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The method of control variates has been intensively used for reducing the variance of estimated (linear)

regression metamodels in simulation experiments. In contrast to previous studies, this paper presents a proce-

dure for applying multiple control variates when the objective is to estimate and validate a nonlinear regression

metamodel for a single response, in terms of selected decision variables. This procedure includes robust sta-

tistical regression techniques for estimation and validation. Assuming joint normality of the response and

controls, confidence intervals and hypothesis tests for the metamodel parameters are obtained. Finally, results

for measuring the efficiency of the use of control variates are discussed.
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1. Introduction

Computer simulation models are commonly used for estimating and validating metamodels. A

simulation metamodel is a mathematical relationship between the input (input parameters or design

variables) and the output (response) of the computer simulation model; see Barton (1992). If this aux-

iliary model is an accurate representation of the simulation model, it can be very useful for prediction

and sensitivity analysis, since it uses fewer computer resources, when compared with the more time

consuming and expensive simulation program. In order to improve the efficiency of metamodel esti-

mation, it is common to use the control variates technique. This technique is one of the most widely

used variance reduction methods, since it is not very difficult to implement, it is a general method and

it does not alter the underlying stochastic process.

Many authors have studied the method of control variables in the context of linear metamodel esti-

mation; see, for example, Nozari, Arnold and Pegden (1984), Porta Nova and Wilson (1989) and Shih

and Song (1995). In particular, the polynomial form of the general linear regression model has been

extensively analyzed. However, polynomials are unable to produce a global fit to curves of arbitrary

shape. Moreover, in real-life systems nonlinearity is common and approximation using polynomials

becomes unrealistic. Consequently, in these problems, polynomials often do not provide good fits—

e.g., in problems involving queueing systems (Friedman and Friedman (1985)). An alternative that
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provides better and more realistic global fits is the use of statistical nonlinear regression techniques

(Santos and Porta Nova (1999)). In this paper, we apply the method of control variates to the esti-

mation and validation of a nonlinear metamodel of a single simulation response, expressed in terms

of multiple inputs. In fact, the procedure presented here is a generalization of the work of Nozari,

Arnold and Pedgen (1984) to nonlinear simulation metamodels.

This paper is organized as follows. In Section 2, we formulate the nonlinear metamodeling prob-

lems, both without and with control variates. In Section 3, we obtain some distribution-free results.

In Section 4, we discuss the metamodel estimation problem under a joint normality assumption. The

minimum variance ratio and the loss factor are also obtained. In Section 5, the methodology described

in this paper is illustrated using a simple M=M=1 queueing system. Finally, Section 6 is reserved for

conclusions.

2. Nonlinear Metamodel Estimation

2.1 Nonlinear Metamodels

Consider an experimental design consisting of n different design points, defined by the d decision

variables fXil : i = 1; : : : ; n; l = 1; : : : ; dg. For each design point, r independent replications of the

simulation model are carried out and the experiment yields f(Yij;Cij) : i = 1; : : : ; n; j = 1; : : : ; rg,

where Yij is the relevant system response andCij is a vector of q concomitant control variables, with a

known mean. Without loss of generality, we assume E [Cij] = 0, with i = 1; : : : ; n and j = 1; : : : ; r.

Suppose that the simulation model (computer program) can be represented by the metamodel

Yij = f(Xi:; �) + �ij; (1)

for i = 1; : : : ; n and j = 1; : : : ; r, where �ij � NID (0; �2), with � > 0, and � is an m � 1 vector

of unknown parameters. Under mild regularity conditions, every nonlinear control variable scheme

behaves asymptotically like a linear control variable scheme; see Glynn and Whitt (1989) and Loh

(1994). As a result, we only consider linear schemes involving control variables. Thus, we assume

that the error �ij = Yij � f(Xi:; �), in problem (1), has a linear regression on the control vector Cij,

with an unknown q � 1 vector of control coefficients Æ and an error "ij. This way, the simulation

model can also be represented by the replicated simulation metamodel

Yij = f(Xi:; �) +CijÆ + "ij; (2)

with i = 1; : : : ; n and j = 1; : : : ; r.
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Let Z be the following random matrix:

Z =

26666666666666664

Y11 C111 : : : C11q

...
...

...

Yn1 Cn11 : : : Cn1q

...
...

...

Y1r C1r1 : : : C1rq

...
...

...

Ynr Cnr1 : : : Cnrq

37777777777777775
= [YC]: (3)

Assume that the row vector Zl: is continuous and has the same probability density function for all

l = 1; : : : ;N = nr, such that the following dispersion matrix exists:

� = D[Zl:] =

24 �2 �Y C

�CY �C

35 ; (4)

where �2 = Var[Yij]. As a consequence, �C = D[Cij] is nonsingular and also positive definite with

probability one, for all replications of all experimental points (Porta Nova and Wilson (1989)). The

covariance vector between Yij and Cij, denoted by �Y C = C[Yij;Cij], is assumed to be constant for

all i = 1; : : : ; n and j = 1; : : : ; r, with �CY = �T
Y C .

In order to simplify the estimation procedure, instead of problems (1) and (2), we consider re-

spectively the equivalent least squares problems, in which the individual observations, at each design

point, are replaced by their averages across runs:

�Yi: = f(Xi:; �) + ��i:; i = 1; 2; : : : ; n; (5)

with ��i: � NID(0; �2
Y ), �

2
Y = Var[ �Yi:] = �2=r and

�Yi: = f(Xi:; �) + �Ci:Æ + �"i:; i = 1; 2; : : : ; n; (6)

where �Ci: = ( �Ci:1; : : : ; �Ci:q), with �Ci:k =
1
r

P
r

j=1Cijk.

2.2 Objectives

In this paper, two kinds of results are exposed:

(i) Assuming that the metamodel (2) is valid, we obtain the approximated minimum variance ratio,

the nonlinear least squares estimator Æ̂ (for the true vector of control coefficients Æ), and the corre-

sponding controlled nonlinear least squares estimator �̂(Æ̂) (to estimate the true vector of metamodel

coefficients �);
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(ii) Assuming that the response and the control variables have a joint multivariate normal distri-

bution, we derive the approximated loss factor and we construct asymptotic confidence regions for �.

We also propose procedures for testing hypotheses about the metamodel parameters.

3. General Results on Metamodel Estimation

In this section, we present results on metamodel estimation using control variables that do not

depend on the assumption of joint normality between the response and the control variables.

3.1 Minimum Variance Ratio

If the Jacobian matrix F of f = (f(X1:; �
�); : : : ; f(Xn:; �

�)T has full column rank m, then we

apply result (12.21) of Seber and Wild (1989) to problem (5), obtaining the following asymptotic

ordinary nonlinear least squares estimator of �:

�̂ � �� +
�
F
T
F
�
�1
F
T
�
�Y � f

�
; (7)

where �� is the exact value of � and �Y = ( �Y1:; : : : ; �Yn:)
T (in order to simplify the notation, we use

F = F(��) and f = f(��)). The mean and the covariance of this estimator are obtained applying

(12.23) of Seber and Wild (1989) to problem (5),

E [�̂] = ��; D[�̂] =
�2

r
(FT

F)�1: (8)

When control variables are observed, and for a fixed vector of control coefficients �, the least squares

estimator of � is given approximately by

�̂(�) � �� + (FT
F)�1

F
T [ �Y � �C�� f ]; (9)

where

�C =

26664
�C1:1 : : : �C1:q

...
...

�Cn:1 : : : �Cn:q

37775 :
This estimator is obtained representing problem (6) in the form �Yi:� �Ci:� = f(Xi:; �) + �"i: and then

determining the ordinary nonlinear least squares estimator as in (7) (considering a fixed �).

The approximation (9) is equivalent to

�̂(�) � �� + (FT
F)�1

F
T [ �Y � f ]� (FT

F)�1
F
T �C�;

and, when control variables are not used, the least squares estimator is given by (7), so

�̂(�) � �̂ � (FT
F)�1

F
T �C�;
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that is, �̂(�) 6= �̂, or in other words, observing control variables with known means results in a

different estimator of �. As a consequence, if the random matrix has a probability density function,

then using E [ �C] = 0 and E [�̂] = ��, we obtain

E [�̂(�)] = ��: (10)

To obtain the dispersion matrix D[�̂(Æ)], it is useful to write the estimator (9) in the form �̂(�) �

A[ �Y � �C�] + b, where A = (FT
F)�1

F
T and b = �� � (FT

F)�1
F
T
f . Thus, we can write

D[�̂(�)] = AD[ �Y � �C�]AT ; (11)

where �Y� �C� = (�Y1:� �C1:�; : : : ; �Yn:� �Cn:�)
T . Since this work is in the context of the method of

independent replications, we have

Cov[ �Yi: � �Ci:�; �Yi0: � �Ci0:�] = 0; i 6= i0: (12)

Moreover,

Var[ �Yi: � �Ci:�] = �2
�Y + �T

� �C�� 2�T� �C �Y : (13)

The vector of control coefficients that minimizes this variance is given by Æ = �
�1
�C
� �C �Y ; see (8) and

(9) of Lavenberg and Welch (1981). But � �C = �C=r and � �C �Y = �CY =r, and as a result

Æ = �
�1
C �CY : (14)

Substituting (14) in (13), we obtain

Var[ �Yi: � �Ci:Æ] =
1

r
� 2; (15)

where

� 2 = �2 � �Y C�
�1
C �CY : (16)

(12), (15) and (16) imply that D[ �Y � �CÆ] = 1
r
(�2 � �Y C�

�1
C �CY )In. Substituting this dispersion

matrix in (11) and since A = (FT
F)�1

F
T , we have

D[�̂(Æ)] =
1

r
(�2 � �Y C�

�1
C �CY )(F

T
F)�1: (17)

Using (8) and (17), we conclude that the maximum reduction in variance that is possible to obtain,

with the use of control variables, is given approximately by the minimum variance ratio

�(Æ) =
jD[�̂(Æ)]j

jD[�̂]j
� 1� �2Y C ; (18)
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where �2Y C = �Y C�
�1
C �CY =�

2 is the multiple correlation coefficient between Yij and Cij , i =

1; : : : ; n and j = 1; : : : ; r. In general, as in the linear case, Æ is unknown, so it must be estimated

and, as a consequence, the variance will increase. We will use a loss factor to quantify the percentage

increase in variance when Æ must be estimated.

3.2 Controlled Nonlinear Least Squares Estimator

In order to obtain estimators for the unknown true parameters Æ and �, Æ̂ and �̂(Æ̂), we resort to the

method of nonlinear least squares. Given appropriate regularity conditions (Seber and Wild (1989)),

then for large N, the least squares estimators of � and Æ in (6) satisfy, approximately:

�̂(Æ̂) � �� + (FT
F)�1[ �Y � f �CÆ̂]; (19)

Æ̂ � (CT
PC)�1

C
T
P[ �Y � f ]; (20)

where

P = In � F(F
T
F)�1

F
T : (21)

These results are obtained as follows. The Taylor’s series expansion of fi = f(Xi:; �) about the point

� = �� yields f(�) � f(��) + F(� � ��). As a result, (6) becomes

�Y � f(��) � F(� � ��) +CÆ + �": (22)

Applying (6) and (8) of Searle (1971), page 342, to this (linearized) problem (22), we can write

�̂(Æ̂)� �� � (FT
F)�1

F
T ( �Y � f)� (FT

F)�1
F
T
CÆ̂;

As a consequence, we obtain (19). Finally, (20) and (21) are obtained using (10) and (11) of Searle

(1971), page 342.

3.3 Validation Procedure

After estimating the metamodel parameters, we must test the ability of the estimated metamodel to

approximate the simulation model response (i.e., to ascertain if the estimated metamodel adequately

fits the simulation data). To test the adequacy of the metamodel (6), we propose the following F -test

for lack of fit (see Seber and Wild (1989), page 32):

F =
(SSE � SSPE)=(n�m� q)

SSPE=(N� n)
;

where, in this situation, SSE =
P

n

i=1

P
r

j=1[Yij � f(Xi:; �̂) � CijÆ̂]
2 is the usual residual sum of

squares and SSPE =
P

n

i=1

P
r

j=1[Yij �
�Yi:]

2 is the pure error sum of squares. When the metamodel
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is valid and if there exists a parameterization for which it can be adequately approximated by a linear

model, then F is roughly distributed as an Fn�m�q;n(r�1) distribution.

4. Results for Normal Nonlinear Metamodels

In order to simplify the presentation of the results, when the response and the control variables have

a joint normal distribution, we will introduce some additional notation and hypotheses. Consider the

models (5) and (6). Suppose that, for the l-th design point,

Zl: � Nq+1

��
�l; 0

T
�
;�
�
; (23)

where� is given by (4). As a result, the N� (q+1) random matrix, defined by (3), has a multivariate

normal distribution

Z � NN;q+1 (�Z ;�;�) ; (24)

with unknown� and E [Z] = �Z = (�Y ; 0), where

�Y = (f(X1:; �); : : : ; f(Xn:; �); : : : ; f(X1:; �); : : : ; f(Xn:; �))
T :

The dispersion matrix between the ith and kth rows is D[Zi:; Zk:] = �ik� for 1 � i; k � N and

the dispersion matrix between the jth and lth columns is D[Zj:; Z:l] = �jl� for 1 � j; l � q + 1.

Suppose also that � and � are positive definite. Moreover, the rows of Z are mutually independent,

since they correspond to independent executions of the simulation program. As a consequence, we

consider � = IN in the following development. If the q � q matrix �C is positive definite, then the

conditional distribution of Y givenC is given by

YjC � NN

�
�Y:C; �

2
IN

�
; (25)

with � 2 given by (16) and

�Y:C = �Y +C��1
C �CY ; (26)

see Theorem 17.2-g), of Arnold (1981). As a consequence, conditioning on C, we conclude that the

correct metamodel is (2). In the following development, we will see that the asymptotic nonlinear least

squares estimators are unbiased, both conditionally and unconditionally. Moreover, the approximated

confidence region, for the true metamodel parameter vector, centered at �̂(Æ̂) will also be obtained.
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4.1 Distribution of the Controlled Estimator

If Z � NN;q+1(�Z; IN;�) with unknown � and �, then we will use the fact that the conditional

distribution of Y given C is normal and given by (25). Conditioning on C, we see that the correct

nonlinear metamodel for a normal response is

Y = ~f(X; �) +CÆ + e; (27)

where ~f(X; �) = (f(X1:; �); : : : ; f(X1:; �); : : : ; f(Xn:; �); : : : ; f(Xn:; �))
T (a vector with N com-

ponents) and e = ("11; : : : ; "1r; : : : ; "n1; : : : ; "nr)
T . Using the Taylor’s expansion in a neighborhood

of (X; ��), we obtain

~f(X; �) � ~f(X; ��) + ~F(� � ��); (28)

where ~F is the Jacobian matrix of ~f , calculated at (X; ��). As a result, (27) can be rewritten as

G � ~F�+CÆ + e (29)

where G = Y � ~f(X; ��) and � = � � ��. Applying Searle (1971), page 342, to the problem

(29), we obtain �̂(Æ̂) � (~FT ~F)�1 ~FT
G � (~FT ~F)�1 ~FT

CÆ̂, where Æ̂ = (CT ~PC)�1
C

T ~PG and ~P =

IN � ~F(~FT ~F)�1 ~FT . That is,

�̂(Æ̂) � BG with B = (~FT ~F)�1 ~FT [IN �C(C
T ~PC)�1

C
T ~P]: (30)

Since (25) is verified, we have approximately GjC � NN (�G:C ; �
2
IN), where �G:C = �Y:C �

~f(X; ��). Using this result and (30), we can apply Theorem 17.2-d) of Arnold (1981) and so �̂(Æ̂)jC �

Nm(B�G:C ; �
2
BB

T ). Suppose that ~F has rank m, then ~P is an orthogonal projection of RN into

R(~F)?; see Seber (1989). Since ~P is an orthogonal projection, then ( ~FT ~F)�1 ~FT ~P = ~P~F(~FT ~F)�1 =

0 and, as a consequence, BBT = (~FT ~F)�1[Im + ~FT
C(CT ~PC)�1

C
T ~F(~FT ~F)�1]. Applying Nozari

(1982), page 121, to the linearized problem (29), we obtain E [�̂(Æ̂)jC] = �. As a result, B�G:C = �

and we have �̂(Æ̂)jC � Nm(�; �
2
BB

T ). But �̂(Æ̂) = �̂(Æ̂)� �� and � = � � ��, so E [�̂(Æ̂)jC] = �

(givenC, �̂(Æ̂) is an unbiased estimator of �), D[�̂(Æ̂)jC] = � 2BBT and

�̂(Æ̂)jC � Nm

�
�; � 2BBT

�
: (31)

In order to construct a confidence region for � centered at �̂(Æ̂), we will present an estimator of � 2.

Applying Theorem 3.3 of Porta Nova (1985), to the problem (29), we obtain

ê
T
êjC �W1(N�m� q; � 2; 0);
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that is, êT êjC � � 2�2
N�m�q

, where ê = G� ~F�̂�CÆ̂; see Theorem 17.6-b) of Arnold (1981). But

G = Y� ~f(X; ��) and �̂ = �̂ � ��, then ê = Y� ~f(X; �̂)�CÆ̂. As a result, givenC, an unbiased

estimator for � 2 is given by

�̂ 2jC =
ê
T
ê

N�m� q
=

1

N�m� q

nX
i=1

rX
j=1

[Yij � f(Xi:; �̂)�CijÆ̂]
2; (32)

where

�̂ 2jC � (N�m� q)�1� 2�2
N�m�q

: (33)

The unbiasedness results from a property of the �2 distribution: E[�̂ 2jC] = E[êT ê]=(N�m� q) =

(N�m� q)� 2=(N�m� q) = � 2.

4.2 Asymptotic Variance Ratio and Loss Factor

Just like Venkatraman and Wilson (1986) and Porta Nova and Wilson (1989), and in contrast to

Nozari, Arnold and Pedgen (1984) and Rubinstein and Marcus (1985), we consider that the adequate

generalization of the performance measures (variance ratio and loss factor), introduced by Laven-

berg, Moeller and Welch (1982), is based on the unconditioned dispersion matrix of the controlled

coefficients in metamodel (2). As a consequence, we will now obtain the unconditioned variance of

�̂(Æ̂).

Since (31) is verified, we have

E [�̂(Æ̂)jC] = � and D[�̂(Æ̂)jC] = � 2BBT :

So,

D[�̂(Æ̂)] = E [D[�̂(Æ̂)jC]] +D[E [�̂(Æ̂)jC]] = E [D[�̂(Æ̂)jC]] (34)

and

D[�̂(Æ̂)jC] � � 2(~FT ~F)�1[Im + ~FT
C(CT ~PC)�1

C
T ~F(~FT ~F)�1]:

Let U = (~FT ~F)�1 ~FT
C and V = C

T ~PC. Then, we can write

D[�̂(Æ̂)jC] � � 2(~FT ~F)�1 + � 2UV�1
U

T : (35)

SinceC � NN;q(0; IN;�C) and ~P is an orthogonal projection of RN into a space of dimension N�m

(R(F)?), we apply Theorem 17.7 of Arnold (1981) to obtainV = C
T ~PC �Wq (N�m;�C).
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Using the fact that (~FT ~F)�1 ~FT (~FT ~F)�1 ~FT ~P = 0 and, since ~P is positive definite, we apply

Theorem 17.7-b.2) of Arnold (1981) and we can conclude that U and V are independent. Taking the

expected value in (35), we obtain

E [D[�̂(Æ̂)jC]] � � 2(~FT ~F)�1 + � 2E [UV�1
U

T ]

Using the results in the Appendix of Nozari, Arnold and Pedgen (1984), we have

E [UV�1
U

T ] =
q

N�m� q� 1
(~FT ~F)�1:

Combining the two previous results, we obtain

E [D[�̂(Æ̂)jC]] � � 2
N�m� 1

N�m� q� 1
(~FT ~F)�1:

But ~FT = [FT : : :FT ], so (~FT ~F)�1 = F
T
F=r and, as a result,

E [D[�̂(Æ̂)jC]] � � 2
N�m� 1

r(N�m� q� 1)
(FT

F)�1;

that is, from (34), we have the following asymptotic result

D[�̂(Æ̂)] � � 2(FT
F)�1 N�m� 1

r(N�m� q� 1)
:

This approximation, in conjunction with (8) and (16), allows us to obtain the following approximated

generalized variance ratio:

�(Æ̂) =

���D[�̂(Æ̂)]������D[�̂]��� �
N�m� 1

N�m� q� 1

� 2

�2
=

N�m� 1

N�m� q� 1
(1� �2Y C): (36)

Comparing this with the minimum variance ratio (18), we observe a degradation of the maximum

variance reduction, namely the loss factor:

LF(Æ̂) =
N�m� 1

N�m� q� 1
: (37)

4.3 Asymptotic Confidence Regions for the Metamodel Coefficients

The objective of this section is to determine a confidence rectangle consisting of m confidence

intervals for �j, j = 1; : : : ;m. In fact, it is simpler to represent graphically and to explain the

meaning of a confidence rectangle of this type, when compared with the more common approximated

confidence ellipsoid.

Since (31) is verified, then using Theorem 3.10 of Arnold, we can ensure that conditioning on C:

(�̂(Æ̂)� ��)T (BBT )�1(�̂(Æ̂)� ��)

� 2
jC � �2

m
(38)
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On the other hand, (33) can be rewritten as

(N�m� q)
�̂ 2

� 2
jC � �2

N�m�q
: (39)

Combining (38) and (39), we obtain

(�̂(Æ̂)� ��)T (BBT )�1(�̂(Æ̂)� ��)

m�̂ 2
jC � Fm;N�m�q:

Given C, an asymptotic confidence region for �, with conditional coverage probability of at least

1� �, is given by (
�� :

(�̂(Æ̂)� ��)T (BBT )�1(�̂(Æ̂)� ��)

m�̂ 2
� Fm;N�m�q;1��

)
: (40)

Since this confidence region has conditional coverage of at least 1 � �, it has also unconditional

coverage of at least 1� �.

Let �̂i(Æ̂) be the i-th component of the vector �̂(Æ̂) and let �̂ 2[BBT ]ii be the corresponding vari-

ance estimator (the i-th diagonal element of �̂ 2BBT ). Since �̂i(Æ̂) is conditionally independent of

�̂ 2[BBT ]ii givenC, the results (31) and (33) imply that

�̂i(Æ̂)� ��i

�̂
q�
BB

T
�
ii

jC � tN�m�q;

where tN�m�q represents the Student t-distribution with N� m� q degrees of freedom. As a conse-

quence, using the Bonferroni method, a confidence rectangle for � with conditional coverage proba-

bility of at least 1� � has the form

�̂k(Æ̂)� tN�m�q;1��=(2p)�̂
�
BB

T
�1=2
kk

; k = 1; : : : ; p; (41)

where 1 � p � m. This confidence region has conditional coverage probability of at least 1 � �, so

it also has unconditional coverage probability of at least 1� �.

4.4 Hypothesis Testing on the Metamodel Coefficients

Suppose that we want to test the hypothesis H0 : �� = �0 versus H1 : �� 6= �0. Since (31) is

verified and using Theorem 3.10 of Arnold (1981), we observe that, conditioning on C:

(�̂(Æ̂)� �0)
T (BBT )�1(�̂(Æ̂)� �0)

� 2
� �2

m
; (42)

if H0 is true. Combining (42) and (39) and following an identical procedure to the one considered in

4.3, we reject H0, with confidence level 100(1� �)%, if

(�̂(Æ̂)� �0)
T (BBT )�1(�̂(Æ̂)� �0)

m�̂ 2
> Fm;n�m�q;1��: (43)

11



5. Numerical Results for Queueing Application

We illustrate our methodology using a simple M=M=1 queueing system. We assume that cus-

tomers arrive according to a Poisson process with a constant expected arrival rate, �, and that service

times follow an exponential distribution with a constant expected service time, 1=� � 1. The perfor-

mance measure of interest is the average waiting time in the queue. The objective is to express this re-

sponse as a function of the queue utilization factor, � = �=� (a single decision variable). The available

concomitant output variables, that can be used as controls, are the average service time and the average

inter-arrival time. In this experiment, after some minor adjustments, twelve (n = 12) different values

for � were considered: f�i : i = 1; 12g = f0:1; 0:2; 0:3; 0:4; 0:5; 0:55; 0:6; 0:7; 0:75; 0:85; 0:9; 0:95g.

There were r = 20 replications for each of the n = 12 design points. Different replications used the

same value for the independent variable �i, but different pseudo-random number seeds. Each of these

20 replications started with an empty and idle system (no customers waiting). At each design point,

we ran Welch’s procedure (Welch (1983)) to determine the length of each simulation run and the

initial data deletion. For example, at the design point � = 0:95, we ignored 3500 observations from

the beginning of each run and we used only the remaining 36500 observations (approximately 85%

of the number of observations in the run), while considering a Welch window of 10000; see Table

1. We then compared the dispersion diagram based on the collected data (Figure 1) with commonly

Table 1: Initial data deletion.

Observations Welch’s

�i Deleted In run window

0:10,0:20,0:30 500 3500 1000

0:40 1000 7000 1000

0:50 1500 10000 1000

0:55,0:60,0:70,0:75 1500 10000 4000

0:85 2000 20000 8000

0:90 2500 20000 10000

0:95 3500 40000 10000

available theoretical curves. To relate the average waiting time in the queue with the utilization factor,

we chose the hyperbolic metamodel Yij =
�1Xi

1+�2Xi

+ �ij (where Yij is the average queue waiting time

during the j-th run at experimental point i), with �ij � N (0; �2
i ) (i = 1; : : : ; 12, j = 1; : : : ; 20),

and �2
i varies with i. For stabilizing the variance, we took logarithms on both sides of the above

12
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Figure 1: Dispersion diagram of the M=M=1 queue.

expression, obtaining

logYij = log
�1Xi

1 + �2Xi

+ �ij; i = 1; : : : ; 12; j = 1; : : : ; 20; (44)

with �ij = log(1 + �ij=E[Yij]). E[�ij] � 0, because �ij is small when compared with E[Yij] and

Var[�ij] is approximately constant for all i = 1; : : : ; n and j = 1; : : : ; r. We measure the variance

heterogeneity using the quantity

het = max
i=1;::: ;12

dVar[�ij]= min
i=1;::: ;12

dVar[�ij];
with

dVar[�ij] =
24 1

r � 1

rX
j=1

 
logYij �

1

r

rX
j=1

logYij

!2
351=2

;

see Kleijnen (1992). We obtained a het value approximately constant and equal to 1. For improving

the efficiency of metamodel estimation, we chose the following control variates

Ckij =
tkij � �ki

&ki
; k = 1; 2; i = 1; : : : ; n; j = 1; : : : ; r;

where t1ij is the average inter-arrival time and t2ij is the average service time. Both were sampled

from exponential distributions with known means and variances: E[t1ij] = �1i = 1=�i, Var[t1ij] =

&21i = 1=�2i , E[t2ij ] = �2i = 1=�2 = 1 and Var[t2ij] = &22i = 1=�2 = 1. The hypothesized controlled

problem is

logYij = log
�1Xi

1 + �2Xi

+ Æ1C1ij + Æ2C2ij + �ij; i = 1; : : : ; 12; j = 1; : : : ; 20:

13



5.1 Estimation and Validation

We obtained the least squares estimators �̂ and �̂(Æ̂) using the Levenberg-Marquart method, im-

plemented in MATLAB, with a termination tolerance of 10�6 and maximum number of function

evaluations equal to 600; see Table 2.

Table 2: Estimated Metamodel Coefficients.

Metamodel Direct Estimator Controlled Estimator

Coefficients �̂ �̂(Æ̂)

�1 0:9982 1:0001

�2 �0:9992 �0:9991

After estimation, the validation of the controlled metamodel was carried out. Since Fn�m�q;N�n;� =

F8;228;0:05 � 1:95, with N = 240, based on the F -test, we do not reject the metamodel with control

variables; see Table 3. As a consequence, based on this validation procedure, we do not reject the

controlled metamodel.

Table 3: Testing for lack-of-fit.

Sum of Mean of

Source d.f. Squares Squares F

Lack-of-fit 8 0:008036 0:001004 0:119

Pure Error 228 1:923 0:008435

5.2 Confidence Regions and Hypothesis Testing

Since Fm;N�m�q;� = F2;236;0:05 = 3:034 and �̂ 2 = 8:184�10�3, the 95% approximated confidence

ellipsoid for �, centered at �̂(Æ̂), is given by (40):n
�� : (�̂(Æ̂)� ��)T (BBT )�1(�̂(Æ̂)� ��) � 4:966� 10�2

o
;

where

BB
T =

24 3:2891� 10�2 1:8495� 10�3

1:8495� 10�3 2:2099� 10�4

35 :
The corresponding approximated confidence rectangle for �, with coverage probability of at least

1�� = 0:95, from (41), is given in Table 4. In the construction of this confidence rectangle, we used

tN�m�q;1��=(2m) = t236;0:9875 � 2:256. We tested the hypothesis H0 : �
� = �0 = (1:0;�1:0)T versus

14



Table 4: Approximated Bonferroni 95% Confidence Intervals.

Metamodel

Coefficients Controlled Estimator

�1 1:0001188� 3:35� 10�3

�2 �0:9991349� 2:74� 10�4

H1 : �
� 6= �0 = (1:0;�1:0)T , with a confidence level of 0:95%, using Fm;N�m�q;1�� = F2;236;0:95 =

3:034. We obtained (�̂(Æ̂) � �0)
T (m�̂ 2BBT )�1(�̂(Æ̂) � �0) = 0:3848 (43). Therefore, we do not

reject the null hypothesis H0.

5.3 Experimental Variance Ratio and Loss Factor

In order to estimate the variance ratios and loss factors, we adapted the procedure described

in Porta Nova and Wilson (1989) to our situation. Thus, we performed a meta-experiment with

K = 30 independent replications of the basic experiment, consisting of twelve design points (� =

0:1; 0:2; etc:) and twenty independent replications for each design point. For each kth replication of

the basic experiment (k = 1; : : : ;K), we calculate the direct estimator �̂
k

and the control-variate

estimator �̂(Æ̂)k for the metamodel coefficient vector �. From the random sample f�̂
k
: 1 � k � Kg

we compute a unbiased estimator for D[�̂] as follow:

D̂[�̂] =
1

K

KX
k=1

�
�̂
k
�
�̂
�
� �

�̂
k
�
�̂
�
�T

; where
�̂
� =

1

K

KX
k=1

�̂
k
;

and similarly from the random sample f�̂
k
: 1 � k � Kg we compute an unbiased estimator D̂[�̂(Æ̂)]

of D[�̂(Æ̂)]. Based on this estimators, we compute the following estimator of the variance ratio (36),

wich we call the observed variance ratio:

�̂(Æ̂) =

���D̂[�̂(Æ̂)]������D̂[�̂]��� : (45)

In order to obtain the minimum variance ratio (18), at each design point we compute unbiased esti-

mators for the variance of Y , �2, covariance vector between Y and C, �Y C , and despersion matrix

of C, �C . For example, if Y k
i denotes the mean response observed at the ith design point on the kth

independent replication of the basic experiment, then the variance of Y is estimated by

(�̂2)i =
1

K

KX
k=1

�
Y k
i � �Y

�2
;
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where �Y =
P

K

j=1 Y
j
i =K. As a result, a pooled estimator of �2 based on all n experimental points

is given by: �̂�
2
=
P

n

i=1(�̂
2)i=n. The other estimators are obtained in a similar way: �̂�Y C =P

n

i=1 �̂
i
Y C=n, where

�̂
i

C =
1

K

KX
k=1

( �Ck
i: �

��Ci:)
T ( �Ck

i: �
��Ci:);

with ��Ci: =
P

K

k=1
�Ck
i:=K; and �̂�Y C =

P
n

i=1 �̂
i
Y C=n, where

�̂i
Y C =

1

K

KX
k=1

( �Y k
i: �

��Y i:)( �C
k
i: �

��Ci:):

Using this numerical values, we calculate the following estimator of (18) that we call the estimated

minimum variance ratio:

�̂(Æ) = 1�
�̂�Y C

�̂
�
�1

C
�̂�
T

Y C

�̂�
2

: (46)

Multiplying (46) by the loss factor (37), we obtain the predicted variance ratio

�� = �̂(Æ)LF(Æ̂):

The observed loss factor is given by

cLF(Æ̂) = �̂(Æ̂)

�̂(Æ)
:

The predicted variance ratio can be compared with the observed variance ratio and the observed loss

factor can be compared with the theoretical loss factor. The numerical results are reported in Table 5.

Table 5: Estimation of the Variance Ratios and Loss Factors.

Estimated Variance Ratios

Actual Loss Factor

Metamodel Minimum Predicted Observed True Estimated %

Coefficient �̂(Æ) ��(Æ̂) �̂(Æ̂) LF(Æ̂) cLF(Æ̂) Error

� 0:61 0:62 0:99 1:01 1:20 60:6%

In the example described here, the maximum percentage reduction in generalized variance that

can be achieved using control variates is approximately 100[1 � �̂(Æ)]% = 39%. Since we do not

know Æ, it must be estimated. Nevertheless the resulting estimator �̂(Æ̂) has a smaller variance, when
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compared with the estimator �̂ without control variates. The numerical results presented here are in

agreement with the theoretical results developed in this article. The error obtained for the loss factor

is similar to the value obtained by Porta Nova and Wilson (1989), 57:7%. These authors analyzed a

queueing network simulation in the context of a linear metamodel estimation.

6. Conclusions

The main objective of this paper is to establish some important results on the use of multiple

control variates for improving the precision of nonlinear regression metamodel estimation. This tech-

nique can be useful in many situations where it is possible to identify effective concomitant control

variables. Since nonlinear regression models are better, than linear models, in capturing the shape of

arbitrary mathematical functions, we emphasize the importance of using valid nonlinear metamodels

in simulation studies. Also, nonlinear metamodels allow us to characterize the precision of the fit by

the use of confidence intervals and they are more robust than linear models when extrapolating from

the actual experimental domain.

For experimental designs with a sufficiently large number of experimental points and under certain

regularity conditions, the efficiency of metamodel estimation can be improved using the method of

control variables. However, whether a regression metamodel is used in the simulation context or

not, it must be validated. The validation can be made using, for example, the lack of fit F -test

present in the statistical literature on nonlinear regression models. In our experimental study, we

observed a marked sensitivity of the variance ratio �(Æ̂) and the loss factor LF(Æ̂) with respect to

the validity of the assumed controlled problem (2). As a consequence, it is imperative to resort to

statistical validation techniques, like the above mentioned F -test, in order to verify the capability of

the controlled metamodel in representing the simulation model.
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