Information and Communication Theory: Third Mini-Test

November 3, 2022
Name: \qquad Number: \qquad
Duration: 45 minutes. Part I scores: correct answer $=3 / 2$ point; wrong answer $=-3 / 4$ points.

Useful facts: $\log _{a} b=\left(\log _{c} b\right) /\left(\log _{c} a\right) ; \log _{2} 3 \simeq 1.585$. Unless indicated otherwise, all logarithms are base-2.

Part I

1. Let $X \in[0,1]$ be a source with probability density function $f_{X}(x)=1+\alpha(x-1 / 2)$, for $\alpha \in[-2,2]$ Then, the differential entropy $h(X)$
a) is a monotonically decreasing function of α;
b) s a monotonically increasing function of α;
c) none of the previous answers.
2. Let $Y \in[0,2]$ be a source with uniform probability density function, and $Z=Y^{2} / 4$. Then,
a) $h(Z)<h(Y)$;
b) $h(Z)=h(Y)$;
c) $h(Z)>h(Y)$.
3. Let $C(\beta)$ denote the capacity of a binary symmetric channel (BSC) with probability of error $\beta \in[0,1]$. Then,
a) $C(\beta / 2)<C(\beta)$;
b) $C(\beta / 2)>C(\beta)$
c) none of the previous answers.
4. Let $C(\varepsilon)$ denote the capacity of an binary erasure channel (BSC) with probability of erasure $\varepsilon \in[0,1]$. Then,
a) $C(\varepsilon / 2)<C(\varepsilon)$;
b) $C(\varepsilon / 2)>C(\varepsilon)$
c) none of the previous answers.

Explanation: For $\epsilon=0 \in[0,1]$, the correct answer is (c), since $C(0)=C(0)$. Since it is understandable that some people assumed this was not being considered, option (b) is also classified as correct, as it is for $\epsilon \in] 0,1]$.
5. Consider a channel with input alphabet $\mathcal{X}=\{1,2, \ldots, 16\}$ and output alphabet $\mathcal{Y}=\{1,2, \ldots, 8\}$. The capacity C of this channel necessarily satisfies
a) $C \leq 3$ bits/transmission;
b) $3<C \leq 4$ bits/transmission;
c) $C>4$ bits/transmission.
6. Consider a Hamming $(7,4)$ binary code. Which of the following is a valid codeword?
a) 0001100;
b) 0111110;
c) 0001111 .
7. Consider a binary symmetric channel with probability of error 0.1 used with a $\operatorname{Hamming}(7,4)$ code. The probability of a correct decoding satisfies is
a) <0.9;
b) $=0.9$;
c) >0.9.
8. Consider a Gaussian channel with power constraint P and noise power N. If the noise power is reduced from N to $N / 2$, the capacity of the channel
a) doubles;
b) increases by 50%;
c) none of the previous answers.

Part II

1. Consider the channel resulting from connecting the output of a binary symmetric channel with probability of error α with an erasure channel with probability of erasure ε.
a) Draw the channel graph and write the channel matrix of the resulting channel.

Solution:

$\mathbf{P}=\left[\begin{array}{ccc}(1-\alpha)(1-\epsilon) & \epsilon & \alpha(1-\epsilon) \\ \alpha(1-\epsilon) & \epsilon & (1-\alpha)(1-\epsilon)\end{array}\right]$
b) What is the capacity of the channel (as a function of ε) for $\alpha=0$?

Solution: For $\alpha=0$, we simply have a Binary Erasure Channel (BEC), with capacity given by:

$$
C(\epsilon)=1-\epsilon
$$

c) What is the capacity of the channel (as a function of α) for $\varepsilon=0$?

Solution: For $\epsilon=0$, we simply have a Binary Symmetric Channel (BSC), with capacity given by:

$$
C(\alpha)=1-H(\alpha, 1-\alpha)
$$

d) For $\varepsilon=0.3$, is there any choice of α such that the capacity of the channel is 0.8 bits/transmission? Justify your answer.
Solution: Let C_{1} denote the capacity of the BSC, and C_{2} the capacity of the BEC. For $\epsilon=0.3$, we have $C_{2}=1-0.3=0.7$. Let C denote the capacity of the channel, which is the series connection of two channels, we know that:

$$
C \leq \min \left\{C_{1}, C_{2}\right\} \leq 0.7
$$

Therefore, there is no choice of α such that the capacity would be 0.8 .

