Information and Communication Theory: Exam

November 16, 2022
Name: \qquad Number: \qquad
Duration: 120 minutes. Part I scores: correct answer $=2 / 3$ point; wrong answer $=-1 / 3$ points.
Potentially useful facts: $\log _{2} 3 \simeq 1.585 ; \log _{10}(2) \simeq 0.30 ; \log _{a} b=\left(\log _{c} b\right) /\left(\log _{c} a\right)$.

Part I

1. Let $X, Y \in\{A \oslash, 2 \circlearrowleft, \ldots, K \boldsymbol{\oplus}\}$ be the two random variables representing the outcome of randomly drawing two cards from a deck of 52 cards (without replacement). Then,
a) $H(X, Y)<2 \log (52) \mathrm{bits} /$ symbol;
b) $H(X, Y)=2 \log (52)$ bits/symbol;
c) $H(X, Y)>2 \log (52) \mathrm{bits} / \mathrm{symbol}$.
2. Let $Z, T \in\{\Omega, \diamond, \boldsymbol{\infty}, \boldsymbol{\uparrow}\}$ be the suits of the two cards X, Y drawn as described in the previous question. Then,
a) $H(Z, T)<4 \mathrm{bits} /$ symbol;
b) $H(Z, T)=4 \mathrm{bits} / \mathrm{symbol} ;$;
c) $H(Z, T)>4$ bits/symbol.
3. Let $X \in\{A \oslash, 2 \circlearrowleft, \ldots, K \boldsymbol{\oplus}\}$ be the random variable defined in question 1 and $Z \in\{\oslash, \diamond, \boldsymbol{\varphi}, \boldsymbol{\oplus}\}$ its suit. Then,
a) $I(X ; Z)<2 \mathrm{bits} /$ symbol;
b) $I(X ; Z)=2 \mathrm{bits} / \mathrm{symbol}$;
c) $I(X ; Z)>2$ bits/symbol.
4. Let X be the random variable defined in question $1, Z \in\{\Omega, \diamond, \boldsymbol{\infty}, \boldsymbol{\phi}\}$ its suit, and $U \in\{A, 2, \ldots, K\}$ its value. Then,
a) $I(U ; Z)<2 \mathrm{bits} /$ symbol;
b) $I(U ; Z)=2$ bits/symbol;
c) $I(U ; Z)>2$ bits/symbol.
5. Let C be an optimal binary code for the variable X defined in question 1 . Its expected length,
a) $L(C)<6 \mathrm{bits} /$ symbol;
b) $L(C)=6 \mathrm{bits} / \mathrm{symbol}$;
c) $L(C)>6$ bits/symbol.
6. Let C be an optimal ternary code for the variable Z defined in question 2. Its expected length,
a) $L(C)<7 / 4$ trits/symbol;
b) $L(C)=7 / 4 \mathrm{trits} / \mathrm{symbol}$;
c) $L(C)>7 / 4$ trits/symbol.
7. Let $X_{1}, \ldots, X_{52} \in\{A \circlearrowleft, 2 \circlearrowleft, \ldots, K \uparrow\}$ be the sequence of random variables corresponding to drawing the 52 cards of a deck, one by one, without replacement. The sequence X_{t}, for $t=1, \ldots, 52$,
a) is a stationary first-order Markov process;
b) is a non-stationary first-order Markov process;
c) is not a Markov process.
8. Let X be the source defined in question 1. The efficiency of the Huffman quarternary code for the secondorder extension of this source is
a) $\rho<1$;
b) $\rho=1$;
c) $\rho>1$.
9. Let $X \in[1,2]$ be a random variable with uniform probability density function and $Y=\log _{2}(X)$ another random variable. Then, the differential entropy $h(Y)$ satisfies
a) $h(Y)<0$;
b) $h(Y)=0$;
c) $h(Y)>0$.
10. Let $X \in \mathbb{R}$ be a random variable with Gaussian probability density function, with zero mean and variance σ^{2}, and Y another random variable given by $Y=0$, if $X \leq 0$, and $Y=1$, if $X>0$. Then,
a) $I(X ; Y)<1$ bit/symbol;
b) $I(X ; Y)=1$ bit/symbol;
c) $I(X ; Y)>1 \mathrm{bit} /$ symbol.
11. Let $Y \in[-2,2]$ be a random variable with uniform probability density function and T, Z two other random variables defined as: $T=0$, if $Y \leq 0$, and $T=1$, if $Y>0 ; Z=0$, if $|Y| \leq 1$, and $Z=1$, if $|Y|>1$. Then,
a) $I(Y ; T, Z)<2 \mathrm{bit} /$ symbol;
b) $I(Y ; T, Z)=2 \mathrm{bit} / \mathrm{symbol}$;
c) $I(Y ; T, Z)>2$ bit/symbol.
12. Let X_{1} and X_{2} be two independent Gaussian random variables, with variances σ_{1}^{2} and σ_{2}^{2}. Let $U=X_{1}+X_{2}$ be their sum. Then,
a) $h(U)<h\left(X_{1}\right)$, for any values of σ_{1}^{2} and σ_{2}^{2};
b) $h(U)>h\left(X_{1}\right)$, for any values of σ_{1}^{2} and σ_{2}^{2};
c) none of the previous answers.
13. Consider the so-called Z-channel, with the following matrix: $\left[\begin{array}{cc}1 & 0 \\ \beta & 1-\beta\end{array}\right]$, with $\beta \in[0,1]$. The capacity of this channel
a) is a monotonically decreasing function of β;
b) is a monotonically increasing function of β;
c) none of the previous answers.
14. Consider the channel with the following matrix: $\left[\begin{array}{ccc}1-\varepsilon & 0 & \varepsilon \\ 0 & 1 & 0\end{array}\right]$. The capacity of this channel
a) is a monotonically decreasing function of ε;
b) is a monotonically increasing function of ε;
c) none of the previous answers.
15. Consider the channel given in question 13, with $\beta>0$. Which of the two following words of a Hamming $(7,4)$ code, $x_{1}=0000000$ and $x_{2}=1110000$, when transmitted through this channel, has the highest probability of being wrongly decoded?
a) x_{1};
b) x_{2};
c) it depends on β.

Part II

Problem 1

a) Consider a discrete memoryless source $X \in\{1,2,3,4\}$ with probability mass function $\mathbf{f}_{X}=(1,1,2,4) / 8$. Consider $Y_{1}=f(X)$, where f is the function given by $f(1)=f(2)=0, f(3)=f(4)=1$, and $Y_{2}=g(X)$, where $g(1)=g(3)=0, g(2)=g(4)=1$ 。
Determine $H(X), H\left(Y_{1}\right), H\left(Y_{2}\right), H\left(Y_{1}, Y_{2}\right), I\left(X ; Y_{1}\right), I\left(X ; Y_{2}\right)$, and $I\left(X ; Y_{1}, Y_{2}\right)$.

Solution:

$$
\begin{aligned}
& H(X)=\frac{1}{4} \log _{2} 8+\frac{1}{4} \log _{2} 4+\frac{1}{2} \log _{2} 2=\frac{7}{4} \text { bits/symbol. } \\
& \mathbb{P}\left[Y_{1}=0\right]=\frac{2}{8}=\frac{1}{4}, \operatorname{logo}, H\left(Y_{1}\right)=\frac{1}{4} \log _{2} 4+\frac{3}{4} \log _{2} \frac{4}{3}=2-\frac{3}{4} \log _{2} 3 \simeq 0.811 \text { bits/symbol. } \\
& \mathbb{P}\left[Y_{2}=0\right]=\frac{3}{8}, \operatorname{logo}, H\left(Y_{2}\right)=\frac{3}{8} \log _{2} \frac{8}{3}+\frac{5}{8} \log _{2} \frac{8}{5}=3-\frac{3}{8} \log _{2} 3-\frac{5}{8} \log _{2} 5 \simeq 0.954 \text { bits/symbol. } \\
& \left(Y_{1}, Y_{2}\right) \text { is an injective function of } X, \text { thus } H\left(Y_{1}, Y_{2}\right)=H(X) . \\
& I\left(X ; Y_{1}\right)=H\left(Y_{1}\right)-H\left(Y_{1} \mid X\right)=H\left(Y_{1}\right), \text { because } Y_{1} \text { is a function of } X . \\
& I\left(X ; Y_{2}\right)=H\left(Y_{2}\right)-H\left(Y_{2} \mid X\right)=H\left(Y_{2}\right), \text { because } Y_{2} \text { is a function of } X . \\
& I\left(X ; Y_{1}, Y_{2}\right)=H\left(Y_{1}, Y_{2}\right)-H\left(Y_{1}, Y_{2} \mid X\right)=H\left(Y_{1}, Y_{2}\right), \text { because }\left(Y_{1}, Y_{2}\right) \text { is a function of } X .
\end{aligned}
$$

b) For the source X defined in a), find an optimal ternary code and the corresponding expected length.

Solution: Possible optimal code: $C(1)=20, C(2)=21, C(3)=1, C(4)=0$. Expected length:

$$
L(C)=\frac{2 * 1+2 * 1+1 * 2+1 * 4}{8}=\frac{10}{8}=\frac{5}{4} \text { trits/symbol. }
$$

c) Consider the so-called noisy binary erasure channel, with matrix

$$
\left[\begin{array}{ccc}
(1-\alpha)(1-\varepsilon) & \alpha(1-\varepsilon) & \varepsilon \\
\alpha(1-\varepsilon) & (1-\alpha)(1-\varepsilon) & \varepsilon
\end{array}\right]
$$

Determine the capacity of this channel for $\varepsilon=0$, for $\varepsilon=1$, and for $\alpha=1 / 2$.

Solution:

For $\varepsilon=0$, the channel matrix is

$$
\left[\begin{array}{ccc}
(1-\alpha) & \alpha & 0 \\
\alpha & (1-\alpha) & 0
\end{array}\right]
$$

which corresponds to a binary symmetric channel, thus $C=1+\alpha \log _{2} \alpha+(1-\alpha) \log _{2}(1-\alpha)$ bits/transmission. For $\varepsilon=1$, the channel matrix is

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

which corresponds to a binary erasure channel with probability of erasure equal to 1 , thus $C=0$.
For $\alpha=1 / 2$, the channel matrix is

$$
\left[\begin{array}{ccc}
(1-\varepsilon) / 2 & (1-\varepsilon) / 2 & \varepsilon \\
(1-\varepsilon) / 2 & (1-\varepsilon) / 2 & \varepsilon
\end{array}\right]
$$

since the two rows of the matrix are equal, the output is independent of the input, thus the capacity is $C=0$.

Problem 2

a) Consider a variable $X \in[0,1]$ with uniform probability density function and another variable $Y \in\{1, \ldots, N\}$, which corresponds to the uniform discretization of X, with N intervals, that is, $Y=i \Leftrightarrow X \in[(i-1) / N, i / N[$. Determine the differential entropy $h(X)$ and the entropy $H(Y)$.

Solution:

Differential entropy of a uniform density: $h(X)=\log _{2}(1)=0$.
Variable Y has probability $1 / N$ to be in each of the N intervals, thus $H(X)=\log _{2} N$ bits/symbol.
b) Determine the mutual information $I(X ; Y)$.

Solution: $I(X ; Y)=H(Y)-H(Y \mid X)=H(Y)=\log _{2} N$, since Y is a function of X, thus $H(Y \mid X)=0$.
c) Consider a variable $X \in[0,1]$ with triangular probability density function, $f_{X}(x)=2-2 x$, and another variable $Y \in\{1,2\}$ given by $Y=1$, if $X \leq a$, and $Y=2$, if $X>a$. For what value of a is the mutual information $I(X ; Y)$ maximal?

Solution: $I(X ; Y)=H(Y)-H(Y \mid X)=H(Y)$, since since Y is a function of X, thus $H(Y \mid X)=0$.
This entropy (thus the mutual information) is maximized for $\mathbb{P}[Y=1]=\mathbb{P}[Y=2]=1 / 2$.
$\mathbb{P}[Y=2]=\int_{a}^{1}(2-2 x) d x$ is just the area of a triangle of base $1-a$ and height $2-2 a$, thus the condition becomes

$$
\frac{(1-a)(2-2 a)}{2}=\frac{1}{2} \Leftrightarrow 2 a^{2}-4 a+1=0 \Leftrightarrow a=\frac{4 \pm \sqrt{16-8}}{4}=1 \pm \frac{1}{\sqrt{2}} .
$$

Of the two solutions, only the smallest is in the interval $[0,1]$, thus the final solution is $1-\frac{1}{\sqrt{2}} \simeq 0.293$.
d) Consider a channel with input $U \in\{0,1\}$ and output $Z=U+X$, where X is the random variable defined in question c). What is the capacity of this channel?

Solution: conditioned on $X=0$, the density of Y has support $[0,1]$. Conditioned on $X=1$, the density of Y has support [1, 2]. Thus, knowing Y implies knowing X, thus $H(X \mid Y)=0$ and

$$
C=\max _{f_{X}} I(X ; Y)=\max _{f_{X}} H(X)-H(X \mid Y)=\max _{f_{X}} H(X)=1 \text { bits/transmission. }
$$

