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ABSTRACT

In this paper, we present an approach for analyzing the

output of non-terminating cyclical simulations. Deter-

ministic components are estimated with nonlinear re-

gression and Fourier series, while SARIMA models are

used for the residuals. The approach is illustrated with

a single lane traÆc analysis. Some conclusions and sug-

gestions for further work are stated.

1 INTRODUCTION

In virtually all simulation studies, the output analysis

of discrete event simulation models is critically impor-

tant. Indeed, the most perfectly crafted model can be

rendered useless by a careless statistical analysis of the

model-produced results. On the other hand, output

analysis has been, as well, one of the most active re-

search areas in simulation, for the last several decades.

In fact, many innovative approaches have been pro-

posed to extract useful information from the raw data

generated by time-consuming computer programs. One

such approach is the classical time series (Box, Jenk-

ins and Reinsel 1994) method. Initially proposed by

Fishman (1971), it did not receive much attention, ex-

cept for Schriber and Andrews (1984). In both cases,

the context was the steady-state analysis of stationary

simulations. Recently, interest in this method revived;

see Brand~ao and Porta Nova (2003a,b). In contrast to

previous work, our research has been focused on the

use of classical time series models for analyzing non-

stationary simulations. But, simulations with periodic

or cyclical behavior still remain a mostly unexplored

topic in the specialized literature. One exception is a

brief reference by Law and Kelton (2000) on how the

method of independent replications could be used to ob-

tain point and con�dence interval estimates for cyclical

means. However, many real-life systems of undeniable

practical interest actually present some kind of cycli-

cal behavior, namely in areas like traÆc engineering,

banking, inventory management and manufacturing.

This paper is organized as follows. In Section 2, we

discuss how non-terminating cyclical simulations can

be analyzed using seasonal time series models. In Sec-

tion 3, we illustrate our approach, analyzing a traÆc

problem. Finally, in Section 4, we present some conclu-

sions and suggestions for further work.

2 TIME SERIES FOR CYCLICAL SIMULA-

TIONS

It is well known that the output produced by discrete

event simulation models is highly autocorrelated. This

has driven analysts to exploit this dependence structure

through the use of classical time series models. These

models were either used as a means of building con-

�dence intervals for selected performance measures|

Fishman (1971) and Schriber and Andrews (1984)|

or as meta-models for representing the responses; see

Brand~ao and Porta Nova (2003a,b). In our previous

work, we used ARIMA(p; d; q) models for analyzing

non-stationary (terminating) simulations. In some situ-

ations, it was necessary to previously apply a variance-

stabilizing transformation.

A special type of a non-stationary simulation occurs

when the target system presents some periodic or cycli-

cal behavior. For example, in traÆc management, red

and green lights alternate for each direction, and so,

queue lengths and sojourn times will oscillate between

some limits. Basing our analysis on simple averages will

certainly be misleading... We propose building special-

purpose meta-models for representing the expected evo-

lution in time of the selected responses.

Our approach consists of the steps that follow.

(i) Averaging the response time series across runs.



In fact, we are not restricted to a single realiza-

tion of the response time series, in contrast to what

happens in econometrics, for instance. Thus, the

underlying expected behavior of the response be-

comes more apparent, with a much smaller vari-

ability. We have found out that 30 replications is

a good choice, from both the statistical and the

experimental viewpoints; see Brand~ao and Porta

Nova (2003b).

(ii) Meta-model identi�cation.

We analyze the estimated autocorrelation (ACF)

and partial autocorrelation (PACF) functions,

in order to identify suitable transformations for

achieving a stationary time series. Sometimes,

the appropriate transformation involves removing

a trend or cyclical deterministic component, be-

fore applying the Box-Jenkins methodology. If the

transformed response still presents a periodic or

cyclical behavior, we have to identify the period

(s) and determine the two orders of di�erencing

(seasonal, D, and non-seasonal, d) for the candi-

date SARIMA models. Then, inspecting the esti-

mated ACF and PACF of the transformed series,

we select a candidate ARMA(p; q)�(P;Q)s model.

The orders P and Q are chosen analyzing the esti-

mated ACF and PACF at lags which are multiples

of s. The orders p and q are chosen analyzing the

estimated ACF and PACF at lags 1,2,...s� 1.

(iii) Meta-model estimation and diagnostic checking.

It is advisable to estimate the meta-model using

an automated procedure. Ours is taken from the

R Language (Ihaka and Gentleman 1996). The di-

agnostic checking of the model is done applying

the portmanteau lack-of-�t test (with the modi-

�ed Ljung-Box-Pierce statistic) and checking for

correlation between the estimated parameters. For

choosing between several candidate models, we use

Akaike's information criterion (AIC).

(iv) Using the �tted meta-model.

The �tted meta-model allows us to evaluate the

target system and answer many "what-if" ques-

tions, without further simulation. For instance,

when a road is partially closed for repairs, where

do we place the traÆc lights, in order to accommo-

date waiting cars? In a worst case scenario, how

long must an incoming driver wait to pass the af-

fected section? In a rush hour period, at what rate

will the waiting line increase?

3 A TRAFFIC ILLUSTRATION

Our approach to cyclical non-terminating simulation

analysis is illustrated using a slightly modi�ed version

of the Single Lane TraÆc Analysis classical example;

see Nozari, Arnold and Pegden (1984) or Pritsker and

O'Reilly (1999). In a two-lane road, with the traÆc


owing from both directions, one of the lanes has been

closed for 500 m, for repairs. At each end of the closed

section, traÆc lights were installed for controlling the

traÆc 
ow, allowing traÆc (from only one direction) to


ow for a speci�ed time interval. When a light turns

green, the waiting cars (from that direction) start mov-

ing and pass the light every two seconds. A car ar-

riving when there are no waiting cars and the light is

green, will pass through the light without delay. We

assume that the time to pass through the repair zone

is 60 sec. A light cycle consists of green in direction 1,

both red, green in direction 2, both red, and then the

cycle is repeated. Both lights remain red for 55 sec to

allow the cars in transit to leave the section under re-

pair, before traÆc from the other direction is initiated.

During most of the day, car inter-arrival times are ex-

ponentially distributed with an average of 12 sec from

direction 1 and 9 sec from direction 2. However, by the

end of the day, there is a one-hour rush period and the

expected inter-arrival time from direction 2 is halved to

4.5 sec. In (Brand~ao and Porta Nova 2003b), we simu-

lated green-light times at 5 sec intervals around 60 sec

and concluded that the cycle that performed better was

55-50-55-60.

In this work, our objective is to investigate if it is fea-

sible to build adequate meta-models for characterizing

the cyclical behavior of the system, both under normal

and congested conditions. Two responses of di�erent

nature will be analyzed: the average queue length and

the average time spent in the system.

We performed 30 independent replications of the cor-

responding simulation models, with a reference dura-

tion of 3600 sec. The duration varied, because each

run was only terminated when the last entity that had

arrived before 3600 sec left the system. Initially, each

model was started in a empty and idle state. Queue

lengths (from one direction) were collected at regular

10 sec intervals, with t = 10; 20; : : :3600, starting at

the beginning of the red light for the opposite direction.

Then, the corresponding observations across runs were

averaged. Sojourn times were sorted according to the

time interval in which the arrival had occurred. Then,

for each time interval, we collected only the �rst obser-

vation and the corresponding observations across runs

were averaged. Additional observations in the same

time interval were rejected to maintain independence.

This also contributes to a more stable behavior of the



response. Then, we tried several transformations for

estimating and removing the trend and/or the cycli-

cal deterministic components, using Fourier series and

the nonlinear least squares method. For removing the

trend component, we �tted a straight line. The cycli-

cal deterministic component was approximated using

an asymmetric triangular wave, expressed as a Fourier

series. Finally, we applied the Box-Jenkins method-

ology to the residuals of the deterministic �t of each

response (it will be referred as the stochastic compo-

nent), through identi�cation, estimation and diagnostic

checking of the SARIMA(p; d; q)� (P;D;Q)s models.

Applying our approach to the data corresponding to

the normal conditions, we were able to �t an asymmet-

ric triangular wave to the deterministic component and

a SARIMA(1; 0; 0)� (0; 1; 1)22 model to the stochastic

component of the average queue length for directions

1 and 2. Although we performed the experimentation

for both directions, we only present the graphs corre-

sponding to direction 2, because the results are very

similar.

In Figure 1, the original series (dash-line) and the cor-

responding �tted deterministic series (solid blue line) of

direction 2 are represented.
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Figure 1: Original and Fitted Series: Average

Queue Length, Direction 2

Comparing the two curves, we see that both series

have basically the same behavior, indicating that the

�tted deterministic model properly represents the orig-

inal data series. A more detailed analysis (see Fig-

ure 2) reveals insigni�cant discrepancies between the

two curves.

The �tted meta-model allows us to answer one of the
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Figure 2: Original and Fitted Series: Average

Queue Length, Direction 2 (1500 to 2000 sec)

questions formulated at the end of Section 2. The max-

imum value for the average queue length for direction 1

is approximately 14 and 18.5 for the direction 2. Con-

sidering that an average car length is 4.5 meters and

that, for instance, 0.5 meters should be left between

adjacent cars, then, at least, 70 and 93 meters must be

left before the crossroads for directions 1 and 2, respec-

tively, in order to avoid traÆc jams.

We performed a similar analysis for the other re-

sponse, the average sojourn time. Again, it was pos-

sible to �t an asymmetric triangular wave to the de-

terministic components for the two directions. With

respect to the stochastic components, we �tted a

SARIMA(3; 0; 0)� (0; 1; 1)22 model for direction 1 and

a SARIMA(2; 0; 0)� (0; 1; 2)22 model for direction 2.

Except for a few extremal values, the global behavior

of the original series is mostly captured (see Figure 3).

Even a more detailed scrutiny (see Figure 4) only

shows insigni�cant discrepancies.

Having this meta-model available, we can answer the

second question of Section 2. Under normal traÆc con-

ditions, the expected maximum sojourn time is approx-

imately 235 and 222 for directions 1 and direction 2,

respectively.

The one-hour rush period turns out to be a very in-

teresting situation if the 55-50-55-60 cycle is left un-

changed. Analyzing both system responses for di-

rection 1 yielded similar results, although the �tted

models for the stochastic components were distinct:

a SARIMA(1; 0; 1) � (0; 1; 1)22 model for the average
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Figure 3: Original and Fitted Series: Average So-

journ Time, Direction 2
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Figure 4: Original and Fitted Series: Average So-

journ Time, Direction 2 (1500 to 2000 sec)

queue length and a SARIMA(2; 0; 0)�(0; 1; 1)22 model

for the average sojourn time.

However, when we consider direction 2, both re-

sponses grow without bounds; see Figures 5 and 6, re-

spectively. This is no surprise, since, in this case, the

corresponding utilization factor is greater than 1. We

can see that the average queue length shows a linear

trend, with a cyclic component superimposed on it. On

the other hand, only a linear trend is visible for the av-

erage sojourn time. The �tted models for the stochastic

component were a SARIMA(0; 1; 0)� (0; 1; 1)22 model

for the average queue length and an ARMA(3; 1; 1)

model for the average sojourn time. Again, the �tted

deterministic components keenly capture the essential

behavior of the original series.
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Figure 5: Original and Fitted Series: Average

Queue length, Direction 2

These meta-models �nally allow us to answer the last

question of Section 2. Thus, under congested traÆc, the

average queue length for direction 2 linearly increases at

a rate of about 0.086/sec (5.16/min), with an asymmet-

ric triangular wave of approximate amplitude of 21.5

superimposed on it. The average sojourn time basi-

cally follows a straight line, with a slope of 0.63 and an

intercept of 145 seconds, approximately.

4 CONCLUSIONS

Our recent work has been focused on extending the use

of classical time series models to non-stationary simu-

lations. In this paper, we present a very e�ective ap-

proach for analyzing cyclic behavior in non-terminating

discrete event simulations. When applied to a classical

example from the simulation literature, our approach

was capable of producing reliable results of undeniable

practical interest.

However, we feel that it is still possible to improve the

approach and extend it to other classes of terminating

or non-terminating simulations. Also, more extensive
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Figure 6: Original and Fitted Series: Average So-

journ Time, Direction 2

experimentations may be performed, and many other

analytical results investigated...
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