INSTITUTO SUPERIOR TÉCNICO

Air Traffic Management (GTA)

First semester 2021/2022

Exam (1 hour) - 12/Feb/2022

Name:				
	_			
Number:				

Notes:

- Read carefully each question before answering
- The answers should be given **exclusively** on these sheets (use both sides)
- The allowed consultation is limited to 5 (five) A4 sheets of paper
- For the multiple choice questions, a wrong answer is penalized with 1/4 of the question value
- 1. **[1 pt]** For this question refer to the chart provided.

The aeronautical chart provided in figure 1 is a Non Precision final instrument approach chart RNP.

2. [2 pt] For this question refer to the chart provided.

How many different holding patterns procedures are published in this chart?

2 (MTR and CHA).

3. A passenger regular flight is being planned using an Airbus A340-600. The contingency fuel is the standard 5%. Given the following scenario:

Structural limited TOW:	380000 kg
Structural limited LW:	265000 kg
MZFW:	251000 kg
Performance limitation at the departing runway due to obstacles:	365000 kg
DOW:	179000 kg
FOB _{RAMP} :	73000 kg
Fuel _{TAXI} :	1000 kg
Fuel _{TRIP} :	62000 kg
Passengers and personal luggage:	30540 kg
Cargo:	25000 kg

a) [2 pt] At the last minute, due to a flight being canceled, there is the need to protect passengers, by adding them to this flight. Which is the additional maximum permitted payload?

Total Payload	55540	Kg
Fuel		
FOB Ramp	73000	Kg
FOB T-Off	72000	Kg
Taxi Fuel	1000	Kg
Trip Fuel	62000	Kg
Aircraft Design Limits		
MSTOW	380000	Kg
MLW	265000	Kg
MZFW	251000	Kg
Performance Limit		
Performance Limit	365000	Kg
Aircraft DOW		
DOW	179000	Kg

Calculations		
ZFW Limitation	323000	Kg
LW Limitation	327000	Kg
STOW Limitation	380000	Kg
Performance Limit	365000	Kg
ATOW	306540	Kg
MATOW	323000	Kg
Max Aditional Permited Payload	16460	Kg

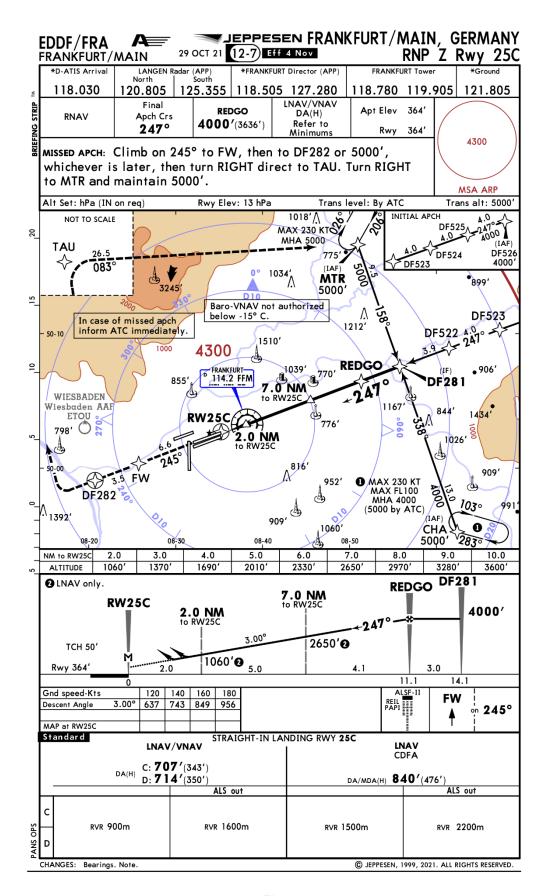
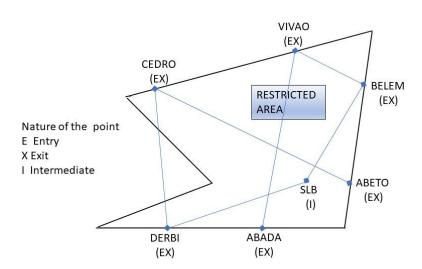


Figure 1


b) [2 pt] In reference to the approach you used on previous calculations, is there any sort of limitation and/or simplification implied, which in a rigorous and theoretical approach wouldn't be entirely correct? Explain.

Yes there is.

First, since we are increasing the payload, this implies an increase in trip fuel. Also, since the limitation is by ZFW, this limitation also change, due to that increase in trip, and thus in the total FOB at take off.

In practice, this would be an iterative process. If the payload would inclease to much, it would have been wise to perform new performance calculations, although we are covered by the contingency and conservative nature of fuel calculations.

4.

The above polygon defines the borders of a FIR where free route airspace is implemented. Which routes will be approved by the ATC flight planning system?

Select one or more: [1 pt]

- ABETO-CEDRO
- **☑** BELEM-SLB-DERBI
- ☐ CEDRO-DERBI
- ☐ ABADA-VIVAO
- ✓ VIVAO BELEM

5. The following information is given about air traffic at a single runway airport.

Aircraft	Wake category	Approach speed [kts]	Mix [%]	Runway occupancy time on arrival [s]
A330	Heavy (H)	141	20	60
A320	Medium (M)	137	80	55

The length of the final approach to the runway is 9 NM.

The minimum separation requirements (in nautical miles) between successive **landing** aircraft on final approach are given by the matrix below (rows indicate leading aircraft and columns the following aircraft)

	1(H)	2 (M)
1 (H)	4	5
2 (M)	3	3

a) **[6 pt]** Suppose the runway is used for arrivals only. Find the maximum throughput capacity for **arrivals**

Time Separation (sec)

		Trailing	aircraft
leading		1(H)	2(M)
aircraft	1(H)	102	138
	2(M)	77	79

Trailing aircraft				
leading		1(H)	2(M)	
aircraft	I(H)	0.04	0.16	
	2(M)	0.16	0.64	
Expected	d time sepa	ration	88.9	sec
Average runway capacity			40.5	arrivals/h
b) [1 pt] The minimum separation requirements (in seconds) between successive departing aircraft is 120 seconds. Suppose the runway is used for departures only. Find maximum throughput capacity for departures $\frac{3600 s/h}{120 s/dep} = 30 dep/h$				
 6. [1 pt] What is the meaning of the 'B' in ADS-B? (solution in bold) Broadcast Beacon Band The version indicator none of the above 				
☐ Fo	7. [1 pt] Concerning primary surveillance radar, select <u>all</u> true sentences (solution in bold) □ For the same power, its range is larger than secondary surveillance radar □ For the same power, its range is smaller than secondary surveillance radar			

- 8. Consider an airstrip aligned with heading 12 deg which can be used in both ways for landing (i.e., north-south and south-north). Assume that TORA=TODA=ASDA=LDA=2NM.
 - a) [1 pt] write the runway designators for both north-south and south-north directions

North-south: 19 South-North: 01

□ It detects non-cooperative targets
 □ It is able to detect the shape of aircraft
 □ It is prone to occlusion by clouds

b) **[2 pt]** consider a VOR approach from south to north, using another VOR located 10NM to the east of the runway midpoint, to aid estimating the distance to the runway threshold. Determine the radials for the following distances to the threshold: 4NM, 8NM, and 11NM.

4NM: R246 6NM: R233 11NM:R227