑎(𝑠)𝑎(−𝑠) +
1

𝜌
𝑏(𝑠)𝑏(−𝑠) 

2. Compute the 𝑛 = 𝜕𝑎(𝑠) roots of 𝛥(𝑠) on the left semiplane. 

3. Compute the vector of controller gains such that the closed loop system has 

the poles coincident with the roots found in step 2.  
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Example 

Given the system 

�̇� = [
0 1
4 0

] 𝑥 + [
0

−1
] 𝑢        𝑦 = [1 0]𝑥 

find the state feedback control law that minimizes 

𝐽∞ = ∫ [𝑦2(𝑡) + 𝜌𝑢2(𝑡)]
∞

0

𝑑𝑡  𝜌 = 10 
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State equations 

�̇�1 = 𝑥2 

�̇�2 = 4𝑥1 − 𝑢 

Equivalent block diagram 
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𝑌 =
−

1

𝑠2

1−
4

𝑠2

(1 + 𝑠)𝑈                𝑌 = −
1+𝑠

𝑠2−4
𝑈 

 

𝑏(𝑠) = −(1 + 𝑠) 

𝑎(𝑠) = 𝑠2 − 4 
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The optimal poles are the stable roots of 

𝛥(𝑠) = 𝑎(𝑠)𝑎(−𝑠) +
1

𝜌
𝑏(𝑠)𝑏(−𝑠) 

𝑎(𝑠) = 𝑠2 − 4          𝑏(𝑠) = −(1 + 𝑠) 

𝛥(𝑠) = (𝑠2 − 4)2 +
1

𝜌
(1 + 𝑠)(1 − 𝑠) 

𝑧 = 𝑠2                    (𝑧 − 4)2 +
1

𝜌
(1 − 𝑧) = 0 

𝑧2 − 8.1𝑧 + 16.1 = 0      𝑧1 = 4.6      𝑧2 = 3.5 

𝑠1 = 2.14     𝑠2 = −2.14     𝑠3 = 1.87      𝑠4 = −1.87 

  

21 s−=
 

Change of 

variable 
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The optimal gain vector is computed such that the closed-loop poles are         

–2.14 and –1.87 
 

The desired closed-loop polynomial is thus 

𝛼(𝑠) = (𝑠 + 2.14)(𝑠 + 1.87) = 𝑠2 + 4.01𝑠 + 4 
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Block diagram of the closed-loop system with generic state feedback: 

     
  

u
y

4

1 1
s s

+

-
1+s

kk

xx

1

21

2

-

+

+

-

1

s
1+s

4-k  -k  s

2

1 2
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Closed-loop characteristic equation 

( )1
1

4 0
2 1 2− − − =

s
k k s  

Closed-loop characteristic polynomial 

K s s k s k( ) = + + −2

2 1 4  

Compare with the desired characteristic polynomial  

 ( ) .s s s= + +2 4 01 4  

The optimal gain are obtained: 

k kopt opt

1 28 4 01= = .  
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Root square locus 

The optimal closed-loop poles are the stable roots of  

a s a s b s b s( ) ( ) ( ) ( )− + − =
1

0
  

This equation may be written as 

1
1




−

−
= −

b s b s

a s a s

( ) ( )

( ) ( )  

What happens to the roots of this equation when   varies? 
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a s a s b s b s( ) ( ) ( ) ( )− + − =
1

0
  

For   very big, the equation becomes approximatively 

a s a s( ) ( )− = 0  

Thus, for   very big, the optimal poles are either the open loop poles if they 

are stable, or their symmetric if they are not. 
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a s a s b s b s( ) ( ) ( ) ( )− + − =
1

0
  

What happens for   very little? 
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Root square locus - example 


.

x x u=








 +

−











0 1

0 25 0

0

1  

 y = 1 1  

The corresponding transfer function is 

b s

a s

s

s

( )

( ) .
=

+

−

1

0 252  
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The root square locus is 
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