SISTEMAS DE RADAR PROBLEMAS

Capítulo 5: Radares de seguimento

1. Considere uma antena de um radar de seguimento (STT-single target tracker) com um diagrama de radiação com lobo principal cujo ganho pode ser aproximado por

$$G(\theta) = G_0 e^{-2.78 \left(\frac{\theta - \theta_c}{\theta_B}\right)^2}$$

com $\theta_B = 5^\circ$ (largura de feixe a meia potência). Admita se usa a técnica de lobos sequenciais, centrados sucessivamente em $\theta_{c1} = \theta_0 + \theta_s$ e $\theta_{c2} = \theta_0 - \theta_s$, e que o detetor usado é quadrático. Considere os ângulos de squint de $\theta_s = 1, 2, 3$ e 4° , represente graficamente a variação da diferença de amplitude de ecos sucessivos de um alvo localizado em $\theta = \theta_0 + \theta_a$ para θ_a i entre $\theta = \theta_o$. Estime o valor ótimo de θ_s/θ_B do ponto de vista da sensibilidade ao seguimento (tracking).

2. Um radar STT realiza tracking numa coordenada utilizando a técnica de lobos sequenciais na receção, sendo o ganho descrito por

$$G(\theta) = G_0 \left(\frac{2J_1(ka \sin \theta)}{ka \sin \theta} \right)^2$$

onde θ é o ângulo contado a partir da direção de máximo, a=1.25~m é a dimensão linear da antena, $k=2~\pi/\lambda$, e $f=2.5~\mathrm{GHz}$.

- a) Obtenha "squint" que corresponde a um "cross-over" de 1.5 dB abaixo do máximo e compare-o com a largura de feixe a – 3dB.
- b) Estime a sensibilidade ao erro angular admitindo que a saída do canal diferença é proporcional a $\frac{1}{G_0} \left(\frac{\partial G}{\partial \theta} \right)_{\theta = \theta_c}$

Nota	
X	$\left(2J_1(x)/x\right)^2$
0	1
1	0.775
1.16	0.707
1.62	0.5

- 3. Considere um radar monopulso de comparação de fase a funcionar em *3 GHz* com antenas com centros de fase separados de *2m*. Nos circuitos de seguimento usamse os canais soma e diferença.
 - a) Determine o ângulo que corresponde a -3 dB na relação entre as amplitudes do canal diferença e do canal soma.
 - b) Determine o desvio angular correspondente a uma diferença de fase de $\pi/2$, π e 2π e comente.
- 4. Estime a gama de valores angulares em que pode estar a posição aparente de um alvo constituído por dois refletores pontuais nas seguintes condições:
 - refletores separados geometricamente de 0.5° vistos da antena de radar
 - amplitudes relativa do campo E refletido 0.5:1

Represente graficamente a posição aparente do alvo em função da diferença de fase do campo refletido por cada um dos refletores pontuais.

- 5. Considere um STT que usa varrimento cónico com as seguintes características:
 - o lobo principal de radiação é simétrico e tem uma largura de feixe de $\theta_B = 1.5^{\circ}$,
 - o "squint" do varrimento foi optimizado,
 - a duração dos impulsos é de 1 μs,
 - a largura de banda do receptor é de 0.5 MHz,
 - uma passagem do feixe (scan) permite integrar 10 impulsos.

Obtenha os valores mínimos da relação SNR no receptor que permitem o seguimento angular com um erros inferiores a 0.1° e a 0.01° .