
Chapter 3

Examples of mehatroni

systems and signals

Toυ̂ δὲ πoσoυτò µέν 'εστι διω̺ισµένoν, τ ò δὲ συνεξές.

Aristotle (384 BC � †322 BC), Kathegoriai, VI

In this hapter we disuss di�erent types of mehatroni signals and systems,

and present examples of eah.

3.1 Systems

In hapter 1 we have already de�ned system as the part of the Universe we want

to study.

A system made up of physial omponents may be alled a plant. A system Plant

whih is a ombination of operations may be alled a proess. Proess

Example 3.1. WECs, mentioned in Example 1.1, are plants. Figures 3.1, 3.2

and 3.3 show three di�erent WECs; many other suh devies exist.

Figure 3.1: The Pelamis, a �oating near-shore Wave Energy Con-

verter, at Aguçadoura, Portugal (soure: left, Wikimedia; right, DOI

10.1155/2013/186056). Waves ause an angular movement of the several se-

tions of the devie. This movement pumps oil in a losed iruit; high pressure

oil is then used to run a turbine driving a usual rotational generator.
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Figure 3.2: The Arhimedes Wave Swing, a submerged o�shore Wave Energy

Converter before submersion, at Viana do Castelo, Portugal. The devie is �lled

with air whih is ompressed when wave rests pass and expands during wave

troughs. The heaving movement of the AWS upper part moves an eletrial

linear generator.

Figure 3.3: The Pio Power Plant (onluded in 1999, deommissioned in 2018),

an onshore Wave Energy Converter of the Osillating Water Column (OWC)

type (soure: left, WavEC; right, DOI 10.3390/en11112939). In an OWC, the

heaving movement of the water inside a hamber ompresses and expands the

air, whih an �ow in and out the hamber through a turbine designed to always

rotate in the same diretion irrespetive of the sense of the �ow. The turbine

drives a usual rotational generator.
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Figure 3.4: A Panhard & Levassor Type A motorar, the �rst mass produed

ar in the world, driven by the Frenh priest Jules Gavois (1863 � †1946) in
1891 (soure: Wikimedia). This ar still does not have a steering wheel (�rst

introdued in 1894), but only a tiller.

Example 3.2. If we want to study the wave elevation at a ertain onshore

loation as a funtion of the weather on the middle of the oean, we will be

studying a proess.

The variables desribing the harateristis of the system that we are inter-

ested in are its outputs. The variables on whih the outputs depend are the Outputs

system's inputs.

Inputs in the general sense

Example 3.3. An internal ombustion engine motorar (see Figure 3.4) is a

plant. We are usually interested in its position, veloity, and attitude. We also

may want to know the rotation speed of the motor, the temperature of the oil,

the fuel onsumption, or other suh values. All these are outputs. They depend

on the position of the steering wheel, the position of the aelerator and brake

pedals, the gear seleted, the ondition and inlination of the road the ar in

running on, the diretion and speed of the wind, the outside temperature, and

other suh values. These are the inputs. Not all the outputs depend on all the

inputs.

A ontrol system is one devised to make one or more of the system's Control system

outputs follow some referene.

Referene

Example 3.4. An air onditioning (AC) unit (see Figure 3.5) is a mehatroni

system that heats or ools a room to a temperature set by the user. It is

onsequently a ontrol system. The value of the temperature seleted by the

AC user is the referene. The room's temperature is the output of the plant

that has to follow this referene.

Example 3.5. The wind at the loation of a wind turbine is related to the

temperature, the solar exposition, and the atmospheri pressure, among other

variables. This is a proess we annot ontrol. It is not a ontrol system.
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Figure 3.5: A window unit air onditioning system (soure: Wikimedia). There

are many other types of AC units.

For a ontrol system to exist, it must be possible to modify one or more

of the inputs, so as to a�et the desired outputs and thereby ause them to

follow the referene. Suh inputs are alledmanipulated variables or inputs

in the strit sense. The inputs of the system that annot be modi�ed areInputs in the strit sense

alled disturbanes. When studying ontrol systems, it is usual to all simply

Disturbanes

inputs to the inputs in the strit sense, and to all outputs only to the variable

or variables that have to follow a referene.

Example 3.6. In the ase of the OWC from Example 3.1 and Figure 3.3, the

sea waves are disturbanes, sine we annot ontrol them. The rotation speed

of the turbine is an input in the strit sense, sine we an manipulate it (e.g.

varying the resistane of the eletrial generator). If the OWC hamber has

a relief valve, the pressure in the hamber will be also an input, sine we an

hange it opening or losing the relief valve.

Example 3.7. In the ase of the ar from Example 3.3, the positions of the

steering wheel and of the pedals are inputs. If the ar has a manual gear box, the

gear seleted is an input too; if the gear box is automati, it is not. The gusts

of wind are a disturbane, sine we annot modify them. If we are studying the

temperature of the motor of the ar, this will depend on the outside temperature,

whih we annot ontrol and is therefore a disturbane.

A system with only one input and only one output is a Single-Input, Single-

Output (SISO) system. A system with more than one input and more than oneSISO system

output is a Multi-Input, Multi-Output (MIMO) system. It is of ourse possible

MIMO system

to have Single-Input, Multiple-Output (SIMO) systems, and Multiple-Input,

Single-Output (MISO) systems. These are usually onsidered as partiular

ases of MIMO systems.

Example 3.8. Both the OWC of Example 3.1 and the ar of Example 3.3 are

MIMO plants.

Example 3.9. The lever in Figure 3.6 is a SISO system: if the extremities are

at heights x(t) and y(t), and the �rst is atuated, then y(t), the output, depends
on position x(t), the input, and nothing more.
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Figure 3.6: A lever, an example of a linear SISO system without dynamis

(soure: Wikimedia).

Figure 3.7: A Cardan joint, a non-linear mehanial system without dynamis

(soure: Wikimedia).

A system's model is the mathematial relation between its outputs, on theModel

one hand, and its inputs in the general sense (inputs in the strit sense and

disturbanes), on the other.

A system is linear if its exat model is linear, and non-linear if its exat Linear system

Non-linear system

model is non-linear. Of ourse, exat non-linear models an be approximated

by linear models, and often are, to simplify alulations.

Example 3.10. The lever of Figure 3.6 is a linear plant, sine, if its arm lengths

are Lx and Ly for the extremities at heights x(t) and y(t) respetively,

y(t) =
Ly

Lx

x(t). (3.1)

Example 3.11. A Cardan joint (see Figure 3.7) onneting two rotating shafts,

with a bent orresponding to angle β, is a non-linear plant, sine a rotation of

θ1(t) in one shaft orresponds to a rotation of the other shaft given by

θ2(t) = arctan
tan θ1(t)

cosβ
. (3.2)

If β ≈ 0, (3.2) an be approximated by

θ2(t) = arctan
tan θ1(t)

1
= θ1(t). (3.3)

The error inurred in approximating (3.2) by (3.3) depends on how lose cosβ
is to 1. There will be no error at all if the two shafts are perfetly aligned

(β = 0).

Example 3.12. A ar is also an example of a non-linear plant, as any driver

knows.

A system is time-varying if its exat model hanges with time, and time- Time-varying system

invariant otherwise.

Time-invariant system
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Figure 3.8: A �oating OWC (soure: DOI 10.1016/j.energy.2016.06.054).

Example 3.13. An airplane onsumes enormous amounts of fuel. Thus its

mass hanges signi�antly from take-o� to landing. Any reasonable model of a

plane will have to have a time-varying mass. But it is possible to study a plane,

for a short period of time, using an approximation onsisting of a time-invariant

model, as the mass variation is negletable in that ase.

Example 3.14. A drone powered by a battery will not have a similar variation

of mass. It is a time-invariant system (unless e.g. its mass hanges beause it is

a parel-delivering drone).

Example 3.15. WECs an have time-varying parameters due to the e�ets of

tides. This is the ase of the AWS in Figure 3.2, whih is submerged and �xed

to the oean bottom. Consequently, the average height of sea water above it

varies from low tide to high time, even if the sea waves remain the same. Other

WECs are time-invariant, at least with respet to tides. That is the ase of the

�oating OWC in Figure 3.8, whih, preisely beause it �oats, is not a�eted by

tides.

A system has no dynamis if its outputs in a ertain time instant do not

depend on past values of the inputs or on past values of the disturbanes. Oth-

erwise, it is a dynami system. A system without dynamis is alled statiDynami system

system, whih does not mean that it never hanges; it means that, if its inputs

Stati system

do not hange, neither do the outputs.
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Example 3.16. Both mehanial systems in Figures 3.6 and 3.7 have no dy-

namis, sine the output y(t) only depends on the urrent value of the input

u(t). Past values of the input are irrelevant.

Example 3.17. Consider a pipe with a tap (or a valve) that delivers a �ow

rate Q(t) given by

Q(t) = kQf(t) (3.4)

where f(t) ∈ [0, 1] is a variable that tells is if the tap is open (f(t) = 1) or losed
(f(t) = 0). This system is stati. But a tap plaed far from the point where the

�ow exits the pipe will deliver a �ow given by

Q(t) = kQf(t− τ) (3.5)

Here, τ is the time the water takes from the tap to the exit of the pipe. This is

an example of a dynami plant, sine its output at time instant t depends on a

past value of f(t).

A system is deterministi if the same inputs starting from the same initial Deterministi system

ondition always lead to the same output. A system is stohasti if its outputs

Stohasti system

are not neessarily the same when it is subjet to the same inputs beginning

with the same initial onditions, or, in other words, if its output is random.

Example 3.18. The proess from Example 3.5 is stohasti. Even though we

may know all those variables, it is impossible to preisely predit the wind speed.

The same happens with the proess from Example 3.2, and even more so.

Example 3.19. Figure 3.9 shows a laboratory setup to test ontrollers for the

lithography industry (whih produes mirohips with omponents positioned

with preisions of the order of 1 nm). This is a deterministi system. If lithog-

raphy plants and proesses were not deterministi, it would be far more di�ult

to mass produe mirohips.

In this ourse we will only address deterministi, SISO, linear time-invariant

(LTI) systems. LTI systems

3.2 Signals

In hapter 1 we have already de�ned signal as a funtion of time or spae that

onveys information about a system. In other words, it is the evolution with

time or with spae of some variable that onveys information about a system.

Most of the signals we will meet depend on time but not on spae.

Example 3.20. An image given by a amera is a signal that depends on spae,

but not on time. A video is a signal that depends on both spae and time.

Some signals an only take values in a disrete set; they are alled quantised Quantised signal

signals. Others an take values in a ontinuous set; they are alled analogial

Analogial signal

signals.

Example 3.21. Consider a turbine, suh as the turbine in Figure 3.10, of the

Wells type, installed in the Pio Power Plant (shown above in Figure 3.3). Its

rotation speed is real valued; it takes values in a ontinuous set. So the signal

onsisting in the turbine's rotation speed as a funtion of time is an analogial

signal.
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Figure 3.9: Left: preision positioning system used at the Delft University of

Tehnology (soure: DOI 10.1007/s11071-019-05130-2). Coil atuators 1 move

masses 2, whih are onneted through �exures to mass 3, the position of whih

is measured using sensors (enoders) 4. Mass 2 an be positioned with a prei-

sion of 1 µm or less. Right: NASA lean room for lithography (soure: Wiki-

media).

Figure 3.10: The Wells turbine of the Pio Power Plant OWC in Figure 3.3

(soure: DOI 10.1016/j.renene.2015.07.086).
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Figure 3.11: Three-speed manual gearbox, typial of ars in the 1930s (soure:

Wikimedia).

Example 3.22. Consider the gearbox of a ar (see Figure 3.11). The signal

onsisting in the speed engaged as a funtion of time (neutral, reverse, 1st, 2nd,

et.) takes values in a disrete set. It is a quantised signal.

Remark 3.1. It is possible, and sometimes desirable, to approximate a quan-

tised signal by an analogial signal, and vie-versa.

Example 3.23. The rotation of a shaft θ(t) is an analogial signal; it is of ourse
possible to rotate the shaft by an angle as small as desired. But it is often useful

to replae it by a disrete signal ϑ(t) whih is the number of revolutions (i.e. the

number of 360◦ rotations of the shaft). This orresponds to an approximation

given by ϑ(t) = ⌈θ(t)⌉. Figure 3.12 shows a mehanial revolution ounter.

Example 3.24. A population � be it the number of persons in a ountry, the

number of rabbits in a �eld, or the number of bateria on a Petri dish � is a

quantised signal. It always inreases or dereases in multiples of one, sine it is
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Figure 3.12: Mehanial 19th entury revolution ounter, from the former Bar-

badinhos water pumping station (urrently the Water Museum), Lisbon. Nowa-

days mehanial revolution ounters are still used, though eletroni ones exist.

impossible that half a hild be born, or that

3
4 of a rabbit dies. However, if the

population is large enough, a variation of one individual is so small that it is

possible to assume that it is an analogial signal, and write equations suh as

dp(t)

dt
= b(t)p(t)− d(t)p(t), (3.6)

where p(t) is the population, b(t) is the birth rate, and d(t) is the death rate.

(Terms for immigration and emigration rates must be inluded if the popula-

tion is not isolated.) Suh models (and others more ompliated, that we will

mention in passing below in Chapter 14) are used for instane in Bioengineering

and in many other areas.

Example 3.25. Stritly speaking, variables suh as the fuel admitted to one of

the ylinders of an internal ombustion engine are also quantised, sine the num-

ber of moleules of fuel admitted is integer. Of ourse, in pratie an analogial

value is assumed.

Some signals take values for all time instants: they are said to be ontinu-Continuous signal

ous. Others take values only at some time instants: they are said to be disrete

Disrete signal

in time, or, in short, disrete. The time interval between two onseutive values

of a disrete signal is the sampling time. The sampling time may be variableSampling time

(if it hanges between di�erent samples), or onstant. In the later ase, whih

makes mathematial treatment far more simple, the inverse of the sampling time

is the sampling frequeny.Sampling frequeny

Example 3.26. The air pressure inside the hamber of an OWC is a ontinuous

signal: it takes a value for every time instant.

Example 3.27. The number of students attending the several lasses of this

ourse along the semester is a disrete signal: there is a value for eah lass, and

the sampling time is the time between onseutive lasses. The sampling time

may be onstant (if there is e.g. one pratial lass every Monday) or variable

(if there are e.g. two letures per week on Mondays and Wednesdays).
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Figure 3.13: Left: disrete signal; right: ontinuous signal obtained from the

disrete signal by keeping the previous value between sampling times (soure:

Wikimedia, modi�ed).

Example 3.28. One of the ontrollers used with the laboratory setup from

Example 3.19 in Figure 3.9 provided a disrete ontrol ation with sampling

frequeny 20 kHz. So the sampling time was

Ts =
1

20× 103
= 50× 10−6 s = 50 µs, (3.7)

or, in other words, every 50×10−6
s the ontrol ation for the oil atuators was

updated; or, again, the ontrol ation was updated 20× 103 times per seond.

The sampling frequeny ould also be given as

ωs =
2π

50× 10−6
= 2π × 20× 103 = 125.7× 103 rad/s. (3.8)

Remark 3.2. Mind the numerial di�erene between the value of the sampling

frequeny in Hertz and in radians per seond. It is a ommon soure of mistakes

in alulations.

Remark 3.3. It is possible, and sometimes desirable, to approximate a disrete

signal by a ontinuous signal, and vie-versa. Approximating a ontinuous signal

by a disrete one is an operation alled disretisation. We will study this issue Disretisation

in more detail below in Chapter 11.

Example 3.29. The ontrol ation from Example 3.28 had in fat to be on-

verted into a ontinuous signal to be applied by the oil atuators. As desribed,

this was done by keeping the ontrol ation signal onstant between sampling

times. The operation orresponds to onverting a disrete signal as seen in the

left of Figure 3.13 into a ontinuous signal as seen in the right diagram of that

Figure.

Example 3.30. Figure 3.14 illustrates the operation of disretisation.

A signal whih is both disrete and quantised is a digital signal. Digital signal

A system, too, is said to be ontinuous, disrete, or digital, if all its inputs

Continuous system

Disrete system

Digital system

and outputs are respetively ontinuous, disrete, or digital.

Eletroni omponents are nowadays ubiquitous. As a result of sensors,

atuators, ontrollers, et. being eletroni, most signals are digital. Likewise,

systems that inorporate suh omponents are digital, inasmuh their inputs

and outputs are all digital.
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Figure 3.14: Disretising a signal (soure: Wikimedia), i.e. approximating a

ontinuous signal (grey) by a disrete one (red).

Figure 3.15: Industrial oven for airraft omponent manufature (soure: Wiki-

media).

Example 3.31. Consider an industrial oven, seen in Figure 3.15, with a ontrol

system to regulate its temperature. The output of this system is the atual

temperature inside the oven, and the input is the desired temperature (i.e. the

referene of the ontrol system). The oven is heated by gas, and so the gas �ow is

the manipulated variable that allows ontrolling the oven. This is a ontinuous

system, sine all variables exist in all time instants. But, in all likelihood, a

digital sensor will be used for the temperature, and hanges in gas �ow will also

take plae at sampling times, after the temperature reading is ompared with

the referene and proessed to �nd the ontrol ation that will better eliminate

the error between atual and desired temperatures. So in pratie the system

will probably be digital.

Example 3.32. A �ush tank for a toilet equipped with a �oat valve as seen

in the top sheme of Figure 3.16 is a ontrol system devoid of any eletroni

omponent, and for whih all signals are ontinuous. (See also Figure 3.17.)

This is a ontinuous ontrol system.

A signal is bounded if it an only assume values in a bounded interval. InBounded signal

engineering, most signals (if not all) are bounded.

34



Figure 3.16: Top: �oat valve mehanism, well known by its use in �ush tanks

(soure: Wikimedia). Bottom: �ush tank with a �oat valve (notie that the lever

has two arms, to inrease the speed with whih the water �ow is interrupted as

soon as the �oat raises the level from the lower end of stroke).

Example 3.33. The wave elevation at given oordinates annot be less than

the depth of the sea there. Similarly, the rotation speed of a turbine, or the

linear veloity of a shaft, or a voltage in a iruit, are always limited by physial

onstraints.

Remark 3.4. Bounded ontinuous signals an assume in�nite values, but bounded

quantised signals an only assume a �nite number of values.

3.3 Models

In Setion 3.1 we have already de�ned a system's model as a mathematial rela-

tion between its inputs and outputs. There are basially two ways of modelling

a system:

1. A model based upon �rst priniples is a theoretial onstrution, re- First priniples model

sulting from the appliation of physial laws to the omponents of the

plant.

2. A model based upon experimental data results from applying identi�- Experimental model

ation methods to data experimentally obtained with the plant.

It is also possible to ombine both these methods.

In this ourse we will onentrate on models based upon �rst priniples, and

you will �nd abundant examples thereof in Chapters 4 through 8. They an

be obtained whenever the way the system works is known. They are the only When to use �rst prini-

ples modelspossibility if the system does not exist yet beause it is still being designed and

built, or if no experimental data is available. They may be quite hard to obtain
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Figure 3.17: Top: a �oat valve (see Figure 3.16) was also used in water me-

ters devised by António Pinto Bastos in the 1850s, whih were used in Lisbon

until the 1960s in spite of being obsolesent for a long time by then (soure:

Wikimedia). These meters were purely mehanial. Bottom: eletromagneti

�ow meters have no mehanial omponents; the reading an be sent elsewhere

rather than having to be read in the dials in loo (soure: Wikimedia). We will

address sensors for �ow measurements in Chapter 12.
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if the system omprises many ompliated interating sub-parts. Simpli�ations

an bring down the model to more manageable on�gurations, but its theoretial

origin may mean that results will di�er signi�antly from reality if parameters

are wrongly estimated, if too many simpli�ations are assumed, or if many

phenomena are negleted.

The models of dynami ontinuous LTI systems are given by linear di�er- Di�erential equations

ential equations. The models of dynami digital LTI systems are given by

linear di�erene equations. The models of stati LTI systems are linear and Di�erene equations

have neither derivatives nor time di�erenes.

Example 3.34. The stati model of the lever (3.1) inludes neither di�erential

nor di�erene equations. It is irrelevant whether x(t) and y(t) are disretised

or not. The same happens with the non-linear stati model of the Cardan joint

(3.2).

Example 3.35. Continuous model (3.6) is a di�erential equation. Suppose

that the model is applied to the population of a ountry, where immigration

and emigration are negletable, and for whih population data is available on a

yearly basis. Also suppose that birth and death rates are onstant and given by

b = 0.03/year and d = 0.02/year. So

dp(t)

dt
= 0.01p(t) (3.9)

Beause the sampling time is Ts = 1 year, we an perform the following approx-

imation:

dp(t)

dt

∣
∣
∣
∣
t=year k

≈ pk − pk−1

1 year

, (3.10)

where pk is the population in year k, and pk−1 is the population in the year

before. Notie that this is a �rst order approximation for the derivative in year

k, in whih we use the value of the year before, and is onsequently alled a

bakward approximation. So we end up with the following di�erene equation:

pk − pk−1 = 0.01pk ⇔ pk =
1

0.99
pk−1, (3.11)

whih is an approximation of di�erential equation (3.9); approximations other

than (3.10) ould have been used instead. We will address this subjet further

below in Chapter 11.

Example 3.36. Di�erential equation (2.53) an be approximated by di�erene

equation

3yk = 0.4yk−1 + 0.2yk−2 + 0.8eTs k + 1.6eTs (k−1) + 0.8eTs (k−2)
(3.12)

for sampling time Ts.

Experimental data should, whenever available, be used to on�rm, and if Experimental identi�a-

tion of model parametersneessary modify, models based upon �rst priniples. This often means that �rst

priniples are used to �nd a struture for a model (the orders of the derivatives

in a di�erential equation, or the number of delays in a di�erene equation), and

then the values of the parameters are found from experimental data: feeding
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the model the inputs measured, heking the results, and tuning the parameters

until they are equal (or at least lose) to measured outputs. This an sometimes

be done using least squares; sometimes other optimisation methods, suh as

geneti algorithms, are resorted to. If the outputs of experimental data annot

be made to agree with those of the model, when the inputs are the same, then

another model must be obtained; this often happens just beause too many

simpli�ations were assumed when deriving the model from �rst priniples. It

may be possible to �nd, from experimental data itself, what modi�ations to

model struture are needed. This area is known as identi�ation, and will not

be addressed in this ourse.

Models based upon �rst priniples an be alled white box models, sineWhite box model

the reason why the model has a partiular struture is known. If experimental

data requires hanging the struture of the model, a physial interpretation of

the new parameters may still be possible. The resulting model is often alled a

grey box model.Grey box model

There are methods to �nd a model from experimental data that result in

something that has no physial interpretation, neither is it expeted to have.

Still the resulting mathematial model �ts the data available, providing the

orret outputs for the inputs used in the experimental plant. Suh models

are alled blak box models, in the sense that we do not understand howBlak box model

they work. Suh models inlude, among others, neural network (NN) models

(see an example in Figure 3.18) and models based upon fuzzy logi, known as

fuzzy models (see Figure 3.19). These modelling tehniques are inreasingly

important, but we will not study them in this ourse.

Glossary

�Lasia stare, erhiamo un libro greo!�

�Questo?� hiedevo io mostrandogli un'opera dalle pagine operte di

aratteri astrusi. E Guglielmo: �No, questo è arabo, sioo! Aveva

ragione Baone he il primo dovere del sapiente è studiare le lingue!�

�Ma l'arabo non lo sapete neppure voi!� ribattevo piato, al he

Guglielmo mi rispondeva: �Ma almeno apiso quando è arabo!�

Umberto Eo (1932 � †2016), Il nome della rosa, Quinto giorno, Sesta

blak box model modelo de aixa negra

bounded limitado

ontrol system sistema de ontrolo

ontinuous ontínuo

deterministi determinístio

di�erene equation equação às diferenças

digital digital

disrete disreto

disturbane perturbação

dynami dinâmio

�rst priniples primeiros prinípios

grey box model modelo de aixa inzenta

identi�ation identi�ação

manipulated variable variável manipulada
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Figure 3.18: Top: sheme of an example of an arti�ial neural network (soure:

DOI 10.1016/j.apor.2008.11.002). It is made of several neurons, arranged in

layers. These neurons are oversimpli�ed models of biologial neurons, seen in the

bottom sheme (soure: Wikimedia), whih are arranged in far more omplex

patterns. The parameters of an arti�ial neural network are the on�guration of

its interonnetions and the parameters of eah neuron, whih are not expeted

to have any physial meaning at all. Neuron parameters an be optimised from

experimental data using numerial methods. The NN shown an be used to

model a stati MIMO system with two inputs and two outputs, or a dynami

system with one input and two outputs if x2(t) = x1(t − Ts), in whih ase it

provides a non-linear di�erene equation model with sampling time Ts. We will

not study NNs in this ourse.
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Figure 3.19: In Boolean logi, propositions are either true or false. These two

ases orrespond respetively to logial values 1 and 0. In fuzzy logi, all inter-

mediate logial values an be used. The plot above shows an example of this

(soure: Wikimedia). For the temperature shown by the grey line, proposition

�temperature is hot� has the logial value 0, proposition �temperature is warm�

has the logial value 0.2, and proposition �temperature is old� has the logial

value 0.8. This type of logi an then be used to build models, both stati and

dynami. We will not not study fuzzy logi or fuzzy models in this ourse.
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Exerises

1. Answer the following questions for eah of the mehatroni systems below:

• What are its outputs?

• What are its inputs?

• Is the system SISO or MIMO?

• Whih of the inputs an be manipulated, if any?

• Is it a stati or a dynami system?

• Is it time varying or time invariant?

• Is the system ontinuous or digital?

(a) An automated train system, as seen in Figure 3.20.
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Figure 3.20: The Stansted Airport Transit System onveys passengers between

Terminals 1 and 2 of Stansted Airport, United Kingdom (soure: Wikimedia).

Vehiles have no driver. They stop, open doors, lose doors, and move between

terminals automatially.

Figure 3.21: Physiist Stephen Hawking (1942 � †2018) attending a sienti�

onferene in 2001 (soure: Wikimedia).

(b) A power wheelhair, as seen in Figure 3.21.

() A motorboat, as seen in Figure 3.22.

(d) A rigged ship, as seen in Figure 3.22.

(e) A submarine, as seen in Figure 3.23.

(f) A spae probe, as seen in Figure 3.24.

(g) A roboti arm, as seen in Figure 3.25.

2. Use the Laplae transform to solve (3.9) for the situation starting at a

time when the ountry's population is 10 million inhabitants. Find the

population for t = 1, 2, 3 . . . years. Then use (3.11) to �nd the evolution

of the population starting with year k = 1 (orresponding to t = 0 years)

when the ountry's population is 10 million inhabitants. Find the popu-

lation for k = 2, 3, 4 . . . and ompare the results with those obtained with

(3.9).

41



Figure 3.22: Left: a motorboat with an outboard motor at Zanzibar, Tan-

zania (soure: Wikimedia). Right: Portuguese Navy shool ship Sagres (for-

merly Brazilian shool ship Guanabara, formerly German shool ship Albert

Leo Shlageter; soure: Wikimedia).

Figure 3.23: The Portuguese Navy submarine Tridente, of the Tridente lass,

propelled by a low noise skew bak propeller and powered by hydrogen�oxygen

fuel ells (soure: Wikimedia).

Figure 3.24: Astronomer Carl Sagan (1934 � †1996) with a model of one of the

two Viking landers, spae probes that desended on Mars in 1976 and worked

until 1980 and 1982 (soure: Wikimedia). Desent speed was ontrolled by

deploying a parahute and launhing three retrorokets (one on eah leg) to

ensure a soft landing. The desent ontrol system employed an inertial referene

unit, four gyrosopes, a radar altimeter, and a landing radar.
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Figure 3.25: Two KUKA LWR IV roboti arms extant at the Control, Automa-

tion and Robotis Laboratory of Instituto Superior Ténio, Universidade de

Lisboa, Portugal. Eah robot has seven rotational joints.
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