

Exercise 3

Risk Pooling Game

Mafalda Ivo de Carvalho

Dep. of Engineering and Management

Instituto Superior Técnico

Lisbon, Portugal

IST – Lisbon

SCM/IST

One of the most important concepts in SC: Risk Pooling

Risk Pooling: Involves the use of centralized inventory to take advantage of the fact that if demand is higher than average at some retailers, it is likely to be lower than average at others.

Objectives

Risk Pooling Game shows:

- I) Risk pooling concept
- 2) Advantages of centralized inventory management
- 3) Risk pooling under different demand conditions

Risk Pooling Game simulates:

A centralized inventory system, where a single warehouse serves three different retailers

VS.

A decentralized system where three retailers maintain separate inventory and are served by a supplier separately.

Run setup file and install the game!

Note that before playing each round of the game, you will need to initialize the game. We found that resetting will not initialize the game and you will need to exit the game each time before commencing a new round.

Play the Game

Play the Game

Play the Game

©Ana Póvoa & Ana Carvalho2019

b) Run the game for 30 weeks knowing that the average demand is 25 units and the standard deviation is equal to 10 units. Record the profit values for the centralized and the decentralized supply chains for every week. Plot the profit VS the number of weeks for centralized and decentralized supply chain (use the same plot for both supply chains). What can be concluded from the analysis of this plot?

Price = 20€

• Costs:

- Holding Cost = 1,5€
- Material Cost = 10€
- Average demand = 25 units
- Standard deviation = 10 units

Demand is not back ordered! Demand that cannot be met is lost!!

Goal in both SCs: Maximize profit

© Ana Póvoa & Ana Carvalho 2019

Step I: Press the Start Round button

The inventory is advanced

10 SCM/IST

SCM/IST

11

IST – Lisbon

2019

© Ana Póvoa & Ana Carvalho

Step 2: Place Orders

Demand Calculation: Example for the 1st retailer:

Centr SC: 36 (initial inventory at ret) + 36 (inventory arrived at ret from 1) – Demand = 44 (final inventory at ret)

Decentr SC: 34 (initial inventory at ret) + 34 (inventory arrived at ret from 1) – Demand = 40 (final inventory at ret)

----- Demand = 28

Step 3: Repeat until completing the 6 weeks required

Play the Game – Discussion b)

Profit variation during the 30 Weeks

- Higher profit in the centralized SC
- As the time passes the gap between the profits is higher

c. How can you explain the decrease of profit in some weeks? (Plot demand profile VS the number of weeks for 16 weeks. On the menu bar go to *Reports -> Demands* and take the demand profile for the three retailers).

х 🕂 The Risk Pool Game Reports Help File Play larehouse Orders Rev: 0 Demands 2 COGS: 0 4 36 36 36 Inventory: 0 Holding: 0 85 36 85 36 Profit: 0 36 Fill Rate: 36 36 36 Period – 0 Supplier Warehouse Retailers Decentralized Retailers Rev: 0 34 34 34 34 COGS: 0 34 Holding: 0 Profit: 0 34 34 34 34 34 Fill Rate: 34 34 34 34 34 Start Round Retailers Supplier

To see the demand profile

© Ana Póvoa & Ana Carvalho

SCM/IST

d. Evaluate how profit of the firms varies under different demand conditions in different markets.

Profit data should be recorded for 30 weeks. Compare the results.

Run no.	Demand Correlation	Mean demand	Standard Deviation of demand
	Strongly Positive	25	10
2	Strongly Positive	25	15
3	Strongly Positive	25	5
4	Independent	25	10
5	Independent	25	15
6	Independent	25	5
7	Strongly Negative	25	10
8	Strongly Negative	25	15
9	Strongly Negative	25	5

Run no.	Demand Correlation	Mean demand	Standard Deviation of demand
	Strongly Positive	25	10
2	Strongly Positive	25	15
3	Strongly Positive	25	5
4	Independent	25	10
5	Independent	25	15
6	Independent	25	5
7	Strongly Negative	25	10
8	Strongly Negative	25	15
9	Strongly Negative	25	5

IST – Lisbon

SCM/IST

20

Random Demand Parameters				
Demand Correlation None Strong Negative Positive				
Reset				
Mean: 25 Standard Deviation: 10				
OK Cancel Help				

© Ana Póvoa & Ana Carvalho

2019

Positively correlated demand If one retailer has demand greater than average, demand from another retailer is likely to be greater than average

Negatively correlated demand If one retailer has demand higher than average, demand from another retailer is likely to be lower than average

IST – Lisbon

Strongly positively correlated demand: Increase variability

Play the Game – Discussion c)

Independent demand: Increase variability

IST – Lisbon

Strongly negatively correlated demand: Increase variability

2019

Same demand variability: Different types of market correlation

SCM/IST

Conclusions

- The Risk Pooling Game shows the effectiveness of centralization of inventory under certain conditions.
- Risk pooling is most effective when demands across markets are strongly negatively dependent. Risk pooling is less effective when the markets are strongly positively dependent.
- When the demand variability is high, risk pooling effect is higher and consequently it is better to adopt a centralized SC (gap between centralized SC and decentralized SC is higher).