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This paper extends the use of time series models to the output analysis of non-stationary

discrete event simulations. A thorough experimental evaluation showed that ARIMA(p; d; q)

models are very promising meta-models for simulating queueing systems under critical traÆc

conditions. In some situations, stationarity-inducing transformations may be required, before

this methodology can be used. Our approach for eÆcient estimation of performance measures

of selected responses in the target system is illustrated with a single lane traÆc analysis.

1. Introduction

The output analysis of discrete event simulation models is undoubtedly an area of utmost

practical importance. It is also a very active research area, and many innovative approaches

have been proposed to cope with the highly autocorrelated nature of simulation responses,

namely in queueing systems.

Fishman (1971) gave an early example of how reliable measures of response variability

(variance, con�dence intervals) could be estimated using classical time series models (Box,

Jenkins, and Reinsel 1994). In an intermediate step of his procedure, an autoregressive



model of order p, AR(p), was �tted to a selected simulation response. Later, Schriber

and Andrews (1984) extended that approach by �tting mixed autoregressive-moving aver-

age models, ARMA(p,q), with an automated procedure. However, the authors reported

poor performance results, especially in the coverage rates of con�dence intervals for simple

queueing systems.

In contrast to this apparent incompatibility between queueing systems and time series

models, Brand~ao and Porta Nova (1999) showed that either an insuÆcient simulation dura-

tion, or an excessive initial bias, were responsible for most of those poor results. Eventually,

by controlling these two factors, very positive results were obtained for anM=M=3 stationary

queue under moderate and congested traÆc situations.

This paper is organized as follows. In Section 2, we discuss the use of classical time series

models to analyze the output of non-stationary discrete event simulations. In Section 3,

we investigate the applicability of ARIMA models as potential meta-models for queueing

system simulation under critical traÆc conditions. In Section 4, we illustrate our approach

using a single lane traÆc analysis. Finally, in Section 5, we summarize some conclusions and

recommendations for future research in this area. Some preliminary results were originally

presented in Brand~ao and Porta Nova (2003a,b).

2. Non-stationary Simulations and Time Series

The specialized literature on the output analysis of discrete event simulations is conspic-

uously void of non-stationary cases. However, in many situations of undoubted practical

interest (rush-hour periods, system breakdowns, etc.), arrival rates do actually exceed pro-

cessing rates. Occasional references to such systems mention uncontrolled evolution, ex-

plosive growth, or unbounded queue lengths... But, would it be possible to (meaningfully)

analyze those non-stationary processes? The answer seemed to be no, since most performance

measures of simple queueing systems go to in�nity, when the utilization factor approaches
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one. Probably, these familiar asymptotic results convinced the simulation community at-

large that it was worthless to explore non-stationary simulations. However, if they were

tractable, much useful information could be extracted and many "what if?" questions could

be answered. How many cars can be expected to be waiting in line at the end of a rush-hour

period? For a driver arriving halfway through a rush period, how long will he take to pass

through a traÆc bottleneck? Even better, can we predict the evolution in time of these

and other responses, without repeating time consuming simulations and subsequent output

analysis? After all, the leitmotif in the pursuit of simulation meta-models is �nding simpler

but realistic analytical representations of the corresponding computer programs.

2.1. The Classical Time Series Method

It is well-known that stochastic simulation models produce strongly autocorrelated time se-

ries. So, it should not be surprising that we chose to investigate the applicability of the

classical ARIMA time series models, as potential meta-models for non-stationary simula-

tions. However, the independent replications that are readily available in discrete event

simulation experiments are in stark contrast to most scienti�c areas where the Box-Jenkins

methodology is widely applied and data is scarcely available. This is the case, for instance,

when econometric models are tentatively �t to a single realization of an economical time

series. Thus, we can analyze non-stationary simulations by averaging the responses across

several runs, instead of relying on a single realization. Consequently: (i) the time series vari-

ability is reduced; (ii) the underlying evolution in time of the response is easier to identify;

and (iii) the meta-model �tting process becomes much more reliable. Additionally, this is a

valid approach for �tting meta-models to autocorrelated data, in contrast to regression-based

procedures. In some particular situations, it may become necessary to previously apply a

variance-stabilizing transformation to the averaged time series.
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2.2. Number of Replications

To determine an adequate number of independent replications for the averaged series, we

analyzed the behavior of the response average length of the M=M=1 queue, with � = 2.

We collected data at half minute intervals (�t = 0:5) for di�erent numbers of runs (10, 20,

25, 30, 35 and 40), around 30 replications. As can be observed by looking at Figure 1, the

behavior of the average queue length is similar for all cases and indistinguishable from the

theoretical curve; see Bailey (1957). The theoretical curve for � = 1 is also represented in

this �gure.
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Fig. 1. Average Queue Length (M=M=1 Queue, with

� = 2 and �t = 0:5)

In order to complement that analysis, we then estimated the probabilities of coverage

of 95% con�dence intervals based on the selected number of replications. To do so, we

computed 100 such con�dence intervals, X t� t1��=2(n�1)b�Xt
=
p
n, at some selected instants

t, for the average length of the M=M=1 queue, with � = 2. The results that were obtained

are reported in Table 1 and graphically displayed in Figure 2.
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Table 1. Coverage of 95% CI for the Average Queue Length (M=M=1

Queue, with � = 2 and �t = 0:5)

Coverage

Instant 10 Runs 20 Runs 25 Runs 30 Runs 35 Runs 40 Runs

10 .95 .91 .92 .93 .90 .88

20 .93 .92 .91 .91 .92 .94

30 .90 .94 .91 .95 .93 .93

40 .95 .96 .94 .97 .96 .95

50 .95 .97 .97 .96 .95 .96

60 .94 .96 .96 .96 .96 .96
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Fig. 2. Coverage of 95% CI for the Average Queue

Length (M=M=1 Queue, with � = 2 and �t = 0:5)
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We can see that the results are slightly better for 30 runs, and also for statistical stability

reasons, we chose 30 as the number of independent replications to use on the remaining

experimentations.

3. Experimental Evaluation

In this section, we illustrate and experimentally evaluate our meta-modelling approach to

non-stationary simulation using two case studies, two simple queues, with utilization fac-

tors greater than or equal to one. We analyze the evolution of two responses, the aver-

age queue length and the average time spent in the system. We discuss the applicability

of ARIMA(p; d; q) meta-models to the non-stationary simulation of two M=M=s queueing

systems|that is, with exponential inter-arrival and service times, and s identical parallel

servers. We consider the following two queueing systems, with di�erent values for the utiliza-

tion factor, � = �=(s�), where � and � represent the arrival and service rates, respectively:

(i) An M=M=1 queue with super-critical traÆc (� = 2); and

(ii) An M=M=2 queue with critical traÆc (� = 1).

We then performed a Monte Carlo experiment consisting of 100� 30 independent repli-

cations of the corresponding simulation models, with a reference duration of 60 time units.

The actual duration varied, because each run was only terminated when the last entity that

had arrived before 60 time units left the system. Initially, each model was started in an

empty and idle state.

Queue lengths were collected at regular time intervals, �t = 0:5 and 1:0, with t 2 (0; 60].

Sojourn times were sorted according to the time interval in which the arrival had occurred.

Then, for each time interval, we collected only the �rst observation and the corresponding

observations across runs were averaged. Additional observations in the same time interval

were rejected to maintain independence. This contributed, as well, to a more stable behavior
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of the responses, when compared with earlier stages of development of our approach. Fi-

nally, we applied the Box-Jenkins methodology to the averaged time series of each response,

through identi�cation, estimation and diagnostic checking of the ARIMA(p; d; q) models.

Although the experimentation was performed for both interval widths, we only present

the graphs corresponding to �t = 0:5, because the results are very similar.

3.1. A Super-critical M=M=1 Queue

We created a super-critical traÆc situation with an inter-arrival rate of � = 2 and a service

rate of � = 1, resulting in an utilization factor of � = 2.

When we analyzed the average queue length for a typical set of 30 runs (see Figure

3, the hardly discernible dash-line), we concluded that the process was non-stationary on

the mean. There is a marked linear trend and the sample autocorrelation function (ACF)

decreases very slowly to zero. We also represent the sample partial autocorrelation function

in the same �gure. The results produced by the �tted model are represented as well (in solid

line) on the subgraph containing the original series (dash-line).

Di�erentiating the series (see again Figure 3), we observed that it became stationary,

without any statistically signi�cative value on the ACF and PACF. This was also con-

�rmed applying the Box-Ljung test. Thus, we can �t the simplest possible ARIMA model,

ARIMA(0; 1; 0), to the average queue length. In this case, the �rst di�erence produces white

noise. This process is called a random walk with drift, if it has a nonzero expected value, or

simply a random walk, otherwise.

The analysis was repeated for the remaining 99 time series (each corresponding to an

average of 30 runs) obtaining the results reproduced in Table 2. The same ARIMA(0; 1; 0)

model was consistently validated for almost 100% of the cases, when �t = 0:5, and for about

90% of the cases, when �t = 1.

In Figure 4, we represent both the 100 original series and the corresponding �tted series.
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Fig. 3. Average Queue Length (M=M=1, � = 2 and

�t = 0:5)

Table 2. Valid Fits for Average Queue Length (M=M=1 Queue, with � = 2)

ARIMA(0; 1; q) TIME INTERVAL ARIMA(p; 1; 0) TIME INTERVAL

FITTED MODEL �t = 0:5 �t = 1:0 FITTED MODEL �t = 0:5 �t = 1:0

ARIMA(0; 1; 0) 97 89 ARIMA(0; 1; 0) 97 89

ARIMA(0; 1; 4) 1 ARIMA(1; 1; 0) 1

ARIMA(0; 1; 5) 1 3 ARIMA(2; 1; 0) 1

ARIMA(0; 1; 6) 1 ARIMA(3; 1; 0) 1 4

ARIMA(0; 1; 7) 1 2 ARIMA(4; 1; 0) 3

ARIMA(0; 1; 8) 1 4 ARIMA(5; 1; 0) 1

ARIMA(6; 1; 0) 1 1

ARIMA(7; 1; 0) 1
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Each �tted series was obtained with the model of lowest order (ties were broken in favor of

the autoregressive models). Comparing the two subgraphs, it does seem that the ARIMA

meta-models managed to capture the underlying trend of the response.
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Fig. 4. Original and Fitted Series: Average Queue Length

(M=M=1 Queue, with � = 2 and �t = 0:5)

The average values of the di�erentiated data (for all of the 100 series) are, approximately,

0.5 (for the case �t = 0:5) and 1 (for the case �t = 1:0). This suggests that the average

queue length is directly proportional to the elapsed time. This important conclusion is in

agreement with a little-known asymptotic result obtained by Bailey (1964) for the M=M=1

queue: the expected queue length at instant t can be approximated by (�� �)t, for � > �,

where � and � are the arrival and service rates, respectively. This validates both the approach

and the results presented here. In Figure 4, we also represent Bailey's result (the thick white

line in the subgraph to the right).

We performed a similar analysis for the other response, the average sojourn time. This

time, di�erentiation failed to produce white noise, except for a few data series and only
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for �t = 1:0. In Figure 5, we represent the original series, its �rst di�erence and the

corresponding ACF and PACF.
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Fig. 5. Average Sojourn Time (M=M=1 Queue, with

� = 2 and �t = 0:5)

In Table 3, we report the number of di�erent ARIMA(p; 1; q) models that were actually

�tted to the 100 series of average sojourn times. We see that the order of the ARIMA(p; 1; q)

model required to cover about 90% of the original series increased substantially. Looking at

Figure 6, it becomes clear that the �tted models now keenly capture the global behavior of

the data series. However, in this case, no single model seems to dominate the others.

3.2. A Critical M=M=2 Queue

The situation with a critical value for the utilization factor, � = �=(s�), was created with

an arrival rate of � = 2 and a service rate of � = 1, producing an utilization factor of � = 1.
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Table 3. Valid Fits for Average Sojourn Time (M=M=1 Queue, with � = 2)

ARIMA(0; 1; q) TIME INTERVAL ARIMA(p; 1; 0) TIME INTERVAL

FITTED MODEL �t = 0:5 �t = 1:0 FITTED MODEL �t = 0:5 �t = 1:0

ARIMA(0; 1; 0) 24 ARIMA(0; 1; 0) 24

ARIMA(0; 1; 1) 16 ARIMA(1; 1; 0) 13

ARIMA(0; 1; 2) 16 21 ARIMA(2; 1; 0) 28 13

ARIMA(0; 1; 3) 19 24 ARIMA(3; 1; 0) 8 24

ARIMA(0; 1; 4) 23 26 ARIMA(4; 1; 0) 2 22

ARIMA(0; 1; 5) 13 2 ARIMA(5; 1; 0) 15 10

ARIMA(0; 1; 6) 8 3 ARIMA(6; 1; 0) 17 3

ARIMA(0; 1; 7) 5 ARIMA(7; 1; 0) 10 3

ARIMA(8; 1; 0) 7 1
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Fig. 6. Original and Fitted Series: Average Sojourn Time

(M=M=1 Queue, with � = 2 and �t = 0:5)
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Fig. 7. Average Queue Length (M=M=2 Queue, with

� = 1 and �t = 0:5)

Again, a clear linear trend can be observed in the average queue length series (dash-

line in Figure 7). As before, the slow decaying of the ACF towards zero indicates a non-

stationarity on the mean. When we repeated the application of the Box-Jenkins methodology

to the 100 average queue length responses, we were again able to �t a large number of

ARIMA(0; 1; 0) models. This seemed to suggest that simple di�erentiation would produce

white noise. However, in spite of this promising start, this case ended up representing the

greatest challenge to our analysis. In fact, the predicted linear evolution failed to detect a

marked nonlinear start of the actual responses; see Figure 8. Since di�erentiation had failed

to stabilize the variance of the process, we hypothesized that this response might constitute

a trend stationary process (Hamilton 1994):

Xt = � + Æt+  (B)"t

where the process mean grows linearly with time, E[Xt] = � + Æt, B is the usual backward
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Table 4. Valid Fits for Average Queue Length (M=M=2 Queue, with � = 1)

ARMA(0; q) TIME INTERVAL ARMA(p; 0) TIME INTERVAL

FITTED MODEL �t = 0:5 �t = 1:0 FITTED MODEL �t = 0:5 �t = 1:0

ARMA(0; 1) 3 ARMA(1; 0) 91 89

ARMA(0; 2) 9 ARMA(2; 0) 3 1

ARMA(0; 3) 1 16 ARMA(3; 0) 1 3

ARMA(0; 4) 2 23 ARMA(4; 0) 2 6

ARMA(0; 5) 5 28

ARMA(0; 6) 10 11

ARMA(0; 7) 9 7

ARMA(0; 8) 13 3

ARMA(0; 9) 19

ARMA(0; 10) 18

ARMA(0; 11) 14

ARMA(0; 12) 9

operator,
P
1

j=0 j jj <1, roots of  (z) = 0 are outside the unit circle and "t is a white noise

sequence with mean zero and variance �2. When this is the case, the appropriate treatment

for producing a stationary representation is to subtract Æt from Xt. The parameter Æ was

estimated by the average of the �rst di�erence of the original Xt series. We then adjusted

ARMA(p; q) models to the transformed series, obtaining the results reproduced in Table 4.

We can conclude that the autoregressive model of order p = 1, ARMA(1; 0), clearly stands

out of the remaining models that were �tted to the transformed average queue length series.

The moving average models, ARMA(0; q), did not perform nearly as well. In Figure 8, we

represent the original series and the corresponding �tted series. A typical data series (dash-

line) and the corresponding results produced by the �tted model (solid line) are represented

in Figure 7. We can see that the global behavior of the original series is now well represented.

With respect to the average sojourn time in the M=M=2 queue, with � = 1, the results
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Fig. 8. Original and Fitted Series: Average Queue Length

(M=M=2 Queue, with � = 1 and �t = 0:5)

that were obtained were very similar to those of the M=M=1 queue (see Figure 9). Thus,

we then tried to �t the same type of ARIMA(p; 1; q) models to the 100 series, obtaining the

results presented in Table 5.

Again, di�erentiation did not produce a signi�cant number of cases of white noise. How-

ever, since the �tted ARIMA(p; 1; q) models now had higher orders, they aptly captured the

marked curvature in the initial behavior of the original series|see Figure 10. In this case,

the ARIMA(0; 1; 1) was the most prominent choice.

4. Example: A Single Lane TraÆc Analysis

We illustrate our approach with a slight modi�cation of this classical example from the

simulation literature. For instance, (Nozari, Arnold and Pegden 1984) used it, as well, in

the context of (regression) meta-model estimation. We consider a two-lane road, with the
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Fig. 9. Average Sojourn Time (M=M=2 Queue, with

� = 1 and �t = 0:5)

Table 5. Valid Fits for Average Sojourn Time (M=M=2 Queue, with � = 1)

ARIMA(0; 1; q) TIME INTERVAL ARIMA(p; 1; 0) TIME INTERVAL

FITTED MODEL �t = 0:5 �t = 1:0 FITTED MODEL �t = 0:5 �t = 1:0

ARIMA(0; 1; 0) 30 ARIMA(0; 1; 0) 30

ARIMA(0; 1; 1) 77 57 ARIMA(1; 1; 0) 20 47

ARIMA(0; 1; 2) 9 6 ARIMA(2; 1; 0) 41 16

ARIMA(0; 1; 3) 7 4 ARIMA(3; 1; 0) 20 4

ARIMA(0; 1; 4) 2 2 ARIMA(4; 1; 0) 9 1

ARIMA(0; 1; 5) 2 1 ARIMA(5; 1; 0) 7 2

ARIMA(0; 1; 6) 3 ARIMA(6; 1; 0) 3
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Fig. 10. Original and Fitted Series: Average Sojourn

Time (M=M=2 Queue, with � = 1 and �t = 0:5)

traÆc owing from two directions. One of the lanes needed to be repaired, and so it has

been closed for 500 m. TraÆc lights have been placed at each end of the closed section

to control the traÆc ow. The lights allow traÆc (from only one direction) to ow for a

speci�ed time interval. When a light turns green, the waiting cars (from that direction) start

and pass the light every 2 sec. When there are no waiting cars and the light is green, any

arriving cars will pass through the light without delay. A light cycle consists of green in

direction 1, both red, green in direction 2, both red, and then the cycle is repeated. Both

lights remain red for 55 sec to allow the cars in transit to leave the section under repair,

before traÆc from the other direction is initiated. During most of the day, the arrival of cars

is exponentially distributed with an expected inter-arrival time of 12 sec from direction 1

and 9 sec from direction 2. However, by the end of the day, there is a two-hour rush period

and the expected inter-arrival time from direction 2 is halved to 4.5 sec. The objective is

to determine suitable light cycles (for normal and rush-period traÆc) so that the average
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Table 6. TraÆc Analysis: Average Waiting Time vs. Cycle Duration

IA Time Cycle Waiting Time

Dir 1 Dir 2 Dir 1 Dir 2 Global

Average value 78.779 78.685 78.745

12 9 55-50-55-60 Min. Avg. Value 74.443 70.186 73.431

Max. Avg. Value 84.682 83.889 82.685

Average value 78.786 1441.508 920.602

12 4.5 55-50-55-60 Min. Avg. Value 71.167 1240.517 790.169

Max. Avg. Value 89.912 1589.726 1015.058

Average value 200.135 115.173 138.687

12 4.5 55-50-55-135 Min. Avg. Value 136.008 77.115 99.889

Max. Avg. Value 336.050 195.004 197.619

waiting times (for both directions) are minimized.

The �rst part of the problem is relatively conventional. Simulating green-light times at 5

sec intervals around 60 sec and analyzing the resulting average waiting times, we concluded

that the cycle 55-50-55-60 performed better; see Table 6.

Although they do not seem to be very relevant in terms of the problem statement, the av-

erage queue lengths (from each of the directions) constitute an invaluable diagnostic measure

of the system status. Since the system behavior is cyclic, we collected queue lengths (from

one direction) immediately before the light turned green for the other direction. Applying

our approach to the data corresponding to the tuned 55-50-55-60 cycle, we were able to con-

clude that they constituted white noise and that the process was stationary (see Figure 11).

However, the two-hour rush period is a more interesting situation. If we do not change

the light cycle, our approach allows us to conclude that the process is no longer stationary:

the average queue length from direction 2 will increase linearly (see Figure 12). We �tted

the ARIMA(0; 1; 0) model to the average queue length from direction 2 (from direction 1

is still white noise). Looking at Table 6, we can see that the average waiting time from
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Length (Single Lane, rush cycle 55-50-55-60)
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direction 1 remained unchanged, but from direction 2 increased 18 times. Would it be

possible to modify the cycle so that none of the queue lengths or the waiting times become

uncontrollable? Considering again 5 sec increments for the green-light time from direction 2

and the ratio of the arrival rates, we found out that the rush cycle 55-50-55-135 performed

rather well. The average waiting time from direction 2 is now signi�cantly smaller than the

one from direction 1, but, on the other hand, the average queue length is substantially larger

(two contradictory goals). In Figure 13, we represent the average queue lengths from both

directions, as well as the ARMA(1; 0) suitable for representing both series.
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5. Conclusions and Recommendations

There has not been much research work on the output analysis of non-stationary simulations.

But in this paper, we propose an innovative approach, based on classical time series methods,

that is valid, and appropriate for stationary simulations as well. An experimental evaluation

of two queueing systems showed that our approach is an e�ective tool for building meaningful

meta-models of selected system responses. Its use for decision support was illustrated using

a critical traÆc situation.

We feel that this may be only the beginning of new signi�cant developments in simulation

output analysis. Namely, this approach can be extended to multiple cases of terminating

simulations. Additional applications, new analytical meta-models, more comprehensive ex-

perimental evaluations... For what it is worth, we intend to continue exploring this promising

area of undisputable practical interest.
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