Information and Communication Theory: Third Mini-Test

	Nover	mber 3, 2022
Nam	ne: Numbe	er:
Dura	ration: 45 minutes. Part I scores: correct answer = $3/2$ point; wrong answer = $-3/4$ points.	
Usef	eful facts: $\log_a b = (\log_c b)/(\log_c a); \log_2 3 \simeq 1.585$. Unless indicated otherwise, all logarithms are based	se-2.
Pai	urt I	
1.	. Let $X \in [0,1]$ be a source with probability density function $f_X(x) = 1 + \alpha(x - 1/2)$, for $\alpha \in [-2, differential entropy h(X)$	2] Then, the
	 a) is a monotonically decreasing function of α; b) s a monotonically increasing function of α; c) none of the previous answers. 	
2.	. Let $Y \in [0, 2]$ be a source with uniform probability density function, and $Z = Y^2/4$. Then,	
	a) $h(Z) < h(Y);$ b) $h(Z) = h(Y);$ c) $h(Z) > h(Y).$	
3.	Let $C(\beta)$ denote the capacity of a binary symmetric channel (BSC) with probability of error $\beta \in [0, \infty)$	0,1]. Then,
	 a) C(β/2) < C(β); b) C(β/2) > C(β) c) none of the previous answers. 	
4.	Let $C(\varepsilon)$ denote the capacity of an <i>binary erasure channel</i> (BSC) with probability of erasure $\varepsilon \in [0, \infty)$),1]. Then,
	 a) C(ε/2) < C(ε); b) C(ε/2) > C(ε) c) none of the previous answers. 	
	Explanation: For $\epsilon = 0 \in [0, 1]$, the correct answer is (c), since $C(0) = C(0)$. Since it is understations some people assumed this was not being considered, option (b) is also classified as correct, as it is the same people assumed that the same people assumed the same people assumed that the same people assumed the same people as the same peo	and able that for $\epsilon \in]0, 1]$.
5.	. Consider a channel with input alphabet $\mathcal{X} = \{1, 2,, 16\}$ and output alphabet $\mathcal{Y} = \{1, 2,, 8\}$. Th of this channel necessarily satisfies	e capacity C
	a) $C \leq 3$ bits/transmission;	•
	b) $3 < C \le 4$ bits/transmission;	
	c) $C > 4$ bits/transmission.	
6.	. Consider a $\operatorname{Hamming}(7,4)$ binary code. Which of the following is a valid codeword?	
	 a) 0001100; b) 0111110; c) 0001111. 	

7. Consider a binary symmetric channel with probability of error 0.1 used with a Hamming(7, 4) code. The probability of a correct decoding satisfies is

	a) $< 0.9;$	
	b) = $0.9;$	
	c) > 0.9.	
8.	Consider a Gaussian channel with power constraint P and noise power N . If the noise power is reduced from to $N/2$, the capacity of the channel	N
	a) doubles;	

- **b)** increases by 50%;
- c) none of the previous answers.

Part II

- 1. Consider the channel resulting from connecting the output of a binary symmetric channel with probability of error α with an erasure channel with probability of erasure ε .
 - a) Draw the channel graph and write the channel matrix of the resulting channel. Solution:

D _	$\left[(1-\alpha)(1-\epsilon) \right]$	ϵ	$\alpha(1-\epsilon)$
г =	$\alpha(1-\epsilon)$	ϵ	$(1-\alpha)(1-\epsilon)$

b) What is the capacity of the channel (as a function of ε) for $\alpha = 0$? Solution: For $\alpha = 0$, we simply have a Binary Erasure Channel (BEC), with capacity given by:

$$C(\epsilon) = 1 - \epsilon$$

c) What is the capacity of the channel (as a function of α) for $\varepsilon = 0$? Solution: For $\epsilon = 0$, we simply have a Binary Symmetric Channel (BSC), with capacity given by:

$$C(\alpha) = 1 - H(\alpha, 1 - \alpha)$$

d) For $\varepsilon = 0.3$, is there any choice of α such that the capacity of the channel is 0.8 bits/transmission? Justify your answer.

Solution: Let C_1 denote the capacity of the BSC, and C_2 the capacity of the BEC. For $\epsilon = 0.3$, we have $C_2 = 1 - 0.3 = 0.7$. Let C denote the capacity of the channel, which is the series connection of two channels, we know that:

$$C \le min\{C_1, C_2\} \le 0.7$$

Therefore, there is no choice of α such that the capacity would be 0.8.