Astronomical

measures

Introduction to observational astronomy Laboratory of Astrophysics

Distance measures

- Astronomical unit (AU): distance between Earth and Sun
- Light-year (lyr): distance of light traveling for a year ($9.5 \times 10^{12} \mathrm{~km}$)
- Parsec (pc): 3.26lyr

Distance to Andromeda, closest spiral galaxy: $800 \mathrm{kpc}=0.8 \mathrm{Mpc}$

Distance measurement

- Trigonometric Parallax:

$$
\tan p=\frac{1 A U}{d}
$$

> Proxima Centauri (star closest to the Sun)

$$
p=\frac{1}{d}=0.77^{\prime \prime}
$$

> HD46150 in the cluster NGC 2244 (Rosette Nebula)

$$
p=0.6263 \mathrm{mas} \quad d \approx 1600 \mathrm{pc}
$$

Distance measurement

- Trigonometric Parallax:

$$
\tan p=\frac{1 A U}{d}
$$

- Standard candles: objects with same intrinsic luminosity

Supernovae of type la, Variable stars: RR Lyrae, Cepheids....

Distance ladder

Use of consecutive methods/standard candles calibrated with more nearby ones to reach larger distances

Luminosity \& Brightness

- Luminosity: radiated electromagnetic power [$\mathrm{J} / \mathrm{s}=\mathrm{W}$]
- Luminosity of the Sun: $\mathrm{L}_{\odot}=3.83 \times 10^{26} \mathrm{~W}$
- Apparent brightness: brightness of object reaching an observer

$$
F=\frac{L}{4 \pi d^{2}}\left[\frac{W}{m^{2}}\right]
$$

Stellar luminosities

Stars have large luminosity range:

$$
10^{-4}-10^{6} L_{\odot}
$$

Proxima Centauri
red dwarf
$\mathrm{d}=1.3 \mathrm{pc}$
mass $=0.12 \mathrm{M}_{\text {。 }}$
$\mathrm{L}=0.0017 \mathrm{~L}$ 。

$$
\begin{aligned}
& \text { Betelgeuse (} \alpha \text { Orionis) } \\
& \text { red supergiant } \\
& d=220 \mathrm{pc} \\
& \text { mass } \approx 12 \mathrm{M}_{\odot} \\
& \mathrm{L} \approx 120,000 \mathrm{~L}_{\odot}
\end{aligned}
$$

Magnitude scale

- Unit-less measure of brightness
- Inverted Logarithmic scale: brighter have smaller values

- Vega has m=0
- Apparent magnitude (m): brightness of object as it appears to us, but this is affected by intrinsic luminosity, distance and extinction
- Absolute magnitude (M): intrinsic luminosity of object defined to be at 10 parsecs

$$
M=m-5 \log _{10}\left(\frac{d}{10}\right)
$$

Magnitude scale

- Distance modulus:

$$
\mu=m-M=5 \log _{10}\left(\frac{d}{10}\right)
$$

Star	$\mathbf{m}_{\mathbf{V}}$		$\mathbf{M}_{\mathbf{V}}$	Distance (pc)
Sun	-26.81	4.76	$4.85 e-6$	
Proxima Cen	11.1	15.6	1.3	
Betelgeuse	0.5	-5.85	220	
Sirius A	-1.46	1.42	2.6	

Extinction

- Extinction: absorption of light by dust
- Distance modulus corrected by extinction:

$$
\mu=m-M=5 \log _{10}\left(\frac{d}{10}\right)+A
$$

Surface brightness

- Important for extended sources vs point sources
- Surface brightness: brightness (surface) density [mag/arcsec${ }^{2}$]

V-band surface brightness:

- Orion:

17 mag/arcsec ${ }^{2}$

- Andromeda:

14-18.0 mag/arcsec ${ }^{2}$

- M101:
25.1 mag/arcsec ${ }^{2}$

Stellar colors

Central part of the Omega Cen globular cluster (HST)

Stellar colors: surface temperature

- Color is directly related to the surface temperature
- Cool stars are red, hot stars are blue
- Betelgeuse: 3400K
- Rigel: 10100 K
- To a first approximation, stars emit as black bodies
- Wien's law

$$
\lambda_{\max } T=0.290 \mathrm{~cm} \mathrm{~K}
$$

Stefan-Boltzmann equation

- Stars are not perfect black bodies
- Effective temperature ($\mathrm{T}_{\text {eff }}$): temperature of blackbody with same integrated surface flux as star
- Sun: $T_{\text {eff }}=5777 K \quad \lambda_{\max }=501.6 \mathrm{~nm}$

Color in astronomy

- In practice, astronomers observe with different passbands or filters

Color index
$U-B=m_{U}-m_{B}$
$B-V=m_{B}-m_{V}$
A star with a smaller ($B-V$) color index is bluer than the one with higher ($\mathrm{B}-\mathrm{V}$)

Typical optical filters:
UBVRI, ugriz

- Bolometric magnitude: magnitudes over all wavelengths

Color in astronomy

- Stars are not perfect blackbodies

Example 1

A. What is the flux that the Earth receives from the Sun?
B. What would be the flux from the Sun if it its distance were 10 pc ?

Example 1
A. What is the flux that the Earth receives from the Sun?
B. What would be the flux from the Sun if it its distance were 10 pc ?

$$
\begin{aligned}
& F=\frac{L}{4 \pi r^{2}}=\frac{3.828 \cdot 10^{33} \mathrm{ergs}^{-1}}{4 \pi\left(1.496 \cdot 10^{13} \mathrm{~cm}\right)^{2}}= \\
& =1.36 \cdot 10^{6} \mathrm{ergcm}^{-2} \mathrm{~s}^{-1} \quad \frac{F_{1 A U}}{F_{10 \mathrm{PC}}}=\frac{\frac{L}{4 \pi r_{1}^{2}}}{\frac{L}{4 \pi r_{2}^{2}}}=\frac{r_{2}^{2}}{r_{1}^{2}}{ }^{10 \mathrm{pc}} \\
& =\left(\frac{2062650 \mathrm{AV}}{1 \mathrm{AV}}\right)^{2}-4.25 \cdot 10^{12} \\
& F_{10 p C}=\frac{F_{1 \Delta v}}{4.25 \cdot 10^{12}}=\frac{1.36 \cdot 10^{6}}{4.25 \cdot 10^{12}} \operatorname{erg} \mathrm{~s}^{-1} \mathrm{om}^{-2}= \\
& =3.2 \cdot 10^{-7} \operatorname{ergs}^{-1} \mathrm{am}^{-2}
\end{aligned}
$$

Example 2

The apparent magnitude of the Sun is $m_{\odot}=-26.81$
A. What is its absolute magnitude?
B. What would be the magnitude of the Sun if it were located at the center of the Milky Way?
(Assume the distance to the center is 8 kpc and no extinction).

Example 2

The apparent magnitude of the Sun is $m_{\odot}=-26.81$
A. What is its absolute magnitude?
B. What would be the magnitude of the Sun if it were located at the center of the Milky Way?
(Assume the distance to the center is 8 kpc and no extinction).

$$
\begin{array}{rlrl}
m-M=5 \log \left(\frac{d}{10 p c}\right) & d & =8 \mathrm{kpc} \\
M & =m-5 \log \left(\frac{d}{10 p c}\right)= & m & =M+5 \log \frac{d}{10 p c}= \\
=-26.81-5 \cdot \log \left(\frac{4.847 \cdot 10^{-6}}{10}\right)=4.76 & & =4.76+5 \log (800)= \\
& & =19.3 \mathrm{mag}
\end{array}
$$

Example 3

A star consists of a spherical blackbody with the following surface temperature and radius:
$r=5.6 \times 10^{11} \mathrm{~cm}, T_{\text {eff }}=28000 \mathrm{~K}$
The latest measurement of the distance is $d=163 p c$.
Determine:
a) Luminosity
b) Absolute bolometric magnitude
c) Apparent bolometric magnitude
d) Flux at Earth's surface
e) Flux at star's surface
f) Peak wavelength $\lambda_{\text {max }}$

Example 3

$r=5.6 \times 10^{11} \mathrm{~cm}, T_{\text {eff }}=28000 \mathrm{~K}, \mathrm{~d}=163 \mathrm{pc}$
a) Luminosity

$$
\begin{aligned}
& \text { Stefan-Bottemanneq. } \quad 1 L 0=3.828 .10^{26} \mathrm{~W} \\
& L=4 \pi R^{2} \sigma T_{\text {eff }}^{4}=1.17 \cdot 10^{31} \mathrm{~W}=30564 L_{0} \\
& \mathrm{~L}_{\rightarrow 5.6754 \cdot 10^{-3} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}}
\end{aligned}
$$

Example 3

$$
\mathrm{r}=5.6 \times 10^{11} \mathrm{~cm}, \mathrm{~T}_{\text {eff }}=28000 \mathrm{~K}, \mathrm{~d}=163 \mathrm{pc}
$$

b,c) Absolute/apparent magnitude

$$
\frac{F_{1}}{F_{2}}=100(\underbrace{\left(m_{2}-m_{1}\right) / 5}_{\text {apparent mag. }}
$$

$$
\begin{aligned}
& \text { if we swat th to abs. mag: } \\
& \frac{L_{1}}{L_{2}}=100^{\left(M_{2}-M_{1}\right) / 5} \rightarrow \begin{array}{c}
F=\frac{L}{4 \pi r^{2}} \\
\text { distance }
\end{array} \\
& \frac{L_{1}}{L_{2}}=10^{\frac{2}{5}\left(M_{2}-M_{1}\right)} \Rightarrow M_{\sqrt{50}}=M_{2}-25 \log \frac{L_{1}}{L_{2}} \\
& M_{\delta S_{C O}}=4.74-2.5 \cdot \log (30564)=-6.47 \mathrm{mag} \\
& m_{\delta S C O}=M_{\delta S C_{C O}}+5 \log \left(\frac{d}{10 p c}\right)=-6.47+5 \log \left(\frac{163}{10}\right)=-0.41 \mathrm{mag}
\end{aligned}
$$

Example 3

$$
r=5.6 \times 10^{11} \mathrm{~cm}, T_{\text {eff }}=28000 \mathrm{~K}, \mathrm{~d}=163 \mathrm{pc}
$$

d,e) Flux at Earth's and star's surface

$$
\left.\begin{array}{l}
F_{E}=\frac{L}{4 \pi d^{2}}=\frac{1.17 \cdot 10^{31} \mathrm{~W}}{4 \pi \cdot\left(163 \cdot 3.086 \cdot 10^{16} \mathrm{mu}\right)^{2}}=37 \cdot 10^{-8} \mathrm{wm}^{-2} \\
L=4 \pi R^{2} \sigma T_{e f f}^{4} \\
F=\frac{L}{4 \pi r^{2}}
\end{array}\right\} \begin{gathered}
\text { at star's surgace } \\
R=r \quad \Rightarrow .6704 \cdot 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}
\end{gathered} \Rightarrow F=\sigma T^{4}=3.48 .10^{10} \mathrm{wm}^{-2} 4 . \begin{aligned}
& \text { R }
\end{aligned}
$$

Example 3

$$
r=5.6 \times 10^{11} \mathrm{~cm}, \mathrm{~T}_{\text {eff }}=28000 \mathrm{~K}, \mathrm{~d}=163 \mathrm{pc}
$$

f) Peak wavelength

$$
\begin{aligned}
\lambda_{\max }=\frac{0.29 \mathrm{cmK}}{28000 \mathrm{~K}}=1.036 \cdot 10^{-5} \mathrm{~cm} & =103.6 \mathrm{~nm} \\
& U V \text { range }
\end{aligned}
$$

