Data Coding and Compression: Second Test

Master Program in Electrical and Computer Engineering, IST

Name:

December 16, 2019

Number: _____

Duration: 90 minutes. Part I scores: correct answer = 1 point; wrong answer = -0.5 points.

Potentially useful facts: $e \simeq 2.72$; $\log_e 2 \simeq 0.69$; $\log_{10}(2) \simeq 0.30$; $\log_a b = \frac{\log_c b}{\log_c a}$; $\sum_{i=1}^M i = \frac{M(M+1)}{2}$.

Part I

- 1. Which of the following sequences is the result of applying Lempel-Ziv-Welch (LZW) coding to the sequence "aaaaaa" (assume that the alphabet is $\{a, b, c, d\}$ and that the dictionary indices start at 0)?
 - a) 0,4,5;
 - b) 0,4,4,0;
 □

 c) none of the above.
 □
- 2. Which of the following sequences results from applying a Lempel-Ziv-Welch (LZW) decoder to the sequence 0, 1, 2, 3, 4 (assume that the alphabet is $\{a, b, c, d\}$ and that the dictionary indices start at 0)?
- a) abcda;□b) abcdab;■c) none of the above.□
- 3. Consider an LZW decoder with alphabet $\{a, b, c, d\}$ and with the dictionary indices starting at 0. The decoding of the sequence "1, 4, 5, ..., N" produces a sequence of how many symbols?
 - a) (N-2)(N-1)/2;
 - **b)** (N-1)N/2;
 - c) none of the above.

4. Let $X \in [0, \log_e 2]$ be a random variable (r.v.) with probability density function (p.d.f.) $f_X(x) = e^x$. Then,

- **a)** h(X) < 0;
- **b)** h(X) = 0;
- c) h(X) > 0.

5. Let $X \in \mathbb{R}$ be a r.v. with a Laplacian p.d.f. $f_X(x) = e^{-2|x|}$, which has variance $\sigma_X^2 = 1/2$. Then,

a) $h(X) < \frac{1}{2} \log(\pi e);$ b) $h(X) = \frac{1}{2} \log(\pi e);$ c) $h(X) > \frac{1}{2} \log(\pi e).$ 6. Let $X \in [-1, 1]$ be a r.v. with uniform p.d.f. and Y = |X|. Then,

a) $I(X;Y) = \infty;$ b) $I(X;Y) = \log 2;$ c) none of the previous values.

7. Let $X \in [0,1]$ be a r.v. with uniform p.d.f. and Y = -2X. Then,

a) $I(X;Y) = 0;$	
b) $I(X;Y) = \infty;$	•
c) none of the previous values.	

- 8. Let the r.v. $X \in [-1,1]$ with p.d.f. $f_X(x) = \frac{1}{4}$, if $x \in [-1,0]$, and $f_X(x) = \frac{3}{4}$, if $x \in [0,1]$ be connected to a non-uniform quantizer Q with regions $R_0 = [-1, 0]$, $R_1 =]0, \frac{1}{3}]$, $R_2 =]\frac{1}{3}, \frac{2}{3}]$, $R_3 =]\frac{2}{3}, 1]$. The entropy of the output of the quantizer is
 - a) H(Q(X)) < 2 bits/symbol;
 - **b)** H(Q(X)) = 2 bits/symbol;;
 - c) H(Q(X)) > 2 bits/symbol.
- 9. Let $X \in [-\log_e(2), \log_e(2)]$ be a r.v. with p.d.f. $f_X(x) = \frac{1}{2}e^{|x|}$, connected to a 1-bit uniform quantizer. The optimal representative of the rightmost region R_1 is
 - a) $y_1 < \frac{1}{2} \log_e(2);$ b) $y_1 = \frac{1}{2} \log_e(2);$
 - c) $y_1 > \frac{1}{2} \log_e(2)$.
- 10. Let $X \in [-\log_e(2), \log_e(2)]$ be a r.v. with p.d.f. $f_X(x) = e^{-|x|}$, connected to a 1-bit uniform quantizer. The optimal representative of the rightmost region R_1 is
 - a) $y_1 < \frac{1}{2} \log_e(2);$ b) $y_1 = \frac{1}{2} \log_e(2);$ c) $y_1 > \frac{1}{2} \log_e(2).$
- 11. Let X be the r.v. defined in question 10. Consider a 2-bit quantizer with the following representatives (codebook): $C = \{y_0 = -\frac{1}{2}, y_1 = -\frac{1}{4}, y_2 = \frac{1}{4}, y_3 = \frac{1}{2}\}$, and the following regions: $R_0 = [-\log_e(2), -a], R_1 =] - a, 0], R_2 = [0, a], R_3 =]a, \log_e(2)]$. Which of the following choices of a leads to the lowest mean squared error (MSE)?
 - a) $a = \frac{1}{e};$ b) $a = \frac{1}{2} \log_e(2);$ c) $a = \frac{3}{8}.$
- 12. Let X, the r.v. defined in question 10, be connected to a 2-bit uniform quantizer. According to the high-resolution approximation, the mean squared error (MSE) satisfies
 - a) MSE $\simeq \frac{1}{24} \log_e(2)$; b) MSE $\simeq \frac{1}{48} \log_e(2)$; c) none of the previous answers.
- 13. Let $X \in [-1,2]$ be a uniform r.v. connected to a 1-bit non-uniform quantizer with regions $R_0 = [-1,0]$ and $R_1 = [0,2]$. Then,
 - a) MSE < 1/4;
 - **b)** MSE = 1/4;
 - c) MSE > 1/4.
- 14. Let X be the r.v. defined in question 13, which, if connected to a 3-bit uniform quantizer, leads to a signal-tonoise ratio (SNR = 10 log₁₀(σ_X^2 /MSE)) of SNR \simeq 18 dB. For a 4-bit uniform quantizer,

a) SNR $\simeq 21 \text{ dB};$	
b) SNR $\simeq 24 \text{ dB};$	•
c) none of the previous answers.	

Part II

a) Let $X \in [-\log_e(2), \log_e(2)]$ be a r.v. with p.d.f. $f_X(x) = e^{-|x|}$, connected to a 2-bit non-uniform quantizer with the following regions: $R_0 = [-\log_e(2), -\log_e(\frac{4}{3})], R_1 =] -\log_e(\frac{4}{3}), 0], R_2 =]0, \log_e(\frac{4}{3})]$, and $R_3 =]\log_e(\frac{4}{3}), \log_e(2)]$. Compute the entropy of the output of the quantizer.

Advice: draw the density and the regions before answering the question.

b) Consider a r.v. $Y \in [-1, 1]$ with the following density: $f_Y(y) = \frac{1}{4}$, for $y \in [-1, 0]$ and $f_Y(y) = \frac{3}{4}$, for $y \in]0, 1]$. Let this r.v. be connected to a 1-bit non-uniform quantizer with regions $R_0 = [-1, \frac{1}{2}]$ and $R_1 =]\frac{1}{2}, 1]$. Find the optimal representatives of these two regions. Is this an optimal quantizer?

Advice: draw the density and the regions before answering the question.

c) Consider a r.v. $Z \in [-1, 1]$ with uniform density connected to a *R*-bit uniform quantizer. What is the minimum value of *R* that guarantees that SNR ≥ 59 dB.