
5. Model evaluation

5.1 Introduction

In this section, we address model evaluation and its related topics. How to evaluate a model is a
crucial question for those who develop or use models, for it is the way to assess how well (or
bad) the model performs when trying to simulate reality. But it’s not enough to know that model
evaluation is a necessity; one must also know what type of evaluation is need, and this is also
addresses in this section. Finally, the importance of plotting the results is tackled, because it can
(1) reveal the accuracy of the simulation, (2) illustrate the behavior of the model components,
and (3) highlight to which degree model components are important.

5.2 How to evaluate a model

First, let’s start by stating that model evaluation provides a methodology that helps us realize how
different from reality model simulations can be. Also, it allows for us to be certain if the model
behaves in the way we expect or think it should. Finally, this process is useful to determine which
parts of the model are most likely to affect the results. We can use models without evaluating
it first. However, this is not recommended, as it will seriously limit our understanding on the
way they functions and on their limitations. As such, the lack of a proper model evaluation may
compromise our modeling effort.

There are two main reason to evaluate a model:

• To check for human error in its construction or parametrization;
• To determine the circumstances/conditions where the model is likely to fail (because a

model is a simplification of reality)

It is important to remember that, while not being possible to confirm if that a model will
work, they will work, it is possible to check under what circumstances it is likely to fail, such
like hypothesis that cannot be proved, only disproved. Ultimately, if a model fails after being
evaluated, this can still teach us something about the system, and progress can be made even so.
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5.3 What type of evaluation is needed?

There are a number of consequences we must expect from the exercise of model evolution.
Among other outcomes, this process can lead to determine the accuracy of the simulation.
Hopefully, this outcome will help to acknowledge how confident can we be in the results.
Another outcome is an analysis of the behavior of the model. In this respect, it is possible to
check if the model respond in the expected way to changes in the conditions of the simulation.
Finally, it is also possible to resolve which components of the model are most important in
determining the results. But before a quantitative model evaluation is performed, we should
assess the results graphically, by plotting the results and have a quick, yet critical, look at them
and to answer these two simple questions: (i) do they look approximately correct?, i.e., are the
results within the limits and/or according to patterns observed in the “real world”, and if not, (ii)
what are the likely sources of error?

If the model fails this simple analysis, then we mat save a lot of time by not performing a
thorough evaluating of a model that is obviously wrong. But if after plotting the results, the
model appears to provide a reasonable fit to measured data (when available), then it should be
evaluated quantitatively.

5.3.1 Quantitative analysis

This analysis, needed in almost all applications, determines the accuracy of the simulation. It
consists of a collection of statistical tests that allows the simulated values to be compared to
measured values, and the outcome informs us how confident we can be in the simulated results.

5.3.2 Sensitivity analysis

The main objective of a sensitivity analysis is to evaluate the behavior of the model. This method
is used to determine whether the model responds in the expected way to changes in the conditions
of the simulation, and its output can be a plot of the changes in the simulated values against
changes in the model components.

5.3.3 Uncertainty analysis

This analysis relies on similar techniques and software as the sensitivity analysis, and resolves the
importance of the model components. Overall, it determines how much uncertainty is introduced
into the model output by each component of the model. The most important outcome of this
analysis is the information on how much effort should be focused into improving measurements
of the different input values.

5.4 Plotting the results

Plotting the results is the simplest and, frequently, the fastest way to evaluate model performance.
Plots may reveal the accuracy of the simulation, illustrate the behavior of the model components
and eventually lead to the identification of important model components. The type of plot and
the information on it depends on which of the model evaluation is being considered (accuracy of
the simulation, behavior of the model components, or importance of model components).
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5.4.1 Plots to reveal the accuracy of the simulation

These plots should include the measured and simulated values, usually presented on the same
plot, thus allowing for differences to be clearly highlighted and not hide by changes in the axes,
etc. There are two main ways in which results are commonly presented: (i) simulated values
plotted against measured values, and (ii) simulated and measured values plotted against some
other variable that is used in the model.

Simulated values can be plotted on the y-axis against measured values on the x-axis; the
accuracy of the simulation is revealed by the proximity of the points to the 1.1 line. Such plots (i)
highlight outliers, (ii) reveal any systematic shift in the simulated values with respect to measures
values, and (iii) show differences in the trends in simulated and measured values.

Simulated and measured values can both be plotted on the y-axis against some other variable
on the x-axis. This representation allows patterns in errors to be identified (e.g., shifts in time
with respect to measures values, possibly indicating the rate of some process to be too slow).
This type of plot (e.g., Fig. 5.1) can help to identify why a model is performing badly.

Figure 5.1: Examples on how plots can reveal patterns in errors: (a) simulated values showing a
forward shift in time; (b) simulated values showing an upward shift with respect to measured
values.

If error in the measurements are known, then these should be represented on the plots as
error bars (usually showing the standard error or confidence interval), allowing for the accuracy
of the simulations to be estimated directly just by looking at the plot. If the model is stochastic,
variations in the simulated values should be represented as error bars or a band of potential
results

5.5 Verification and validation

A model can be validated by examining how it performs over a range of conditions compared
to observations of target system. A way to achieve this is by evaluating the ”goodness-of-fit”
between the model and observed values (e.g., coefficient of determination, R2, or chi-squared,
X2); the closer the fit, the more accurate the model.

There are various reasons why the model output may differ from the observations. Among
the main reasons are:
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• Incorrect assumptions made in the conceptual model;
• Errors or inappropriate methods employed in the mathematical model;
• Mistakes or incorrect techniques in the implementation of the computational model;
• Inexact arithmetic (i.e., rounding errors) performed in the computational model;
• Uncertainty or errors in the data used to parameterize the model;
• Errors in the data used to test the model (i.e., measurement error).

5.6 Sensitivity analysis

Sensitivity analysis can be defined as the process of establishing the sensitivity of a model to its
parameters. This analysis focuses attention on the critical parts of a model and the environmental
system that it purports to represent. It is usually performed by perturbing the values of model
parameters by known amounts, measuring the effect these have on the model outputs.

The variation can be made one parameter at a time (OAT); also known as univariate sensitivity
analysis, or instead by multivariate sensitivity analysis techniques (e.g., Monte Carlo simulation
with simple random sampling).
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