

Physical

- Physical models
 - Scaling of models (Reynolds number inequality)
 - Boundary Conditions
 - Turbulent versus Laminar flow (forced transition)
- Measuring instruments
 - Accuracy
 - Post-processing

- Mathematical models
 - Modelling assumptions
 (ideal fluid, boundary-layer, Reynolds averaging, turbulence model,...)
- Numerical Solutions
 - Numerical Errors
 - Post-processing

- Numerical Error
 - Round-off error Finite precision of computers
 - Iterative error Non linear equations, deferred corrections, iterative solvers...
 - Discretization error Geometrical approximations, differentiation, integration...

- Round-off error
 - It is not possible to determine the exact round-off error because that would require a machine with infinite precision
 - Comparison of single, double (or quadruple) precision gives a good estimate of the importance of the iterative error
 - Ill-conditioned problems may be dominated by the iterative error

- Round-off error
 - Polynomial interpolation of order N_{pol} $y = a_1 + a_2 x + a_2 x^2 + ... + a_{N_{pol}+1} x^{N_{pol}}$

Functions $y = \sin(\pi x/2)$ and $y = \ln(x+1)$ in the interval 0 < x < 1

- N_{pol} +1 points with equidistant grid nodes define a system of N_{pol} +1 algebraic equations
- Maximum interpolation error calculated in the middle of the points that define the polynomial

• Round-off error

Masters of Mechanical Engineering

- Iterative error
 - Non-linearity of the equations
 - Segregated solutions (turbulence model solved separately from momentum balance)
 - Defered corrections in the discretization procedure (first-order upwind implicit and second-order corrections in the right-hand side)
 - Iterative method in the solution of the linear systems of equations

- Iterative error
 - Minimum level of iterative error is the round-off error
 - A good approximation of the iterative error may be obtained if a given solution is converged to machine accuracy (exact solution for the determination of the iterative error changes with grid refinement)
 - Iterative error is not necessarily equal to change between consecutive iterations or (normalized) residuals

- Iterative error
 - Example for the solution of two non-linear equations:

$$f_1(x) = \ln(x^2 + 1)\sqrt{x^2 + 1} - x\exp(x) = 0$$

$$f_2(x) = \ln(x^2 + 1)\sqrt{x^2 + 1} - x\exp(x) + x\cos(x) = 0$$

- Both equations have an exact solution at x = 0
- Solutions obtained with an initial guess $x_0 = 1$ with two methods:
 - a) Newton-Raphson
 - b) Fixed point iteration

- Iterative error
 - Newton-Rahpson

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}, \ |\Delta x| = \left|\frac{f(x_i)}{f'(x_i)}\right|, \ \operatorname{Res} = |f(x_{i+1})|, \ e_{it} = |x_{i+1}|$$

- Fixed point iteration

$$f_1(x) = 0 \Longrightarrow x_{i+1} = \ln(x_i^2 + 1)\sqrt{x_i^2 + 1} / \exp(x_i)$$

$$f_2(x) = 0 \Longrightarrow x_{i+1} = \left(\ln(x_i^2 + 1)\sqrt{x_i^2 + 1} + x_i\cos(x_i)\right) / \exp(x_i)$$

- Monitoring iterative convergence

$$|\Delta x| = |x_{i+1} - x_i|$$
, Res = $|f(x_{i+1})|$, $e_{it} = |x_{i+1}|$

Masters of Mechanical Engineering

- Discretization error
 - Consequence of the transformation of the continuum equation(s) into a system of algebraic equations
 - It may have a geometric component, which may even be the dominant contribution in domains bounded by surfaces with high curvature
 - Usually, it is the main contribution to the numerical error

- Discretization error
 - Can only be determined with the knowledge of the exact solution
 - Tends to diminish with the increase of the number of degrees of freedom (grid refinement)
 - Estimate of the discretization error may be obtained from grid refinement studies
 - Iterative and round-off errors should be negligible when compared to the discretization error