
Chapter 6

Modelling �uidi systems

Suppose a solid held above the surfae of a liquid and partially im-

mersed: a portion of the liquid is displaed, and the level of the

liquid rises. But, by this rise of level, a little bit more of the solid is

of ourse immersed, and so there is a new displaement of a seond

portion of the liquid, and a onsequent rise of level. Again, this se-

ond rise of level auses a yet further immersion, and by onsequene

another displaement of liquid and another rise. It is self-evident

that this proess must ontinue till the entire solid is immersed,

and that the liquid will then begin to immerse whatever holds the

solid, whih, being onneted with it, must for the time be onsid-

ered a part of it. If you hold a stik, six feet long, with its end in

a tumbler of water, and wait long enough, you must eventually be

immersed. The question as to the soure from whih the water is

supplied�whih belongs to a high branh of mathematis, and is

therefore beyond our present sope�does not apply to the sea. Let

us therefore take the familiar instane of a man standing at the edge

of the sea, at ebb-tide, with a solid in his hand, whih he partially

immerses: he remains steadfast and unmoved, and we all know that

he must be drowned.

Lewis Carroll (1832 � †1898), A tangled tale, Knot IX

In this hapter we are onerned with �uid �ow in pipes (not with �uid Pipe �ow

�ow with a free surfae). Fluidi systems an be aurately modelled using the

Navier-Stokes equations, whih you learn in a di�erent ourse. Fortunately, in

many ases of �uid �ow in pipes it is possible to use simpli�ed equations as

follows.

6.1 Energy, e�ort and �ow

Energy E is given by the integral over distane x of the fore F exerted by the

�uid:

E =

∫ x

0

F dx (6.1)
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Table 6.1: E�ort, �ow, aumulators and dissipators in �uidi systems

Fluidi system SI

e�ort e pressure P Pa

�ow f volume �ow rate Q m

3
/s

e�ort aumulator �uidi indutane with inertane L kgm

−4

aumulated e�ort ea =
∫
e dt �uidi moment Γ =

∫
p dt Pa s

relation between aumulated e�ort and �ow ea = ϕ(f) �uidi moment Γ = LQ
aumulated energy Ee =

∫
ea df kineti energy of the �ow Ee =

1
2LQ

2
J

�ow aumulator reservoir with apaitane C F

aumulated �ow fa =
∫
f dt volume V =

∫
Q dt m

3

relation between aumulated �ow and e�ort fa = ϕ(e) volume V = Cp
aumulated energy Ef =

∫
fa de potential energy of the �ow Ef = 1

2Cp2 J

dissipator �uidi resistane R kg s

−1
m

−4

relation between e�ort and �ow e = ϕ(f) p = RQ
dissipated energy Ed =

∫
f de Ed = 1

2RQ2
J

The fore is equal to the produt of the pressure p and the ross-setional area

A, so

F = pA ⇒ E =

∫ x

0

pAdx (6.2)

The volume �ow rate (or volumetri �ow rate) Q is the derivative of theVolume �ow rate

volume V = Ax, given by

Q = A
dx

dt
(6.3)

where we assume a onstant A. With some abuse of notation, we an write

A = Qdt
dx and replae this in (6.2) to rewrite the integral in (6.1) as

E =

∫ t

0

pQ dt (6.4)

So pressure p and volume �ow rate Q an be used as e�ort and �ow. By an

understandable universal onvention, Q is always onsidered as the �ow, and p
as the e�ort.

Table 6.1 sums up the passing information and relations. The next setion

presents the basi omponents mentioned in that Table.

6.2 Basi omponents of a �uidi system

The basi omponents of a �uidi system are the following:

1. A reservoir or tank, whih may either have a free surfae (see Figure 6.1)Reservoir

Tank
or not. Tanks of the �rst ase are often used with liquids; losed tanks

are the only option when the �uid is a gas, sine the gas might otherwise

esape, even if its density is higher than that of the air.

In the ase of a tank with a free surfae, there must be a pipe at theOpen tank
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Figure 6.1: A water reservoir at the Évora train station. (Soure: Wikimedia.)

bottom (otherwise the tank ould not be emptied). The pressure p at

that point, as you know, is

p = ρgh (6.5)

where ρ is the �uid density, g is the aeleration of gravity, and h is the

height of the �uid in the tank. But the volume of �uid in the tank is given

by V = Ah, and so, replaing h = V
A
in (6.5) and solving in order to V ,

V = p
A

ρg
︸︷︷︸

apaitane C

(6.6)

In the ase of reservoirs without a free surfae, it an also be shown that Pressurised tank

V = pC, where the value of apaitane C will depend on whether the �uid

is is a liquid, a gas undergoing an isothermal ompression or expansion,

or a gas undergoing an adiabati ompression or expansion. We need not

worry with that, as long as the value of C is known.

2. A �uidi indutane. This is in fat one of the two phenomena that Fluidi indutane

take plae in a pipe. Its model is an appliation of Newton's seond law

(4.1) to the �uid ontained in a length ℓ of pipe (see Figure 6.2):

Ap
︸︷︷︸

fore

= ρAℓ
︸︷︷︸

mass

d2x

dt2
(6.7)

The fore is the produt of the ross-setional area and the pressure (or

rather the di�erene of pressures at the two extremities of the �uid sep-

arated by length ℓ). Integrating both sides, and introduing the �uidi

moment Γ =
∫
p dt,

Γ = ρℓ
dx

dt
(6.8)
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Figure 6.2: A pipe with ross-setional area A.

From (6.3) we know that

dx
dt = Q

A
, so

Γ =
ρℓ

A
︸︷︷︸

inertane L

Q (6.9)

3. A pressure drop. This is the other phenomena taking plae in any pipe,Pressure drop

due to the resistane of visous fores both between the �uid and the

wall of the pipe and between �uid partiles themselves. In another ourse

you learn about the di�erene between laminar �ow (i.e. a situation inLaminar �ow

whih �uid partiles move essentially in the diretion of the �ow only)

and turbulent �ow (i.e. a situation in whih �uid partiles move in a farTurbulent �ow

more haoti manner).

Here it su�es to notie that in laminar �ow theHagen-Poiseuille equa-Hagen-Poiseuille equation

for laminar �ow tion applies:

p =
8µℓ

πr4
︸︷︷︸

resistane R

Q (6.10)

Here p is the pressure drop over length ℓ of the pipe, µ is the dynami

visosity, and r is the pipe radius. (If the ross-setion of the pipe is not

irular, then r =
√

A
r
.) This expression was �rst determined experimen-

tally, and then proved from the Navier-Stokes equations; all that we need

to worry about is the value of the �uidi resistane.

The pressure drop is always higher for turbulent �ow than for laminar

�ow, and the relation between p and Q is no longer linear. However, it

may be linearised around a onvenient point, so as to �nd an approximate

value of resistane R = p
Q
valid in some range of values of these variables.

(See Figure 4.3 again.)

Remark 6.1. Pipes have both inertane and resistane. Of ourse, it may be

that one of the two is negletable when ompared to the other; but in reality

both are present.

Remark 6.2. The impedanes of these omponents are as follows:Fluidi impedanes
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Figure 6.3: System of Example 6.1.

P (s)

Q(s)
=

1

Cs
(6.11)

P (s)

Q(s)
= Ls (6.12)

P (s)

Q(s)
= R (6.13)

Pipe �ow an be modelled putting together the equations desribing these

omponents with the onservation of mass.

Example 6.1. Consider the system in Figure 6.3, supplied with water by a

pump providing a pressure p, that �ows through a long pipe with inertane L
and negletable resistane, and either �lls a tank with apaitane C or leaves

the system through a valve with resistane R. We want to know the pressure

below the tank pt.
Let q(t) be the volume �ow rate through the long pipe, that is then divided

into the �ow feeding the tank qt(t) and the �ow through the valve qv(t). Using
the impedanes, we get







P (s)−Pt(s)
Q(s) = Ls

Q(s) = Qt(s) +Qv(s)
Pt(s)
Qt(s)

= 1
Cs

Pt(s)
Qv(s)

= R

⇒







P (s)− Pt(s) = LsPt(s)
(
1
R
+ Cs

)

Q(s) = Pt(s)
(
1
R
+ Cs

)

Qt(s) = Pt(s)Cs

Qv(s) =
1
R
Pt(s)

(6.14)

The �rst equation then gives the desired answer:

P (s) = Pt(s)

(

1 +
L

R
s+ LCs2

)

⇔ Pt(s)

P (s)
=

1

1 + L
R
s+ LCs2

(6.15)

Remark 6.3. Notie that (6.15) is similar to the model of a mass�spring�

damper system (4.9) or the model of an RLC system (5.20).

Remark 6.4. Liquids an be presumed to be inompressible, so ρ is onstant

and independent from p. Thus (6.5) shows that there is a one-to-one relation

between p and h, where h is the hydrauli head. So p is often replaed by Hydrauli head

ρgh. To do this, of ourse, the density of the liquid used in the system must be

�xed in advane; the most usual ases are water, brine, and rude oil.

Model (6.9) of a �uidi indutane tells us that

∫
p dt = Γ = LQ; applying Using the head instead of

the pressurethe Laplae transform, this beomes

Fluidi indutanep

s
= LQ ⇔ ρgh

s
= LQ ⇔ h =

L

ρg
sQ (6.16)
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Figure 6.4: System of Example 6.2.

Here, L∗ = L
ρg

is the inertane relating hydrauli head and �ow; L is the in-

ertane relating pressure and �ow. Notie that the SI units of L are kgm

−4
;

those of L∗
are s

2
m

−2
.

Likewise, model (6.10) of �uidi resistane tells us that p = RQ; soFluidi resistane

ρgh = RQ ⇔ h =
R

ρg
Q (6.17)

Here, R∗ = R
ρg

is the resistane relating hydrauli head and �ow; R is the resis-

tane relating pressure and �ow. Notie that the SI units of R are kg s

−1
m

−4
;

those of R∗
are sm

−2
.

Example 6.2. Consider the system in Figure 6.4, with two water reservoirs

fed by a pump that delivers a �ow q, and onneted by a pipe with negletable

inertane and resistane R. We have







q(t) = q1(t) + q2(t)

q1(t) = A1ḣ1(t)

q2(t) = A2ḣ2(t)
h2(t)−h1(t)

R
= q1(t)

⇒







Q(s) = A1H1(s)s+A2H2(s)s

Q1(s) = A1H1(s)s

Q2(s) = A2H2(s)s

H2(s)−H1(s) = RA1H1(s)s

(6.18)

Thus

{

Q(s) = A1H1(s)s+A2H1(s)(RA1s+ 1)s

H2(s) = H1(s)(RA1s+ 1)
⇔
{

Q(s) = H1(s)(RA1A2s
2 +A1s+A2s)

H2(s) = H1(s)(RA1s+ 1)
⇔







H1(s)

Q(s)
=

1

RA1A2s2 + (A1 +A2)s
H2(s)

Q(s)
=

RA1s+ 1

RA1A2s2 + (A1 +A2)s

(6.19)

6.3 Other omponents

Among the several other omponents that may be found in pipe �ow systems, the

hydrauli press deserves a passing mention. Its priniple is shown in Figure 6.5.

Beause of (6.2), a similar pressure on both sides means that

F1

A1
=

F2

A2
⇔ F2 = F1

A2

A1
(6.20)
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Figure 6.5: Priniple of the hydrauli press.

where F1 and F2 are the fores exerted on the two pistons, with areas A1 and

A2. This priniple is used in presses suh as that in Figure 6.6.

Glossary

Había en el puerto gran multitud de buques de todas lases y tamaños,

resplandeiendo entre ellos, llamando la atenión y hasta exitando

la admiraión y la envidia de los españoles, un enorme y hermosísimo

navío, onstruido on tal perfeión, lujo y elegania, que era una

maravilla.

Los españoles, naturalmente, tuvieron la uriosidad de saber quién

era el dueño del navío y enargaron al seretario que, sirviendo de

intérprete, se lo preguntase a algunos alemanes que habían venido a

bordo.

Lo preguntó el seretario y dijo luego a sus paisanos y amaradas:

� El buque es propiedad de un poderoso omeriante y naviero de

esta iudad en que estamos, el ual se llama el señor Nihtverstehen.

Juan Valera (1824 � †1905), Cuentos y hasarrillos andalues, El señor
Nihtverstehen

�uidi indutane indutânia �uídia

�uidi moment momento �uídio

�uidi resistane resistênia �uídia

hydrauli head altura de oluna de �uido (de água, de água salgada, de rude)

hydrauli press prensa hidráulia

inertane indutânia �uídia

pressure pressão

pressure drop perda de arga

reservoir reservatório, tanque

tank reservatório, tanque

volume �ow rate audal volumétrio

volumetri �ow rate audal volumétrio
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Figure 6.6: Hydrauli press.

Exerises

1. Consider the system from Example 6.1, shown in Figure 6.3. Find its

mehanial equivalent.

2. Consider the system in Figure 6.7, fed by a pump delivering volume �ow

rate q1(t). Tanks 1 and 2 are onneted by a pipe with negletable iner-

tane and �uidi resistane R1; tanks 2 and 3 are emptied through valves

with resistanes R2 and R3 respetively. Find transfer funtions

H1(s)
Q1(s)

,

H2(s)
Q1(s)

and

H3(s)
Q1(s)

.

3. Consider the system in Figure 6.8, fed by a pump delivering volume �ow

rate q1(t). Find transfer funtions

H1(s)
Q1(s)

,

H2(s)
Q1(s)

,

H3(s)
Q1(s)

and

Q5(s)
Q1(s)

.
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Figure 6.7: System of Exerise 2.

Figure 6.8: System of Exerise 3.
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