
Chapter 4

Modelling mehanial systems

Lex I.

Corpus omne perseverare in statu suo quiesendi vel movendi unifor-

miter in diretum, nisi quatenus a viribus impressis ogitur statum

illum mutare. (. . . )

Lex II.

Mutationem motus proportionalem esse vi motrii impressæ, & �eri

seundum lineam retam qua vis illa imprimitur. (. . . )

Lex III.

Ationi ontrariam semper & æqualem esse reationem: sive orpo-

rum duorum ationes in se mutuo semper esse æquales & in partes

ontrarias dirigi.

Isaa Newton (1643 � †1727), Philosophiæ Naturalis Prinipia Mathematia,

Axiomata sive Leges Motus

Ut tensio si vis ; That is, The Power of any Spring is in the same

proportion with the Tension thereof: That is, if one power streth

or bend it one spae, two will bend it two, and three will bend it

three, and so forward.

Robert Hooke (1635 � †1703), Letures de Potentia Restitutiva Or of Spring

Explaining the Power of Springing Bodies

In this and the following hapters, we will pass in review the basi onepts

of system modelling, for di�erent types of omponents. In this hapter, we

onentrate upon mehanial omponents. Surely you will have already learned,

if not all, at least most of these subjets in other ourses. However, there are

two reasons why a brief review is onvenient at this point of your studies:

1. We will systematially resort to the Laplae transform to study dynami

systems, and after seeing too many equations with variable s it is easy to

forget that we keep talking about real things � namely, in this ourse,

mehatroni systems that are all around us in our daily life.

2. This is a good time to stress the similarities between apparently very

di�erent systems that an be desribed by the very same equations. We

will see that thinking of any system as an energy onverter helps to see

those parallels.
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4.1 Modelling the translation movement

Mehanial systems with movement along a straight line an usually be modelled

using three omponents with the respetive three equations:

1. A mass. This omponent stores energy under the form of kineti energy.Mass

To model them, apply Newton's seond law (whih you an read in LatinNewton's seond law

at the beginning of this hapter):

∑

F =
d

dt
(m(t) ẋ(t)) (4.1)

Here,

∑
F is the sum of all fores applied on the mass m(t), whih is at

position x(t). (Produt m(t) ẋ(t), as you know, is alled momentum.)Momentum

Beause we are assuming a movement of translation, we need not bother to

use vetors, but the fores must be applied along the diretion onsidered;

if not, their projetion onto the said diretion must be used. And, as we

said in Setion 3.1, we will only onsider LTI systems; sine the mass is,

in (4.1), a parameter, this restrition means that it will not hange with

time, and so we are left with

∑

F = mẍ(t) (4.2)

A mass is usually represented by m or M .

2. A spring. This is a mehanial devie that stores energy under the formSpring

of elasti potential energy (see Figure 4.1). A translation spring usually

follows Hooke's law (whih you an read in Latin and English at theHooke's law

beginning of this hapter):

F = k x (4.3)

Here, F is the fore exerted by the spring, x is the variation in length of

the spring measured from the repose length, and k is the spring onstant.

This onstant is usually represented by k or K, and its SI units are N/m.

3. A damper. This is a mehanial devie that dissipates energy (see Fig-Damper

ure 4.2). The most usual model for dampers is visous damping:

Visous damping

F = c ẋ (4.4)

Here, F is the fore exerted by the damper, ẋ is the relative veloity of the

extremities of the damper, and c is the damping onstant. This onstant

is usually represented by c, C, b or B, and its SI units are N s/m.

Model (4.4) an also be used to model unintended energy dissipation, suh

as that due to frition. Notie that sine energy dissipation is ubiquitous

even a mehanial system onsisting only of a mass and a spring will be

more exatly modelled by a mass, a spring, and a damper, the latter to

aount for energy dissipation.

Remark 4.1. Unlike (4.2), Hooke's law (4.24) is often only an approximate

model of the phenomenon it addresses. There are three ways in whih reality

usually deviates from (4.24).
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Figure 4.1: Usual translation springs. Left: helial or oil spring; entre: volute

spring; right: leaf spring. (Soure: Wikimedia.)

Figure 4.2: Dashpot damper (soure: Wikimedia). There are other types of

dampers. This one, beause it ontains a visous �uid, follows (4.4) rather

losely.

1. The relation between fore and variation in length an be nonlinear. In any

ase, as long as the relation is ontinuous and has a ontinuous derivative,

a linear approximation will be valid in a limited range of length variations

(see Figure 4.3).

2. Springs that have a di�erent behaviour for positive variations of length

(x > 0, extension) and negative variations of length (x < 0, ompression)

are not unommon.

3. In any ase, Hooke's law is obviously valid only for a limited range of

length variations.

Example 4.1. A stainless steel helioidal spring is 10 m long. When a tration

fore of 10 N is applied, its length inreases to 12 m. What fore must be

Figure 4.3: A linear approximation of a ontinuous funtion with a ontinuous

derivative provides good results in some limited range (soure: Wikimedia).
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Figure 4.4: Shemati stress-strain urve of steel (soure: Wikimedia).

applied so that its length inreases to 15 m? What fore must be applied so

that its length inreases to 40× 103 km?

A length inrease of 2×10−2
m orresponds to a 10 N fore, so k = 10

2×10−2 =

500 N/m. The answer to the �rst question, when x = 5 m = 5 × 10−2
m, is

F = 500 × 5 × 10−2 = 25 N. In the seond ase, it should be obvious that a

10 m helioidal spring annot be strethed to a length whih is roughly the

perimeter of the Earth. You should not have to alulate the ludirous result

F = 500× 40× 106 = 2× 1010 N= 20 GN obtained applying the linear relation

(4.24) to realise that the spring will surely break well before suh a fore is

applied. You should have by now seen a su�ient number of diagrams suh as

the one in Figure 4.4 to realise this at one, without even having to look for the

yield strength of stainless steel and oming up with an eduated guess for the

spring's ross-setional area.

Remark 4.2. Our models are approximations of reality. They are valid only for

limited ranges of parameters. These important truths annot be overstated.

Remark 4.3. Visous damping (4.4) is another model of reality that very often

is only a rough approximation. Dashpot dampers suh as the ones in Figure 4.2

follow this law more losely than other damping phenomena, where damping

may be nonlinear or, if linear, proportional to another derivative of position

x (some damping models even use frational orders of di�erentiation). In any

ase, it is obvious that after a while x will reah its end of stroke, and (4.4) willEnd of stroke

no longer apply.

Combining (4.2)�(4.4) with Newton's third law � whih states that whenNewton's third law

a body exerts a fore on another, this latter body exerts an equal fore, but

opposite in diretion, on the �rst body �, it is possible to �nd the di�erential

equations that model translation mehanial systems.

Example 4.2. One of the most simple, but also most useful, mehanial mod-Mass�spring�damper sys-

tem els is the so-alled mass�spring�damper system, whih an be used to model

the behaviour of a mass, on whih a fore is applied, onneted to an inertial

referential by a spring and a damper (remember that any real spring also has
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Figure 4.5: A mass�spring�damper system, with mass M , spring onstant K,

and damping oe�ient B.

some damping, so, even in the absene of a dashpot damper or a similar devie,

energy dissipation must be aounted for). See Figure 4.5. This model an be

applied to many systems, among whih the vertial behaviour of a ar's suspen-

sion (for whih of ourse far more aurate, and omplex, models an also be

used � see Figure 4.6).

The fore exerted on M by the spring is

FK(t) = −K x(t) (4.5)

or, omitting the dependene on time, FK = −K x. There is a minus sign

beause, when x inreases, the fore on M opposes the inrease of x. The fore
exerted on M by the damper is

FB(t) = −B ẋ(t) (4.6)

or FB = −B ẋ to simplify. There is a minus sign beause, when x inreases, ẋ
is positive, and the fore on M opposes the inrease of x. Thus

F (t)−K x(t)−B ẋ(t) = M ẍ(t) (4.7)

We will now assume that initial onditions are zero. Applying the Laplae

transform,

F (s)−KX(s)−BsX(s) = Ms2X(s) (4.8)

whih we an rearrange as

X(s)

F (s)
=

1

Ms2 +Bs+K
(4.9)

The form (4.9) in whih the model of the mass�spring�damper system was

put is alled transfer funtion. It is very pratial for the resolution of dy- Transfer funtion

nami models.

De�nition 4.1. Given a SISO system modelled by a di�erential equation, its

transfer funtion is the ratio of the Laplae transform of the output (in the nu-

merator) and the Laplae transform of the input (in the denominator), assuming

that all initial onditions are zero.
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Figure 4.6: Independent suspension of a ar's wheel (soure: Wikimedia). The

spring is learly visible. The damper an be seen inside the oils of the spring.

Remark 4.4. When you see a transfer funtion, never forget that it is nothing

but a di�erential equation under disguise. The transfer funtion is a rational

funtion in s, whih oneals a dynami relation in time (or a relation in spae,

if the di�erential equation has derivatives in spae rather than in time).

Remark 4.5. Notie that it is neessary to assume zero initial onditions to

obtain a transfer funtion. Otherwise, additional terms would appear, and it

would be impossible to isolate on one side of the equation the ratio of the Laplae

transforms of the output and the input. We will further study this subjet in

Chapter 8.

Example 4.3. The transfer funtions orresponding to (4.2)�(4.4) � i.e. to a

mass, to a spring, and to a damper �, onsidering always a position X(s) as
the output and a fore F (s) as the input, are

X(s)

F (s)
=

1

ms2
(4.10)

X(s)

F (s)
=

1

k
(4.11)

X(s)

F (s)
=

1

cs
(4.12)

Sine transfer funtions are funtions of s, they are usually represented by

one apital letter, suh as F of G; when F (s) is used to represent a transfer

funtion, are must be taken not to use the same letter to represent the Laplae

transform F (s) of a fore f(t).
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Example 4.4. Suppose that fore F (t) = sin(t) is applied to the system in

Figure 4.5, in whih M = 1 kg, B = 3.5 Ns/m, K = 1.5 N/m. What is the

output x(t)?
The system's transfer funtion is

G(s) =
X(s)

F (s)
=

1

s2 + 3.5s+ 1.5
=

1

(s+ 3)(s+ 0.5)
(4.13)

We have

F (s) =
1

s2 + 1
(4.14)

and thus

X(s) =

L of the input

︷ ︸︸ ︷

1

s2 + 1

transfer funtion

︷ ︸︸ ︷

1

(s+ 3)(s+ 0.5)
=

as+ b

s2 + 1
+

c

s+ 3
+

d

s+ 0.5
(4.15)

=
(as+ b)(s2 + 3.5s+ 1.5) + c(s2 + 1)(s+ 0.5) + d(s2 + 1)(s+ 3)

(s2 + 1)(s+ 3)(s+ 0.5)

=
s3(a+ c+ d) + s2(3.5a+ b+ 0.5c+ 3d) + s(1.5a+ 3.5b+ c+ d) + (1.5b+ 0.5c+ d)

(s2 + 1)(s+ 3)(s+ 0.5)

whene







a+ c+ d = 0

3.5a+ b+ 0.5c+ 3d = 0

1.5a+ 3.5b+ c+ d = 0

1.5b+ 0.5c+ 3d = 1

⇔







c+ d = −a

3.5a− 0.5b = −1

0.5a+ 3.5b = 0

c+ 6d = 2− 3b

⇔







c+ d = −a

50b = 2

a = −7b

c+ 6d = 2− 3b

⇔







c+ d = 7
25

b = 1
25

a = − 7
25

c+ 6d = 47
25

⇔







c = 7
25 − d

�

�

5d = 40
25

⇔







c = − 1
25

�

�

d = 8
25

(4.16)

Finally,

x(t) = L
−1

[ − 7
25s

s2 + 1
+

1
25

s2 + 1
+

− 1
25

s+ 3
+

8
25

s+ 0.5

]

= − 7

25
cos(t) +

1

25
sin(t)− 1

25
e−3t +

8

25
e−0.5t

(4.17)

Example 4.5. Generalise the mass�spring�damper system of Example 4.2 to

inlude three masses onneted by springs and dampers as seen in Figure 4.7.

The fores exerted by these omponents will be







fK1
= K1(x2 − x1)

fK2
= K2(x3 − x2)

fB1
= B1(ẋ2 − ẋ1)

fB2
= B2(ẋ3 − ẋ2)

(4.18)
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Figure 4.7: The system from Example 4.5, modelled by (4.20).

Applying Newton's law to the masses, we get







K1(x2 − x1) +B1(ẋ2 − ẋ1) = M1ẋ1

K2(x3 − x2) +B2(ẋ3 − ẋ2)−K1(x2 − x1)−B1(ẋ2 − ẋ1) = M2ẋ2

−K2(x3 − x2)−B2(ẋ3 − ẋ2) = M3ẋ3

(4.19)

Finally, the mathematial model of the system is







M1ẍ1 +K1 (x1 − x2) +B1 (ẋ1 − ẋ2) = 0

M2ẍ2 +K1 (x2 − x1) +B1 (ẋ2 − ẋ1) +K2 (x2 − x3) +B2 (ẋ2 − ẋ3) = 0

M3ẍ3 +K2 (x3 − x2) +B2 (ẋ3 − ẋ2) = 0

(4.20)

To �nd a transfer funtion from the equations above, we would have to know

whih of the three positions x1, x2 and x3 is the input and whih is the output.

Remark 4.6. Remember that it is somewhat irrelevant if positive displae-

ments are assumed to be in one diretion or the other. In the example above,

positive displaements were arbitrarily assigned to the diretion from the left

to the right; the opposite ould have been assumed, and signs would then be

hanged in suh a way that the resulting model would still be orret.

4.2 Simulating transfer funtions in Matlab

There are two ways of reating a transfer funtion with Matlab:

• tf reates a transfer funtion, represented by two vetors with the oef-

�ients of the polynomials in the numerator and in the denominator (in

dereasing order of the exponent);

• s = tf('s') reates the Laplae transform variable s, whih an then be

manipulated using algebrai operators.

Example 4.6. Transfer funtion (4.13) from Example 4.4 an be reated asMatlab's ommand tf

>> G = tf(1,[1 3.5 1.5℄)

G =

1
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-----------------

s^2 + 3.5 s + 1.5

Continuous-time transfer funtion.

or else as

>> s = tf('s')

s =

s

Continuous-time transfer funtion.

>> G = 1/(s^2+3.5*s+1.5)

G =

1

-----------------

s^2 + 3.5 s + 1.5

Continuous-time transfer funtion.

Command lsim (linear simulation) uses numerial methods to solve the dif- Simulation

ferential equation represented by a transfer funtion for a given input. In other

words, it simulates the LTI represented by the transfer funtion.

Example 4.7. The output found in Example 4.4 an be obtained and displayed Matlab's ommand lsim

as follows, if transfer funtion G(s) has been reated as above:

>> t = 0 : 0.01 : 50;

>> f = sin(t);

>> x = lsim(G, f, t);

>> figure,plot(t,x, t,-7/25*os(t)+1/25*sin(t)-1/25*exp(-3*t)+8/25*exp(-0.5*t))

>> xlabel('t [s℄'), ylabel('x [m℄')

See Figure 4.8. Notie that we plotted two urves: the �rst was reated with

lsim, the seond is (4.17). As expeted, they oinide (there is a small numerial

di�erene, too small to show up in the plot), and only one urve an be seen.

Remark 4.7. The result (4.17) from Example 4.4 is exat. So the seond urve

in Figure 4.8 only has those numerial errors resulting from the implementation

of the funtions. The �rst urve has the errors resulting from the numerial

method with whih the di�erential equation was solved. Of ourse, both urves

are based upon the same transfer funtion, and thus will su�er from any errors

that there may be in that model (e.g. impreise values of parameters M , B,

and K, or negleted non-linearities in the spring or the damper). Do you still

remember Remark 4.2?
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Figure 4.8: Results of Example 4.4.

4.3 Modelling the rotational movement

Mehanial systems with movement of rotation an usually be modelled using

three omponents with the respetive three equations:

1. A moment of inertia. For these omponents, apply Newton's seondMoment of inertia

Newton's seond law for

rotation

law for rotation:

Theorem 4.1.

∑

τ =
d

dt
(J(t) ω̇(t)) (4.21)

Here,

∑
τ is the sum of all torques applied on the moment of inertia J(t),

whih is at angular position ω(t).

Proof. Let r be the radius of rotation for whih are applied the tangential

fores

∑
F that ause the torque (see Figure 4.9). Beause x = rω, then

ẋ = rω̇, and Newton's seond law (4.1) beomes

∑

F =
d

dt
(m(t) rω̇(t)) ⇔ r

∑

F =
d

dt

(
m(t) r2ω̇(t)

)
(4.22)

Beause the torque τ of a fore F is rF , and the moment of inertia J
of mass m is mr2, (4.21) follows for a point-like mass. In the ase of a

distributed mass, integrating (4.22) over the volume oupied will then

yield the desired result.

Corollary 4.1. Considering an LTI system, J will not hange with time,

and so we are left with

∑

τ = J ω̈(t) (4.23)
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Figure 4.9: Tangential fore F for a rotation of radius r applied on a point-like

mass.

Figure 4.10: A torsion spring mounted on a mousetrap (soure: Wikimedia).

Notie that Hooke's law for torsion springs will only apply in the range of angles

omprised within the ends of stroke (say, from 0 rad to π rad).

A moment of inertia is usually represented by J or I (the latter letter is

avoided when it an be onfounded with an eletrial urrent); its SI units

are kgm

2
. A torque is usually represented by τ or T ; its SI units are Nm.

2. A torsion spring. This is a mehanial devie that stores energy (see Torsion spring

Figure 4.10) and usually follows the angular form of Hooke's law:

Angular form of Hooke's

lawτ = κω (4.24)

Here, τ is the torque exerted by the spring, ω is the angular variation of

the extremities of the spring measured from the repose position, and k is

the spring onstant. This onstant is usually represented by the Greek

harater κ or K (to avoid onfusion with a translation spring, for whih

a Latin harater is used), and its SI units are N/rad.

3. A rotary damper, or torsional damper. The most usual model for Rotary (or torsional)

damperthis mehanial devie that dissipates energy is visous damping:

τ = c ω̇ (4.25)

Here, τ is the torque exerted by the damper, ω̇ is the relative angular

veloity of the extremities of the damper, and c is the damping onstant.

This onstant is usually represented by c, C, b or B, just like for the

translation ase, but its SI units are N s/rad.

Also like (4.4), model (4.25) an be used to model unintended energy

dissipation, suh as that due to frition.
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Figure 4.11: A mehanial system omprising a moment of inertia J , a torsion

spring with onstant κ, and a rotational damper with onstant B.

Remark 4.8. When dealing with rotation, take are with angular units. Confu-

sion about values in degrees, radians, and rotations is a ommon soure of error.

This is true also for angular speed, angular veloity, angular spring onstants,

et..

Example 4.8. Consider the system in Figure 4.11. The torque exerted on J
by the spring is

τκ(t) = −κω(t) (4.26)

where ω is the rotation of J in the sense of rotation in whih the applied torque

τ is positive. The torque exerted by the damper is

τB(t) = −B ω̇(t) (4.27)

Thus

τ(t) − κω(t)−B ω̇(t) = J ω̈(t) (4.28)

Applying the Laplae transform (and assuming, one more, that all initial on-

ditions are zero),

T (s)− κΩ(s)−BsΩ(s) = Js2Ω(s) ⇔ Ω(s)

T (s)
=

1

Js2 +Bs+ κ
(4.29)

4.4 Energy, e�ort and �ow

A omparison of transfer funtions (4.9) and (4.29) shows us that di�erent

systems an have similar models. Atually, if the numerial values of M and J ,
and of B (in translation) and B (in rotation), and of K and κ, are the same,

then the model will be the same.

As you surely know by now, this happens not only with mehanial systems,

but also with systems of other, di�erent types, as we shall see in the following

hapters. One of the best ways of studying this parallelism is to see systems as

energy onverters, and energy E as the integral of the produt of two variables,

alled e�ort variable e and �ow variable f :E�ort

Flow

E(t) =

∫ t

0

e(t) f(t) dt (4.30)
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In other words, the produt e(t)× f(t) is the instantaneous power Ė(t).Power

In the ase of a translation movement,

Ė(t) = F (t) ẋ(t) ⇔ E(t) =

∫ t

0

F (t) ẋ(t) dt (4.31)

In the ase of a rotation movement,

Ė(t) = τ(t) ω̇(t) ⇔ E(t) =

∫ t

0

τ(t) ω̇(t) dt (4.32)

We will onsider fore F and torque τ as the �ow variable, and veloity ẋ and

angular veloity ω̇ as the e�ort variable. But notie that it would make no

di�erene if it were the other way round. In any ase, their produt will be the

power. Both hoies an be found in published literature.

The omponents of a system are the e�ort aumulator, the �ow au- E�ort aumulator

mulator, and the Energy dissipator, as seen in Table 4.1. For both aumu-

Flow aumulator

Dissipator

lators, energy is the integral of aumulated �ow or aumulated e�ort: elasti

potential energy in the ase of e�ort, and kineti energy in the ase of �ow. The

dissipator dissipates energy and it makes no di�erene whether it is kineti or

potential energy that it dissipates. Table 4.1 also inludes the relations between

these quantities.

De�nition 4.2. A transfer funtion of a system that has the �ux as input and

the e�ort as output is alled impedane of that system. A transfer funtion of a Impedane

system that has the e�ort as input and the �ux as output is alled admittane

Admittane

of that system. Consequently, the admittane is the inverse of the impedane.

Transfer funtions (4.10)�(4.12) an be rewritten so as to give the mehanial

impedane of a mass, a spring, and a damper: Mehanial impedane

sX(s)

F (s)
=

1

ms
(4.33)

sX(s)

F (s)
=

s

k
(4.34)

sX(s)

F (s)
=

1

c
(4.35)

4.5 Other omponents

Among the several other omponents that may be found in mehanial systems,

the following ones, beause of their general use and of their linearity, deserve a

passing mention:

• A transmission belt. It onverts rotation movement into another rota- Belt

tion movement:

ω1

ω2
=

ω̇1

ω̇2
=

ω̈1

ω̈2
=

r1
r2

(4.36)

Here ω1 and ω2 are the angular positions of the two wheels onneted by

the belt, and r1 and r2 are the respetive radius. See Figure 4.12.
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Translation mehanial system SI Rotation mehanial system SI

e�ort e veloity ẋ ms

−1

angular veloity ω̇ rad s

−1

�ow f fore F N torque τ Nm

e�ort aumulator spring, with spring onstant K N/m angular spring, with spring onstant κ N/rad

aumulated e�ort ea =
∫
e dt position x =

∫
ẋdt m angular position ω =

∫
ω̇ dt rad

relation between aumulated e�ort and �ow ea = ϕ(f) position x = 1
K
F angular position ω = 1

κ
τ

aumulated energy Ee =
∫
ea df elasti potential energy Ee =

1
2KF 2

J elasti potential energy Ee =
1
2κτ

2

J

�ow aumulator mass M kg moment of inertia J kgm

2

aumulated �ow fa =
∫
f dt momentum p =

∫
F dt kgm s

−1

angular momentum h =
∫
τ dt kgm

2

s

−1

relation between aumulated �ow and e�ort fa = ϕ(e) momentum p = Mẋ angular momentum h = Jω̇

aumulated energy Ef =
∫
fa de kineti energy Ef = 1

2Mẋ2

J kineti energy Ef = 1
2Jω̇

2

J

dissipator damper, with damping onstant b Ns/m rotary damper, with damping onstant b Ns/rad

relation between e�ort and �ow e = ϕ(f) ẋ = 1
b
F ω̇ = 1

b
τ

dissipated energy Ed =
∫
f de Ed = 1

2 bẋ
2

J Ed = 1
2bω̇

2

J

5
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Figure 4.12: Transmission belts in a Diesel engine (soure: Wikimedia).

• Cogwheels, or gears. These wheels also onvert rotation movement into Cogwheels

another rotation movement, but the wheels need not be in the same plane.

For two external ogwheels, the sense of rotation is inverted, whereas for

one external and one internal ogwheel it is not (see Figure 4.13):

ω1

ω2
=

ω̇1

ω̇2
=

ω̈1

ω̈2
= ±r1

r2
= ±n1

n2
(4.37)

Here n1 and n2 are the numbers of ogs, or teeth, in the ogwheels.

• A rak and pinion. It onverts rotation movement into translation move- Rak and pinion

ment and vie-versa:

x = ωr ⇔ ẋ = ω̇r ⇔ ẍ = ω̈r (4.38)

Here x is the distane of the translation movement, r the radius of the

wheel, and ω the angle of the rotation movement. See Figure 4.14.

• A harmoni drive. It onverts rotation movement into another rotation Harmoni drive

movement, using an outside internal irular gear, inside whih there is an

external elliptial gear, to whih an elliptial shaft is onneted through a

rolling bearing:

ω1

ω2
=

ω̇1

ω̇2
=

ω̈1

ω̈2
= −n1 − n0

n0
(4.39)

Here ω2 is the angular position of the elliptial shaft inside the elliptial

gear, ω1 is the angular position of the shaft onneted to the elliptial

gear, n1 is the number of teeth of the said gear, and n0 is the number of

teeth of the outside internal gear (whih is �xed). See Figure 4.14.

Remark 4.9. Linear models (4.36)�(4.39) omit nonlinear e�ets that may ap-

pear, suh as baklash due to gaps betweens ogs (see Figure 4.15). These e�ets

may sometimes be important but are not our onern here.
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Figure 4.13: Left: two external ogwheels (soure: Wikimedia). Right: two

ogwheels, the outside one being an internal ogwheel (beause the ogs are on

the inside), and the inside one being an external ogwheel (beause the ogs are

on the outside; soure: https://et.usf.edu/lipart).

Figure 4.14: Left: rak and pinion in a anal gate; the rak is the linear ele-

ment (in this ase, vertial). Right: shemati of a harmoni drive. (Soure:

Wikimedia.)
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Figure 4.15: Baklash (soure: Wikimedia).

Glossary

Als Storm weer bijkomt is het eerste wat hij ziet het vriendelijke

geziht van de jager.

�Wat wilt u dat ik voor u doe, god?�

�Ik. . . kan je verstaan, maar. . .maar spreek ik nu jouw taal of jij de

mijne? En wat bedoel je met god? Ik ben geen god!�

�Maar natuurlijk bent u dat! Alles wijst erop. U sprak wartaal en

begreep mij niet. Nou, het is duidelijk dat de goden de mensen

niet begrijpen, anders hadden ze ze allang uitgeroeid! En nu u van

de parel der kennis hebt gegeten, begrijpt u er nog niets van. Dat

bewijst dat u gek bent! En de goden moeten gek zijn anders hadden

ze de wereld nooit zo gemaakt als hij is.�

Don Lawrene (1928 � †2003), Martin Lodewijk (1939 � . . . ), Storm, De

kronieken van Pandarve 10, De piraten van Pandarve

aumulated e�ort potenial aumulado

aumulated �ow �uxo aumulado

admittane admitânia

ogwheel roda dentada

oil spring mola helioidal

ompression ompressão

damper amorteedor

damping amorteimento

dashpot amorteedor visoso

dissipator dissipador

e�ort aumulator aumulador de potenial

e�ort variable variável de potenial

end of stroke �m de urso

energy energia

extension extensão

�ow aumulator aumulador de �uxo

�ow variable variável de �uxo

gear roda dentada

harmoni drive redutor harmónio

helial spring mola helioidal

impedane impedânia

leaf spring mola de folhas, mola de lâminas
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Figure 4.16: System of Exerise 1.

mass massa

mehanial impedane impedânia meânia

moment of inertia momento de inéria

momentum quantidade de movimento, momento linear

point-like mass massa pontual

power potênia

rak and pinion pinhão e remalheira

rotary damper amorteedor rotativo, amorteedor de torção

simulation simulação

spring mola

spring onstant onstante de mola

torque binário, torque (bras.)

torsion spring mola de torção

torsional damper amorteedor rotativo, amorteedor de torção

transfer funtion função de transferênia

transmission belt orreia de transmissão

volute spring mola de volutas, mola voluta

Exerises

1. Consider the system in Figure 4.16.

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that M1 = 1 kg, M2 = 0.5 kg,

K1 = 10 N/m, K2 = 2 N/m, and B2 = 4 Ns/m, �nd transfer

funtion

X2(s)
F (s) .

2. Consider the system in Figure 4.17. The wheels have negletable mass and

inertia; they are inluded to show that the masses move without frition.

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that M1 = 100 kg, M2 = 10 kg,

K = 50 N/m, and B = 25 Ns/m, �nd transfer funtion

X2(s)
X1(s)

.

3. Consider the system in Figure 4.18. The wheels have negletable mass and

inertia; they are inluded to show that the masses move without frition.

(a) Find the di�erential equations that model the system.
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Figure 4.17: System of Exerise 2.

Figure 4.18: System of Exerise 3.

(b) From the result above, knowing that M1 = M21 kg, K = 5 N/m,

and B = 10 Ns/m, �nd transfer funtion

X1(s)
F (s) .

() For the same onstants, �nd transfer funtion

X2(s)
F (s) .

4. Consider the system in Figure 4.19.

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that M1 = 1 kg, M2 = 2 kg, M3 =
3 kg, K1 = 10 N/m, K2 = 20 N/m, K3 = 30 N/m, B1 = 5 Ns/m,

B2 = 10 Ns/m, and B3 = 15 Ns/m, �nd transfer funtion

X1(s)
F (s) .

() For the same onstants, �nd transfer funtion

X2(s)
F (s) .

(d) For the same onstants, �nd transfer funtion

X3(s)
F (s) .

5. Consider the system in Figure 4.20. The ogwheels have negletable mo-

ments of inertia, when ompared to J . Let Nu be the number of ogs in

the upper ogwheel, and Nl the number of ogs in the lower ogwheel.

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that J = 50 kgm

2
, Nu = 20, Nl =

30, and B = 40 Ns/m, �nd transfer funtion

Ω(s)
T (s) .
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Figure 4.19: System of Exerise 4.

Figure 4.20: System of Exerise 5.

6. Consider the system in Figure 4.21. The pinion's entre is �xed, and its

moment of inertia I inludes the lever atuated by fore F .

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that r = 0.2 m, I = 0.8 kgm

2
,

m = 20 kg, k = 1000 N/m, and b = 480 Ns/m, �nd transfer funtion

X(s)
F (s) .

7. Consider the system in Figure 4.22. Fore F is applied through a bar of

negletable mass, onneted by the spring and the damper to mass m,

a�eted by frition fore Fa that follows the law of visous damping with

onstant ba. The bar has veloity vF ; mass m has veloity F .

(a) Find the di�erential equations that model the system.

(b) From the result above, �nd transfer funtion

VF (s)
F (s) .

8. Consider the system in Figure 4.23. The position of mass M is x(t).

(a) Find the di�erential equations that model the system.

(b) From the result above, �nd transfer funtion

X(s)
T (s) .

9. For all the systems in the exerises above, �nd:

(a) the e�ort variables;

(b) the e�ort aumulators;

() the �ow variables;
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Figure 4.21: System of Exerise 6.

Figure 4.22: System of Exerise 7.
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Figure 4.23: System of Exerise 8.

Figure 4.24: From left two right: two springs in series; two springs in parallel;

two dampers in series; two dampers in parallel.

(d) the �ow aumulators;

(e) the dissipators.

10. Find the

X(s)
F (s) transfer funtions, as in (4.10)�(4.12), of the following sys-

tems (see Figure 4.24):

(a) two springs, with onstants K1 and K2, in series;

(b) two springs, with onstants K1 and K2, in parallel;

() two dampers, with onstants B1 and B2, in series;

(d) two dampers, with onstants B1 and B2, in parallel.

66


	The name of the game
	The Laplace transform
	Definition
	Finding Laplace transforms
	Finding inverse Laplace transforms
	Important properties: derivatives and integrals
	What do we need this for?
	More important properties: initial and final values, convolution
	The Fourier transform
	Glossary
	Exercises

	Examples of mechatronic systems and signals
	Systems
	Signals
	Models
	Glossary
	Exercises

	Modelling mechanical systems
	Modelling the translation movement
	Simulating transfer functions in Matlab
	Modelling the rotational movement
	Energy, effort and flow
	Other components
	Glossary
	Exercises

	Modelling electrical systems
	Passive components
	Energy, effort and flow
	The operational amplifier (OpAmp), an active component
	Other components
	Glossary
	Exercises

	Modelling fluidic systems
	Energy, effort and flow
	Basic components of a fluidic system
	Other components
	Glossary
	Exercises

	Modelling thermal systems
	Glossary
	Exercises

	Modelling interconnected and nonlinear systems
	Glossary
	Exercises

	Transfer functions and block diagrams
	More on transfer functions
	Block diagrams
	Control in open-loop and in closed-loop
	Glossary
	Exercises

	Time and frequency responses
	Time responses: steps and impulses as inputs
	Steady-state response and transient response
	Time responses: periodic inputs
	Frequency responses
	The Bode diagram
	Time and frequency responses of a first-order system without zeros
	Time and frequency responses of a second-order system without zeros
	Responses of systems with more zeros and poles: effects of poles and zeros
	The Routh-Hurwitz criterion
	Responses of systems with more zeros and poles: dominant poles and zeros
	Glossary
	Exercises

	Measuring chains and control loops
	Glossary
	Exercises

	Sensors
	Actuators
	What next?



