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ABSTRACT

In this work, we extend the use of time series models to the
output analysis of non-stationary discrete event simulations.
In particular, we investigate and experimentally evaluate the
applicability of ARIMA(p, d, q) models as potential meta-
models for simulating queueing systems under critical traf-
£c conditions. We exploit stationarity-inducing transforma-
tions, in order to ef£ciently estimate performance measures
of selected responses in the system under study.
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1 INTRODUCTION

Analyzing the results produced by simulation models is
certainly an area of utmost practical importance. On the
other hand, the highly autocorrelated nature of simulation
responses, namely in queuing systems, has challenged sim-
ulation analysts to propose ever more innovative approaches.

The use of classical time series models (Box, Jenkins
and Reinsel 1994) in the output analysis of stationary dis-
crete event simulations was initially proposed by Fishman
(1971). He suggested £tting an autoregressive model of or-
der p, AR(p), to a simulation response, as an intermediate
step for estimating reliable variability measures of the re-
sponse (variance, con£dence intervals). Later, Schriber and
Andrews (1984) generalized that approach and used an au-
tomated procedure for £tting mixed autoregressive-moving
average models, ARMA(p,q). In both cases, the authors re-
ported poor performance results, namely, in the coverage
rates of con£dence intervals for simple queueing systems.

Contradicting the apparent incompatibility between
queueing systems and time series models, Brandão and
Porta Nova (1999) showed that most of those results could
be related to either an insuf£cient simulation duration or an
excessive initial bias. Keeping under control these two fac-

tors, very positive results were observed for an M/M/3 sta-
tionary queue under moderate and congested traf£c situa-
tions.

This paper is organized as follows. In Section 2, we dis-
cuss the use of classical time series models to analyze the
output of non-stationary discrete event simulations. In Sec-
tion 3, we investigate the applicability of ARIMA models
as potential meta-models for queuing system simulation un-
der critical traf£c conditions. Finally, in Section 4, we draw
some conclusions and suggest further work in this area.

2 NON-STATIONARY SIMULATION

The output analysis of non-stationary discrete event simula-
tions is conspicuously absent from the literature of stochas-
tic simulation. The well-known asymptotic result, for sim-
ple queueing systems, that most response measures go to
in£nity when the utilization factor approaches one, seems to
have convinced the simulation community that it was worth-
less to explore this topic. Uncontrolled evolution, explo-
sive growth, are but two ways of characterizing a situation
that has undoubted practical interest. During rush-hour pe-
riods, system breakdowns, etc., arrival rates do actually ex-
ceed processing rates. And much needed and useful infor-
mation might be extracted from such non-stationary simula-
tions, many ”what if?” questions could be answered... What
is the expected queue length at the end of a rush-hour pe-
riod? What is the expected sojourn time for an entity ar-
riving halfway through that period? It would be even more
interesting if we could predict the evolution in time of these
and other performance measures, without having to repeat
time consuming simulations and subsequent output analy-
sis. This is the main purpose of pursuing simulation meta-
models: £nding analytical models that are simpler but realis-
tic representations of the computer programs implementing
simulation models.

Since the output produced by stochastic simulation mod-
els is essentially composed of strongly autocorrelated time
series, it seemed just natural to investigate the applicabil-
ity of the classical time series models, ARIMA(p, d, q),
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as potential meta-models for non-stationary simulations. In
most scienti£c areas where the Box-Jenkins methodology is
widely applied, data is scarcely available; that is the case, for
instance, when econometric models are £t to a single realiza-
tion of an economical time series. In contrast to that, we can
chose any number of independent replications to analyze the
output produced in discrete event simulation experiments.
Thus, if we analyze the averaged responses across runs, in-
stead of a single realization: (i) we reduce the time series
variability; (ii) we are able to identify more clearly the un-
derlying evolution of the response with respect to time; and
(iii) we make the meta-model £tting process much easier.
In addition, this is a valid £tting approach to autocorrelated
data, contrarily to regression-based procedures. If the sim-
ulation responses are non-stationary in variance, it may be
necessary to previously apply a variance-stabilizing trans-
formation.

We illustrate our meta-modelling approach to non-
stationary simulation with two case studies, two simple
queues, with utilization factors greater than or equal to one,
and we analyze the evolution of two responses: average
queue length and average time spent in the system.

3 EXPERIMENTATION

In this section, we present and discuss the experimental eval-
uation of the applicability of ARIMA(p, d, q) meta-models
for the non-stationary simulation of two M/M/s queueing
systems—that is, with exponential inter-arrival and service
times, and s identical parallel servers. We consider two dis-
tinct values for the utilization factor, ρ = λ/(sµ), where λ
and µ represent the arrival and service rates, respectively:
ρ = 1 (a critical traf£c situation) and ρ = 2 (super-critical
traf£c).

We performed a Monte Carlo experiment consisting of
3000 independent replications of each simulation model
with a reference duration of 60 time units for the followings
queueing systems:

(i) An M/M/1 queue with super-critical traf£c (ρ = 2);
and

(ii) An M/M/2 queue with critical traf£c (ρ = 1).

The actual duration varied, because each run was only ter-
minated when the last entity that had arrived before 60 time
units left the system. The initial conditions for each model
were an empty and idle system.

Queue lengths were collected at regular time intervals
∆t = 0.5, 1.0, with t ∈ [0, 60); sojourn times were sorted
according to the time interval in which the arrival had oc-
curred. Then, for each time interval, the corresponding ob-
servations across 30 runs were averaged. Finally, the Box-
Jenkins methodology was applied to the averaged time series

of each response, through the identi£cation, estimation and
diagnostic checking of the ARIMA(p, d, q) models.

Although we performed the experimentation for both in-
terval widths, we only present the graphs corresponding to
∆t = 0.5, because the results are very similar.

3.1 A Super-critical M/M/1 Queue

The super-critical traf£c situation was created with an inter-
arrival rate of λ = 2 and service rate of µ = 1, producing
the utilization factor ρ = 2.

Analyzing the average queue length for a typical set of
30 runs (see Figure 1, the hardly discernible dash-line), we
can conclude that the process is non-stationary on the mean:
there is a marked linear trend and the sample autocorrelation
function (ACF) decreases very slowly to zero. In the £g-
ure, the sample partial autocorrelation function is also rep-
resented. The results produced by the £tted model are also
represented (solid line) on the subgraph containing the orig-
inal series (dash-line). Differentiating the series (see again
Figure 1), we observed that it became stationary, without any
statistically signi£cative value on the ACF and PACF. This
was also con£rmed applying the Box-Ljung test. Thus, in
this case, we can £t the ARIMA(0, 1, 0) model to the av-
erage queue length. This is an example of the simplest pos-
sible ARIMA model, where the £rst difference produces
white noise. This process is called a random walk with drift,
if it has a nonzero expected value, or simply a random walk,
otherwise.

We repeated the analysis for the remaining 99 time se-
ries (each corresponding to an average of 30 runs) obtain-
ing the results reproduced in Table 1. In more than 90%
of the cases, the same ARIMA(0, 1, 0) model was consis-
tently validated.

Table 1: Valid Fits for Average Queue Length
(M/M/1 Queue, with ρ = 2)

TIME INTERVAL
FITTED MODEL ∆t = 0.5 ∆t = 1.0
ARIMA(0, 1, 0) 91 93

The 100 original series are represented in Figure 2, as well
as the corresponding £tted series. Comparing the two sub-
graphs, we see that both series have basically the same be-
havior.

The mean values of the differentiated data (for all the
100 series) are, approximately, 0.5 (for the case ∆t = 0.5)
and 1 (for the case ∆t = 1.0). This suggests that the av-
erage queue length is directly proportional to the elapsed
time. This important conclusion is in agreement with a little-
known asymptotic result obtained by Bailey (1964) for the
M/M/1 queue: the mean of the queue length at instant t
can be approximated by (λ − µ)t for λ > µ, thus validat-
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Figure 1: Average queue length (M/M/1, ρ = 2 and ∆t = 0.5)

ing the approach and the results presented here. In the same
Figure 2, we also represent Bailey’s result (the thick white
line in the subgraph to the right).

A similar analysis was performed for the other response,
the average sojourn time. In this case, the series were non-
stationary on both the mean and the variance and it was nec-
essary to perform a Box-Cox transformation to induce vari-
ance homogeneity. A logarithmic transformation was ap-
plied and then the £rst difference was computed. The orig-
inal series, the £rst difference of the logarithmically trans-
formed data and its corresponding ACF and PACF are rep-
resented in Figure 3 .

In this case, we tried to £t several ARIMA(p, 1, q) mod-
els to the logarithms of the values of the 100 series. The
corresponding results are reproduced in Table 2.

Table 2: Valid Fits for Average Sojourn Time
(M/M/1 Queue, with ρ = 2)

TIME INTERVAL
FITTED MODEL ∆t = 0.5 ∆t = 1.0
ARIMA(0, 1, 0) 23 53
ARIMA(0, 1, 1) 49 66
ARIMA(0, 1, 2) 70 88
ARIMA(0, 1, 3) 89 93
ARIMA(1, 1, 0) 53 34
ARIMA(2, 1, 0) 62 38
ARIMA(3, 1, 0) 64 80

0 20 40 60

0
1

0
3

0
5

0

Original Data

Time

A
ve

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th

0 20 40 60

0
1

0
3

0
5

0

Fitted Model

Time

A
ve

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th

Figure 2: Original and Fitted Series: Average Queue Length
(M/M/1 Queue, with ρ = 2 and ∆t = 0.5)

We concluded that the best ARIMA(p, 1, q) model
for representing the average sojourn time was the
ARIMA(0, 1, 3); that is, a moving average of order q = 3
is valid for approximately 90% of the differentiated series.
Again, in Figure 4 we represent the original series and the
corresponding £tted series. As before, the graphs are very
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Figure 3: Average Sojourn Time (M/M/1 Queue, with ρ = 2 and ∆t = 0.5)

similar indicating a good £t.

3.2 A Critical M/M/2 Queue

To create, now, a situation with a critical value for the utiliza-
tion factor, ρ = λ/(sµ), we chose an arrival rate of λ = 2
and a service rate of µ = 1, resulting in ρ = 1 for the uti-
lization factor.

Analyzing, for this case, the average queue length series
(dash-line in Figure 5), we can observe, as before, a clear lin-
ear trend on the data; again, the ACF decreases very slowly
to zero indicating a non-stationarity on the mean. In solid
line we represent the results produced by the £tted model.
Repeating the application of the Box-Jenkins methodology
to the average queue length response, it was again possible
to £t an ARIMA(0, 1, 0) model.

Repeated analysis of the remaining series yielded the re-
sults reproduced in Table 3.

Table 3: Valid Fits for Average Queue Length
(M/M/2 Queue, with ρ = 1)

TIME INTERVAL
FITTED MODEL ∆t = 0.5 ∆t = 1.0
ARIMA(0, 1, 0) 97 92

Again, we can conclude that the ARIMA(0, 1, 0) is a
good model for the average queue length. In Figure 6 we
represent the original series and the corresponding £tted se-
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Figure 4: Original and Fitted Series: Average Sojourn Time
(M/M/1 Queue, with ρ = 2 and ∆t = 0.5)

ries.

The results obtained for the average sojourn time in the
M/M/2 queue, with ρ = 1, were very similar to those of
the M/M/1 queue. Again, it was necessary to apply the
logarithmic transformation and to differentiate the series in
order to make it stationary (see Figure 7).
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Figure 5: Average Queue Length (M/M/2 Queue, with ρ = 1 and ∆t = 0.5)
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Figure 6: Original and Fitted Series: Average Queue Length
(M/M/2 Queue, with ρ = 1 and ∆t = 0.5)

We then tried to £t the same type of ARIMA(p, 1, q)
models to the 100 series, obtaining the results presented in
Table 4.

For ∆t = 0.5, we have two candidate models: the
ARIMA(0, 1, 2) and the ARIMA(3, 1, 0) models. In Fig-
ure 8, we represent the original series, the ARIMA(0, 1, 2)

Table 4: Valid Fits for Average Sojourn Time
(M/M/2 Queue, with ρ = 1)

TIME INTERVAL
FITTED MODEL ∆t = 0.5 ∆t = 1.0
ARIMA(0, 1, 0) 0 45
ARIMA(0, 1, 1) 91 94
ARIMA(0, 1, 2) 96 99
ARIMA(0, 1, 3) 96 100
ARIMA(1, 1, 0) 36 96
ARIMA(2, 1, 0) 83 99
ARIMA(3, 1, 0) 98 99

£tted series and the ARIMA(3, 1, 0) £tted series. We can
conclude that the two £tted models behave similarly and rep-
resent quite well the original series.

4 CONCLUSIONS AND RECOMMENDATIONS

In this work, we propose an approach that is valid for mean-
ingfully analyzing the output produced by non-stationary
stochastic simulations. Based on what we might call the
classical time series method for simulation output analysis,
the approach can be used to obtain effective meta-models,
namely, for queueing system simulation. A signi£cant ex-
perimental evaluation of our approach showed that it per-
formed quite well for two queueing systems under critical
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traf£c conditions.
It is clear that much has to be done to develop and fun-

dament the approach presented here. Also more compre-
hensive experimental evaluations, new examples of appli-
cations, other analytical models relating selected simulation
responses with model parameters... However, we feel that
this is a very promising area of undoubtedly practical inter-
est, and we intend to continue exploring it.

0 10 20 30 40 50 60

0
4

8
1

2

Original Data

Time

A
ve

ra
g

e
 S

o
jo

u
rn

 T
im

e

0 10 20 30 40 50 60

0
4

8
1

2

ARIMA(0,1,2) Fitted Model

Time

A
ve

ra
g

e
 S

o
jo

u
rn

 T
im

e

0 10 20 30 40 50 60

0
4

8
1

2

ARIMA(3,1,0) Fitted Model

Time

A
ve

ra
g

e
 S

o
jo

u
rn

 T
im

e

Figure 8: Original and Fitted Series: Average Sojourn Time
(M/M/2 Queue, with ρ = 1 and ∆t = 0.5)
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Figure 7: Average Sojourn Time (M/M/2 Queue, with ρ = 1 and ∆t = 0.5)


