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ABSTRACT

Linear regression metamodels have been widely used to explain the behavior of computer

simulation models, although they do not always provide a good global �t to smooth response

functions of arbitrary shape. In the case study discussed in this paper, the use of several linear

regression polynomials results in a poor �t. The use of a nonlinear regression metamodeling

methodology provides simple functions that adequately approximate the behavior of the

target simulation model. The importance of metamodel validation is emphasized by using

the generalization of Rao's test to nonlinear metamodels and double-cross validation.

1. INTRODUCTION

Frequently, the main objective in discrete event simulation studies is the prediction and sen-

sitivity analysis of a system response, for di�erent combinations of a particular set of control-

lable input variables. However, it is not generally an easy task to interpret the large amounts

of data yielded by simulation runs (e.g., in queueing systems) and it becomes increasingly

diÆcult to make decisions about design modi�cations in the target system. Whenever pos-

sible, it is more suitable to construct a simple mathematical relationship that relates the
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inputs and outputs of the computer simulation model, that is, a model of the simulation

model, or metamodel (Barton 1992). Metamodels are very useful in design optimization

and \what if?" questions{all this, without having to perform additional simulation runs.

Also, the simple mathematical expression of a metamodel can expose, more clearly than the

simulation model, the fundamental nature of the system input-output relationships.

Traditional linear regression procedures are frequently used for constructing simulation

metamodels. In particular, the general linear regression model has been intensively studied{

e.g., Kleijnen and Sargent (2000), Panis, Myers and Houck (1994), Kleijnen (1992), Porta

Nova and Wilson (1989) and Kleijnen, Burg and Ham (1979). However, polynomials are

unable to produce a global �t to curves of arbitrary shape. Moreover, in real-life systems,

nonlinearity is common and the approximation using polynomials becomes unrealistic. Con-

sequently, in these situations, polynomials often fail to provide good �ts, namely in problems

involving queueing systems (Friedman and Friedman 1985). An alternative that provides

better and more realistic global �ts is the use of statistical nonlinear regression techniques;

see Santos and Porta Nova (1999, 2001).

However, any metamodel can only be used to analyze simulation output if it is \good

enough". So, after estimating the metamodel, it is advisable to check if the hypothetical

metamodel is, in fact, an accurate representation of the simulation model. For this purpose,

robust statistical validation techniques from nonlinear regression are used.

This paper is organized as follows. In Section 2, estimation procedures for the general

nonlinear metamodel are presented. The issue of metamodel validation is discussed in Sec-

tion 3. In Section 4, an actual problem concerning a center for inspecting and repairing

automobiles is analyzed and several candidate metamodels, including linear and nonlinear

ones, are considered. Section 5 is reserved for conclusions and suggestions for further work.
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2. NONLINEAR REGRESSION METAMODELS

A simulation model attempts to describe the relationship between a set of input parame-

ters and variables and the output of the real system. As a consequence, the most important

variables and parameters should be selected and represented. A parameter is a quantity

that can not be observed in the real system and a variable is directly observable (Kleijnen

and Groenendaal 1992); customer arrival times is an example of a variable and the arrival

rate of a Poisson process is an example of a parameter. The response of the real system

is represented by the output variable of the simulation model. As a result, the simulation

model can be represented by

Y = �(Z; a) ; (1)

where Y is a univariate response, Z = (Z1; : : : ; Zk)
T is a vector of input variables and a

represents a set of random streams that drive the simulation at Z. The vector Z, in the

simulation of a supermarket, can include the mean interarrival time, the mean service time

and the number of physical lanes. The response Y can be, for example, the delay in the

queue or the time in the system.

Assume that the simulation model can be represented by the simulation metamodel

Y = f(X; �) + � ; (2)

where X = (X1; : : : ; Xd) is a vector of d explanatory variables, � = (�1; : : : ; �m)
T represents

a vector of unknown parameters, � represents the error and f is an unknown function simpler

than � (the error � includes e�ects of the inadequacy of f as a representation of � and intrinsic

e�ects encountered in any stochastic simulation model); see Figure 1. The variable Xi may

be the same as the simulation variable Zi, or a transformation of one or more variables Zj's.

For example, in the M=M=1 queue, the utilization factor X = � = �=� (where � is the

arrival rate and � is the service rate) can be a better explanatory variable than � and �. In

this paper, f is a nonlinear function of the unknown parameter vector �, so we are dealing

with nonlinear metamodels. The unknown parameter vector must be estimated.
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Figure 1: Simulation model vs. metamodel

In the M=M=1 queue, an example of a nonlinear metamodel is

Y =
X�1

1�X�2
+ � ;

where the decision variable X = � and the response Y represents the expected number of

customers in the queue, whereas a linear metamodel could be

Y = �X2 + � ;

where Y represents the average waiting time in the queue.

Suppose that a simulation experiment is performed according to some experimental de-

sign, consisting of n di�erent design points, fXil : i = 1; : : : ; n; l = 1; : : : ; dg. For each design

point, r independent replications of the simulation model are carried out and the simulation

experiment yields f(Yij; �̂
2
i ) : i = 1; : : : ; n; j = 1; : : : ; rg, where Yij is the j-th observation

at experimental point i and �̂i is the estimated variance at the design point i, based on r

observations,

�̂2i =

rX
j=1

(Yij � �Yi:)
2=[r(r � 1)] i = 1; : : : ; n: (3)

The average

�Yi: =

rX
j=1

Yij=r; i = 1; : : : ; n

is the metamodel response of interest.
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This allows us to express the metamodel (2) as

Yij = f(Xi:; �) + �ij; i = 1; : : : ; n; j = 1; : : : ; r ; (4)

where �i are independent random variables with �ij � N (0; �2i ), and �i > 0.

Before estimation, one or more hypothetical metamodels must be selected. Ideally, the

form of the metamodel should be dictated by theoretical considerations. For example, in

the M/M/1 queueing system, an hypothetical metamodel for the expected queue length Y

might be Y = �1X
2=(1+�2X), where X is the utilization factor X = �=�. However, in many

simulation studies we have little or no idea about the relationship between the simulation

response and the decision variables. In these cases, we suggest that the choice of hypothetical

metamodels should be made visually, just like we compare empirical histograms with known

density functions for selecting a speci�c random distribution. Following this perspective, it is

convenient to represent the dispersion diagrams (or scatter plots) of the response versus each

independent variable, plotting, for each �xed l = 1; : : : ; d, the corresponding pairs (Xil; Yij),

where i = 1; : : : ; n and j = 1; : : : ; r. Then, we should compare the graphical representations

with di�erent analytical curves from a comprehensive catalog, in order to select the best

candidates.

2.1 Nonlinear Metamodel Estimation

The metamodel estimation procedure uses the nonlinear least squares method for esti-

mating the unknown parameters of the hypothetical metamodel. This well known method

from regression analysis minimizes the error sum of squares

SSE(�) =

nX
i=1

rX
j=1

[Yij � f(Xi:; �)]
2=�̂2i ; (5)

that is, it obtains a vector �̂ such that SSE(�̂) < SSE(�), for all � in a region of Rm .

For most nonlinear metamodels, the SSE(�) function can not be minimized analytically

and, as a consequence, an iterative numerical method is used. We chose the Levenberg-

Marquardt method because it is almost an unanimous opinion that, for many nonlinear
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least squares problems, this method works very well. However, in problems with large

residuals, Levenberg-Marquardt algorithms can converge unacceptably slowly or may even

not converge at all. In these cases, it is convenient to use numerical methods adapted to

each situation{see, for example, Seber and Wild (1989), Section 14.3.

The SSE(�) function in (5), in contrast to the linear case, can have several local minima,

in addition to the global minimum. Thus, in many situations, the best that we can expect is

that the numerical method will converge to a local minimum. For �̂ to be a local minimum,

it is suÆcient that: (i) the partial derivatives of SSE(�) with respect to �1, ..., �m be zero;

and (ii) the Hessian matrix of SSE(�), calculated at �̂, be positive de�nite.

In Proposition 1, the nonlinear least squares estimator �̂ is established. Under the hy-

pothesis that the �i are independent and normally distributed, �i � N (0; �2i =r), and assuming

some further regularity conditions, it is shown that �̂ is asymptotically normally distributed

as N = nr !1 (see the veri�cation of these results in the Appendix).

Proposition 1 Given appropriate regularity conditions (White 1980) and for large N = nr,

the least squares estimator of �, �̂, in (4) satis�es, approximately:

�̂ � �� + [FT��1F]�1FT��1[ �Y � f ]; (6)

�̂ � Nm

�
0;

1

r
[FT��1F]�1

�
: (7)

where �� is the exact value of �, f = f(��) = (f(X1:; �
�); : : : ; f(Xn:; �

�))T , F = F(��) is the

Jacobian matrix of f , evaluated at ��, �Y = ( �Y1:; : : : ; �Yn:)
T
and � is the diagonal matrix �

= diag(�21; : : : ; �
2
n
). In order to simplify the notation, we omit that f and F are evaluated at

��.

Frequently, � must be replaced by �̂ = diag[�̂21; : : : ; �̂
2
n
] and, as a result, we have the

estimated generalized nonlinear least squares estimator.
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3. METAMODEL VALIDATION

In order to use the hypothetical metamodel (as a surrogate of the simulation model)

for prediction and sensitivity analysis, we have to be sure that it is, in fact, an accurate

representation of the simulation model. For this purpose, we use robust statistical validation

techniques from regression analysis. The validation procedure tests the metamodel adequacy

and the metamodel validity with respect to the simulation model. To verify the metamodel

adequacy, we investigate if the deterministic portion of the metamodel is adequate in the

statistical sense and if the predictive capacity of the metamodel is satisfactory. We assert

the validity with respect to the simulation model investigating if the metamodel is suÆ-

ciently close to the simulation model, taking into account the general objective of using the

metamodel.

3.1 Metamodel Adequacy

To test the adequacy of the metamodel (4), we propose a lack-of-�t test that is an adap-

tation of Rao's test (Rao 1959) to nonlinear models and has the following requirements: (i)

n > m = rank(F) and r > n(> n�m) (so that �̂ is nonsingular); (ii) the simulation response

is normally distributed{in fact, it is enough to require the distribution to be symmetric

(Kleijnen and Groenendaal 1992).

Given the conditions of applicability, the generalization of Rao's test has the form:

FRao =
r(r � n +m)

(n�m)(r� 1)

h
�Y � f(X; �̂)

iT
�̂
�1
h
�Y � f(X; �̂)

i
=

r(r � n +m)

(n�m)(r� 1)

nX
i=1

"
�Yi: � f(Xi:; �̂)

�̂i

#2
: (8)

When the metamodel is valid, then FRao is roughly distributed as an Fn�m;r�n+m distribution.

Smaller values of FRao correspond to a better approximation metamodel, consequently an

ideal �t corresponds to FRao = 0.

The predictive validity is veri�ed using double cross-validation and an adaptation of the
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prediction sum of squares, PRESS; see Neter, Wasserman and Kutner (1989) and Friedman

and Friedman (1985). In our problem, the PRESS statistic has the form

PRESS =

nX
i=1

rX
j=1

[Yij � f(Xi:; �̂(�j))]
2=�̂2i ;

where �̂(�j) is the estimated parameter vector based on the set that we obtain if we delete

the j-th replication in all experimental points. Other useful statistics are the error sum of

squares, SSE(�̂) =
P

n

i=1

P
r

j=1[Yij � f(Xi:; �̂)]
2=�̂2i , and the mean sum of squares, MSE =

SSE(�̂)=(N�m); in order to simplify the notation, we will use SSE instead of SSE(�̂).

3.2 Validation with Respect to the Simulation Model

We suggest the use of the double cross-validation method to validate the metamodel with

respect to the simulation model. In double cross-validation, we split the data intuitively into

two subsets of, approximately, the same dimension. Then, a regression metamodel is devel-

oped for each subset and used for prediction on the other subset of the data. In particular,

for each metamodel, two values of the coeÆcient of determination, R2, are calculated: the

�rst one, R2
bld, is based on the observations from the subset used to build it, and the second

one, R2
val, is based on the remaining observations, for validation purposes. Moreover, we

compare the parameter estimators of both metamodels.

3.3 Con�dence Intervals

After validation, and only if the validation tests do not reject the regression metamodel,

we can build con�dence intervals for the unknown metamodel parameters. Since the errors

have generally unequal variances, we propose the following approximated 1 � � two-sided

con�dence rectangle for the estimated generalized nonlinear least squares estimator of the

regression parameter �k (k = 1; : : : ;m):

�̂k � t
�=2
r�n+m�1

hdVar[�̂k]i1=2 �1 + FRao(n�m)=(r � n+m)

1 + (n�m)=(r � 1)

�1=2
;
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where dVar[�̂k] is the estimated variance of �̂k calculated by

dVar[�̂k] = �rF̂T�̂
�1

F̂
�
�1

kk
;

(see Proposition 1) and FRao = Fn�m;r�n+m in (8). This con�dence rectangle is obtained

adapting (3.13) of Kleijnen (1992) to nonlinear simulation metamodels and, then, applying

the Bonferroni method.

4. APPLICATION: AN INSPECTION AND REPAIR CENTER

In this paper, we analyze a car inspection and repair center. The car inter-arrival times

are normally distributed with mean � and a variance of 15. Only one inspector services the

cars and the time that he needs to inspect one is uniformly distributed between 15 and 25

minutes. In the inspection queue, space is available for only six cars. On the average, 85

percent of the cars pass the inspection and leave the center. The other 15 percent must go

to the repair section, where two mechanics work side-by-side. After being repaired, the cars

have to go back to the inspection queue. The time required to repair a vehicle is exponentially

distributed with a mean of 60 minutes.

Our goal is to express the average time in the system, Y (response), as a function of

the mean time between arrivals, � (decision variable). We considered 14 combinations of

simulation input, f�i : i = 1; 14g = f1; 5; 10; 15; 20; 23; 26; 29; 32; 35; 40; 50; 60; 90g, unevenly

spaced to take into account the di�erent rates of variation of the output. At each design

point, we ran Welch's procedure (Welch 1983), in order to determine adequate run durations

and points for initial-data deletion. Welch's moving averages are based on 20 replications of

the simulation model, where each replication contains l = 2000 observations, that is,

��(l;W ) =

8<: (2W + 1)�1
PW

w=�W 1=r
P

r

i=1 Yi;l+w; if l � W + 1;

(2l� 1)�1
P

l�1

w=�(l�1) 1=r
P

r

i=1 Yi;(l+w) if l < W + 1:

where W is Welch's window. For example, at the design point �i = 10, we deleted 100

observations from the beginning of the run and we used only the remaining 600 observations

to estimate the response Y (see Table I).
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TABLE I: Initial data deletion.

Observations Welch's

�i Deleted In run window

1,5,10 100 700 50

15 150 1000 100

20 200 1400 150

23,26,29,32,35 200 1400 300

40,50,60 100 700 200

90 50 350 200

We carried out r = 30 replications of each of the n = 14 design points; in order to apply

Rao's validation test, r must be greater than n, and since r is greater than nine, we can

obtain an appropriate estimate for �̂i, i = 1; : : : ; n (Deaton, Reynolds and Myers 1983).

With the objective of identifying a curve that might �t the input-output relationship of

the simulation program, we built the corresponding dispersion diagram, plotting the pairs

f(Xi; Yij) : i = 1; : : : ; n; j = 1; : : : ; rg; see Figure 2. Then, we performed a visual check of

the scatter plot, comparing it with graphical representations of some functional relationships

from an appropriate catalog. The nonlinear curves that seemed to be good candidates are

represented in Figure 3. `Arctan' is based on the arc tangent function and the others are

three sigmoidal growth models (Seber and Wild 1989), pages 329, 338 and 340: `Logistic'

is the logistic model, `Weibull' is Weibull's growth curve and `MMF' is the Morgan-Mercer-

Flodin family. We also considered polynomial functions of degree r, with r = 2; : : : ; 10.

4.1 Estimating and Validating the Metamodel

Before estimating the metamodel parameters, we must �rst check if the response has a

constant variance across design points. We measure the variance heterogeneity through the
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Figure 2: Visualization of simulation results.

quantity

het =
maxi=1;n �̂i

mini=1;n �̂i

(Kleijnen 1992). We obtained het = 3:946 (quite di�erent from 1), and so we are in the

presence of non homogeneous variances. Thus, we will use nonlinear weighted least squares

for nonlinear curves and weighted least squares for polynomials. The nonlinear parameter

estimators were obtained using the Levenberg-Marquardt method implemented in MAT-

LAB, with the termination tolerance equal to 10�6 and the maximum number of function

evaluations equal to 600 (the default is 100 � the number of parameters). When we tried

to �t polynomials of degree r, with r = 4; : : : ; 10, we obtained matrices that were close to

singular or badly scaled. Since the results might be highly inaccurate, these metamodels had

to be rejected.

To check the validity of the remaining hypothesized metamodels, we evaluated the statis-

tics presented in Section 3. The SSE and PRESS statistics for the nonlinear models exhibit

similar values, in contrast to the linear polynomial models (see Table II). Also, the SSE val-

ues are large for the linear models, compared to the nonlinear ones. Based on these results,
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we conclude that polynomial functions have lack of predictive validity, and so they are not

good approximations for the target simulation model.

TABLE II: Metamodel diagnostics.

Metamodel SSE MSE PRESS SSE=PRESS

Arctan 1554:23 3:73612 1608:21 0:966

Logistic 1647:62 3:96063 1696:78 0:971

MMF 1366:68 3:28529 1418:26 0:964

Weibull 2224:96 5:34847 2272:22 0:979

Pol2 39714:1 95:2377 15162:9 2:619

Pol3 40041:4 96:2533 15105:4 2:651

Before using Rao's test, it is convenient to verify if the simulation responses are normally

distributed. Since the variance depends on the design point, for each i = 1; : : : ; n, the

normal probability plots for the set of original simulation responses, fYij : j = 1; : : : ; rg,

were obtained. All of the resulting graphics appear to be nearly linear, but the slope varies

with the corresponding design point. This agrees with the fact that the value of het is quite

di�erent from 1. In Figure 4, results for some experimental points are displayed. Thus,

there is no evidence to reject the normality of the response, at each design point, with the

variance depending on the design point. As a result, Rao's test can be used to select the

metamodel that better approximates the simulation results, comparing the FRao values with

the F critical value, F 1��
n�m;r�n+m = F 0:95

10;20 = 2:348. The elected metamodel, according to this

criterion, is the one based on the MMF curve{all others are rejected (see Table III).

TABLE III: Rao's test.

Metamodel Arctan Logistic MMF Weibull

FRao 6:108 9:102 2:206 22:673
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Figure 4: Normal probability plots (experimental points 2, 6, 10 e 14).

To gain more insight into the predictive validity of the metamodels, we analyzed the

results of double cross-validation (see Table IV). In each model, we observe a good agree-

ment between the coeÆcients obtained based in subsets 1 and 2. Also, the coeÆcients of

determination are quite similar.

Finally, we obtained con�dence intervals for the individual metamodel parameters, with

coverage probability 1� � = 0:95 (see Table V). The standard deviations of the estimators

are also shown. We observe that the standard deviations and the CI half-lengths have rather

small values, compared with the absolute values of the estimators. These are good indicators

of the precision of the regression estimators obtained in this work.
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TABLE IV: Double cross-validation test.

Arctan Logistic

CoeÆcient subset 1 subset 2 subset 1 subset 2

�̂1 91:494 92:474 �109:0 �109:7

�̂2 �37:9318 �38:4031 1925:8 2193:7

�̂3 0:3296 0:3213 0:3 0:3

�̂4 �7:8454 �7:6333 145:4 146:4

R2
bui 0:9922 0:9971 975:5 0:9882

R2
val 0:9786 1:0113 989:2 1:0023

MMF Weibull

CoeÆcient subset 1 subset 2 subset 1 subset 2

�̂1 144:58 145:29 36:9817 37:427

�̂2 35:681 35:855 145:50 146:45

�̂3 0:0422 0:0420 0:0386 0:0385

�̂4 7:7327 7:7974 4:9014 5:0609

R2
bui 1:0003 0:9934 0:9841 0:9828

R2
val 0:9866 1:0073 0:9706 0:9969

TABLE V: 95% Con�dence intervals for individual parameters.

Metamodel Estimator , Standard Con�dence

CoeÆcient �̂ Deviation Interval

�1 144:882 0:1185 144:882� 0:3067

�2 35:797 0:0761 35:797� 0:1968

�3 0:0421 0:0001 0:0421� 0:0003

�4 7:776 0:0704 7:776� 0:1821
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5. CONCLUSIONS

This paper stresses the importance of using reliable nonlinear metamodels in simulation

studies. In the example discussed here, a poor �t was obtained when various polynomial

metamodels were tried, leading to a demand for more precise and 
exible models. Linear

models are considerably simpler to �t than nonlinear ones, but they are unable to ensure a

global �t to curves of arbitrary shape. Nonlinear regression metamodels are advantageous,

because they do not have this limitation, allowing an adequate adherence to complex curves.

It is generally much more convenient to have a ready-to-use and reliable metamodel,

rather than a more expensive and hard to calibrate simulation model. In order to ensure

that a speci�c metamodel provides an adequate substitute for the simulation model, a series

of adequacy tests must be performed. If any one of these tests fails, the model is rejected.

The use of nonlinear metamodels requires an extensive catalog of curves and a more

complex and time consuming regression software. The selection of good candidate curves

for the �tting process in
uences dramatically the resulting metamodel precision, as shown

in the example. However, once a comprehensive catalog of curves is provided, the choice of

an adequate metamodel is rather straightforward. The regression and validation software

can be repeatedly used, as soon as the user supplies a trial function and an initial solution.

Finally, the increased computation time, when compared to linear regression procedures,

is becoming less important with the ever growing computing power of personal computers.

Nevertheless, the computation time required for obtaining nonlinear regression metamodels

can be orders of magnitude smaller than the time needed to run and analyze the actual

simulation model.
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APPENDIX

(i) Veri�cation of (6).

We pointed out that the errors in the nonlinear metamodel (4) have unequal variances{the

setup for generalized or weighted least squares. We also observe that, minimizing problem

(4) is equivalent to minimizing

[ �Y � f(X; �)]T
�
1

r
�

�
�1

[ �Y � f(X; �)]

with respect to �; see Seber and Wild (1989), Section 2.1.4. This is also equivalent to

minimizing [ �Y � f(X; �)]T��1[ �Y � f(X; �)], the error sum of squares corresponding to the

problem

�Yi: = f(X; �) + ��i:; i = 1; : : : ; n: (9)

� is a symmetric positive de�nite matrix, that accepts the Cholesky decomposition: � =

UTU, where U is an upper triangular matrix. Multiplying the nonlinear model (9), on the

left, by R = (UT )�1, we obtain W = g(X; �) + �, where W = R �Y, g(X; �) = Rf(X; �)

and � = R�, with � = (�1:; : : : ; �n:)
T .

Then, we observe that E[�] = 0 and Var[�] =RVar[�]RT = 1=rR�RT. But � = UTU

(Cholesky decomposition) and R = (UT )�1. Thus,

Var[�] = 1=r(UT)�1UTU
�
(UT)�1

�T
= 1=rIn;

where In is the identity matrix of order n. We conclude that problem (9) has been transformed

into an ordinary least squares problem. Thus, the least squares estimator of � is

�̂ � �� + [GTG]�1GT [W� g]; (10)

where G = @g(X; �)=@�T is the Jacobian matrix of g and we omit that both g and G are

evaluated at ��; see Seber and Wild (1989), Theorem 2.1.

But, since g(X; �) = Rf(X; �), we have G(�) = R@f(X; �)=@�T = RF(�). Besides,

17



W = R �Y and RTR = ��1, thereof (10) is equivalent to:

�̂ � �� + [FTRTRF]�1(RF)T [R �Y �Rf(X; ��)]

= �� + [FT��1F]�1FTRTR[ �Y � f(X; ��)]

= �� + [FT��1F]�1FT��1[ �Y � f(X; ��)]:

Thus, the approximate result (6) has been established.

(i) Veri�cation of (7).

Result (7) is obtained by applying Theorem 2.1, item (i), of Seber and Wild (1989),

to (10): �̂ � Np

�
�; 1=r(GTG)�1

�
. Since G = RF and RTR = ��1, we obtain �̂ �

Np

�
�; 1=r(FTRTRF)�1

�
, and then �̂ � Np

�
�; 1=r(FT��1F)�1

�
.
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