Software Engineering
@ LEIC/LETI

Requirements Engineering



Requirements
—ngineering

no man’s land



Understand what
needs to be solved




becames

Problem susamms Solution EREEEE Problem sasms Solutio




Ihe scope



the solution from the problem from
the user perspective the developers perspective

User S R System

Requirements " g Requirements [N

The Problem Space



User Requirement Definition

1. The MHC-PMS shall generate monthly management reports showing
the cost of drugs prescribed by each clinic during that month.

System Requirements Specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost, and the prescribing clinics shall be generated.

1.2 The system shall automatically generate the report for printing after
17.30 on the last working day of the month.

1.3 Areport shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed, and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g., 10 mg, 20 mg)
separate reports shall be created for each dose unit.

1.5 Access to all cost reports shall be restricted to authorized users listed
on a management access control list.

(Fig 4.1, Sommerville)



Client Managers
System End-Users

R uli}rs::-,ens Client Engineers
- Contractor Managers
System Architects

System End-Users
System Client Engineers

Requirements System Architects

Software Developers

:

(Fig 4.2, Sommerville)



Functional and
Non-functional
Requlirements

system behaviour and its constraints



create an account

transactions should
execute in less than | second

process an adventure

system is unavailable 5
minutes per day maximum

only authorized users
can use the system



s Login functional
or non-functional”



External
Requirements

Product
Requirements

Organizational

Requirements

Non-Fundional
Requirements

Efficiency Dependability Security Regulatory Ethical
Requirements Requirements Requirements Requirements Requirements
Usability Environmental Operational Development Legislative
Requirements Requirements Requirements Requirements Requirements
Performance Space Accounting Safety/Security
Requirements Requirements Requirements Requirements

(Fig 4.3, Sommerville)




PRODUCT REQUIREMENT
The MHC-PMS shall be available to all clinics during normal working hours (Mon-Fri, 08.30-17.30). Downtime

within normal working hours shall not exceed five seconds in any one day.

ORGANIZATIONAL REQUIREMENT
Users of the MHC-PMS system shall authenticate themselves using their health authority identity card.

EXTERNAL REQUIREMENT
The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.

(Fig 4.4, Sommerville)



Property Measure

Speed Processed transactions/second
User/event response time
Screen refresh time

Size Mbytes

Number of ROM chips
Ease of use Training time

Number of help frames
Reliability Mean time to failure

Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure

Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

(Fig 4.5, Sommerville)



complete
consistent
measurable

Qualities of
Requirements



S It easy to achieve
the qualities aimed
for requirements’



Completeness

do they capture all relevant aspects



Consistent

different stakeholders
security vs availability



Vieasuraple

the system should resist attacks



Software
Requirements
Document



System
Customers

Spedify the requirements and
read them to check that they
meet their needs. Customers
specify changes to the
requirements.

Managers

Use the requirements
document to plan a bid for
the system and to plan the
system development process.

System
Engineers

Use the requirements to
understand what system is
to be developed.

System
Test Engineers

aad

Use the requirements to
develop validation tests for
the system.

System
Maintenance
Engineers

Use the requirements to
understand the system and
the relationships between

its parts.

(Fig 4.16, Sommerville)



Chapter Description

Preface This should define the expected readership of the document and describe its
version history, including a rationale for the creation of a new version and a
summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the
system’s functions and explain how it will work with other systems. It should
also describe how the system fits into the overall business or strategic
objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should not
make assumptions about the experience or expertise of the reader.

User requirements Here, you describe the senvices provided for the user. The non-functional

definition system requirements should also be desaribed in this section. This

description may use natural language, diagrams, or other notations that are
understandable to customers. Product and process standards that must be
followed should be specified.

System architecture This chapter should present a high-level overview of the antidpated system
architecture, showing the distribution of functions across system modules.
Architectural components that are reused should be highlighted.

System requirements This should describe the functional and non-functional requirements in more
specification detail. If necessary, further detail may also be added to the non-functional
requirements. Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between

the system components, the system, and its environment. Examples of possible
models are objedt models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is
based, and any anticipated changes due to hardware evolution, changing
user needs, and so on. This section is useful for system designers as it may
help them avoid design dedsions that would constrain likely future changes
to the system.

Appendices These should provide detailed, spedfic information that is related to the
application being developed; for example, hardware and database descriptions.
Hardware requirements define the minimal and optimal configurations for the
system. Database requirements define the logical organization of the data used
by the system and the relationships between data.

(Fig 4.17,
Index Several indexes to the document may be induded. As well as a normal :
alphabetic index, there may be an index of diagrams, an index of functions, Som mervil |e)

and so on.



How to describe
requirements’



Notation Description

Natural language sentences The requirements are written using numbered sentences in natural
language. Each sentence should express one requirement.

Structured natural language The requirements are written in natural language on a standard form or
template. Each field provides information about an aspect of the
requirement.

Design desaiption languages This approach uses a language like a programming language, but with

more abstract features to spedfy the requirements by defining an
operational model of the system. This approach is now rarely used
although it can be useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define
the functional requirements for the system; UML use case and sequence
diagrams are commonly used.

Mathematical spedfications These notations are based on mathematical concepts such as finite-state
machines or sets. Although these unambiguous specifications can reduce
the ambiguity in a requirements document, most customers don't
understand a formal specification. They cannot check that it represents
what they want and are reluctant to accept it as a system contract.

what about test cases?

(Fig 4.11, Sommerville)



natural language

3.2 The system shall measure the blood sugar and deliver insulin, if required, every 10 minutes. (Changes in
blood sugar are relatively slow so more frequent measurement is unnecessary; less frequent measurement
could lead to unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with the conditions to be tested and the associated
actions defined in Table 1. (A self-test routine can discover hardware and software problems and alert the user
to the fact the normal operation may be impossible.)

(Fig 4.12, Sommerville)



structured natural language

Insulin Pump/Control Software/SRS/3.3.2

Function
Description

Inputs
Source
Outputs
Destination
Action

Requirements
Pre-condition

Post-condition
Side effects

Compute insulin dose: Safe sugar level.

Computes the dose of insulin to be delivered when the current measured sugar level is in
the safe zone between 3 and 7 units.

Current sugar reading (r2), the previous two readings (r0 and r1).
Current sugar reading from sensor. Other readings from memory.
CompDose—the dose in insulin to be delivered.

Main control loop.

CompDose is zero if the sugar level is stable or falling or if the level is increasing but the
rate of increase is decreasing. If the level is increasing and the rate of increase is
incareasing, then CompDose is computed by dividing the difference between the current
sugar level and the previous level by 4 and rounding the result. If the result, is rounded to
zero then CompDose is set to the minimum dose that can be delivered.

Two previous readings so that the rate of change of sugar level can be computed.
The insulin reservoir contains at least the maximum allowed single dose of insulin.
r0 is replaced by r1 then r1 is replaced by r2.

None.

(Fig 4.13, Sommerville)



tabular specification

Condition Action

Sugar level falling (r2 <r1) CompDose = 0
Sugar level stable (r2 = r1) CompDose = 0
Sugar level increasing and rate of inaease CompDose = 0

deaeasing ((r2 —r1) < (r1 — r0))

Sugar level increasing and rate of increase stable or CompDose = round ((r2 — r1)/4)

increasing ((r2 —r1) = (r1 — r0)) If rounded result = 0 then
CompDose = MinimumDose

(Fig 4.14, Sommerville)



graphical notation

Register
Patient

Export
Statistics
Generate

Report

X

Medical Receptionist

X

Nurse

View
Personal Info.

View
Record
~& 7>

Record

Setup
Consultation

(Fig 4.15, Sommerville)



formal specification

SUGAR_OK

r2 = safemin A r2 < safemax

// sugar level stable or falling

r2 <rl = CompDose =0

v

// sugar level increasing but rate of increase falling
r2>r11 A (r2-r1) < (r1-r0) => CompDose = 0

v

// sugar level increasing and rate of increase increasing compute dose
// @ minimum dose must be delivered if rounded to zero

r2>r1 A (r2-r1) = (r1-r0) A (round ((r2-r1)/4) =0) =
CompDose = minimum_dose
v
r2>11 A (r2-r1) = (r1-r0) A (round ((r2-r1)/4) > 0) =
CompDose = round ((r2-r1)/4)

what is the difference from

a tabular specification!? wait for Dafny

and see ;)



Requirements
Engineering Process



Requirements
Specification

System Requirements
Specification and
Modeling

User Requirements
Spedfication

Business Requirements
Spedification

Start
oot 2 Feasibility
em
Requirements Y;eq. Study Requirements
Elicitation Elicitation User Validation
Requirements )
Elicitation Prototyping
Reviews

(Fig 4.6, Sommerville)

System Requirements
Document



Requirements
clicitation and Analysis



Interviewing

1. Requirements
Discovery

4. Requirements
Specification

2. Requirements
Qassification and
Organization

3. Requirements
Prioritization and
Negotiation

(Fig 4.7, Sommerville)

ethnography

stories

scenarios



Requirements
Validation



TYPES

validity checks (real needs)

consistency checks

completeness checks

realism checks

verifiability (measure)

Inttial
Understanding
of Problem

Understanding

|

Changed

of Problem

Initial
Requirements

‘ Changed

Requirements

(Fig 4.18, Sommerville)

=

" VALIDATION

reviews

prototyping
test-case generation



Requirements
Management



~lanning

identification

large number change management

of requirements traceability
tool support



Identified Revised
Problem Problem Analysis and Change Analysis Change Requirements
™| Change Spedification and Costing Implementation

=

(Fig 4.19, Sommerville)

Reqguirements
Change Management



value
stories and
dimension

Agile Requirements

product backlog can be changed

sprint backlog preserve goal



Complete
specifications are not
always possible

¢ S,P,and E systems ?



| ehman’s Law



Different classitications
of software systems



In S-systems the problem
s formally defined

math library



Implement the
specification



P-systems implement a
model of the problem

chess game



Define the abstraction
and Implement It



E-systems Implements a
model of the problem, which
becomes part of the reality

automated stock trading



Define the abstraction,
implement It
and ...
change the worlo



The impact of Lehman’s
Law on
Requirements Engineering”?

the requirements are a model of reality

and models change



