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Abstract

Aeroelasticity is a physical phenomenon resulting from the interaction of aerodynamic, elastic and
inertial forces. It is very important to study aeroelasticity in aircraft structures, due to their lightweight
and flexible design. The present work aims to study the aeroelastic behavior of a 3D aircraft wing.
For that, a beam representation of the wing structure is developed using the finite-element method.
The one-dimensional beam coincides with the wing elastic axis with the whole rigidity of the wing
concentrated along it. Therefore, a new computational aeroelasticity framework was created using
the structural model developed and integrating an available fluid solver, which uses a panel method
to solve the fluid. Both the fluid and structural solvers are validated with published results. The
coupling of the two domains is made using an adequate time discretization scheme, which is chosen
after performing several analyses using different temporal schemes. The framework is validated with
available trim results from a wing model. The results are then presented for a wing denoted as
reference case. A parametric study is conducted and its results compared with the reference values. It
is concluded that the results show very good agreement with the theoretical expectations. Moreover,
an aero-structural optimization of a wing is tackled aiming to minimize its total mass while fixing the
lift coefficient. Despite the many simplifications implemented in both the fluid and structural solvers,
this framework proves to be useful to predict the aeroelastic performance of a wing in the early stages
of aircraft design.
Keywords: Aeroelasticity, Panel method, Finite element method, Fluid-structure interaction,
Coupling schemes, Flutter

1. Introduction

The science of aeroelasticity is of the most impor-
tance in aircraft design. According to [1], aeroelas-
ticity can be defined in the following manner:

"Aeroelasticity is concerned with those physical
phenomena which involve significant mutual in-
teraction among inertial, elastic and aerodynamic
forces".

Since the primordials of the aviation history, it
has been proved that to mitigate the adverse ef-
fects of aeroelasticity, aircraft should have a struc-
ture capable of withstanding the several loads en-
countered in each flight while favoring mass distri-
bution. Nowadays, in order to prevent the negative
consequences of aeroelasticity and to better under-
stand and control it, several computational aeroe-
lastic tests can be performed in early stages of air-
craft design, posing as efficient and accurate meth-
ods and lowering the number of experimental tests
needed.

To better visualize the context of aeroelasticity,
a triangle is used, presented in Figure 1. This tri-
angle represents the three main disciplines directly

Figure 1: Collar diagram, adapted from [1].

related to dynamic aeroelasticity. By pairing two
corners of the triangle, one can identify other im-
portant technical fields posing as special aspects of
aeroelasticity. For instance:

• Stability and control (flight mechanics) = iner-
tial forces + aerodynamic forces;

• Structural vibrations = inertial forces + elastic
forces;

• Static aeroelasticity = aerodynamic forces +
elastic forces.
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The most common static aeroelastic problem is
the torsional divergence of a wing, which occurs
when the torsional moment resulting from aerody-
namic forces outbalances the torsional rigidity of
the wing. On the other hand, flutter is considered
to be the most dangerous dynamic problem. It is a
self-excited oscillatory instability in which aerody-
namic forces couple with the natural modes of vi-
bration of a elastic body, producing vibrations with
increasing amplitude.

Two main objectives support this work. The first
main objective is to develop a dynamic structural
model for the wing, representing it as an equiva-
lent beam, in order to be used in an aeroelastic
framework, applying the finite element method and
taking into account the mass and stiffness matri-
ces of the system. The second main objective is
to benchmark and study several implemented cou-
pling methods, which are used to couple the fluid
and structural domains, concluding about the accu-
racy, stability and efficiency of those methods and
perform a parametric study with one of these meth-
ods to study the impact of several variables on the
wing flapping motion.

2. Fluid Dynamics Model

To compute the aerodynamic forces, an existing
fluid solver tool is used and adapted to this work,
which is mathematically based on potential flow
theory.

2.1. Potential Flow
The potential flow model is a formulation in which
the flow is assumed to be inviscid, irrotational and
isentropic. Compressible effects are out of the scope
of this thesis, so the fluid is also assumed incom-
pressible. However, it is found acceptable for this
framework because the airspeed is in the subsonic
domain and no shocks nor separation effects are ex-
pected. As a result, the governing equation is

∇ · ~V = ∇ · (∇φ) = ∇2φ = 0 , (1)

where φ(x, y, z) is the velocity potential. Eq. (1)
is known as the Laplace equation. The boundary
conditions for this problem are the impermeability
condition (zero normal velocity on a body) and the
far field condition (the disturbance created by the
motion should decay far from the body).

The Laplace equation has many possible analytic
solutions and, being linear, the principle of super-
position applies. Thus, if φ1, φ2, ..., φn are solutions
of the equations, then

φ =

n
∑

k=1

ckφk (2)

is also a solution and c1, c2, ..., cn are arbitrary
constants. The solutions used by this computa-
tional model are the source and doublet, located

at (x0, y0, z0) in the Cartesian system, and given
respectively by

φ = −
σ

4π
√

(x − x0)2 + (y − y0)2 + (z − z0)2
(3)

and

φ =
µ

4π




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∂
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





1
√

(x − x0)2 + (y − y0)2 + (z − z0)2
,

(4)
where σ and µ are the source and doublet strength,
respectively.

2.2. Panel Method
Given the pertinent solutions for the Laplace equa-
tion, the CFD model employs a numerical panel
method based on the formulation from Katz and
Plotkin [2] to solve the problem. The objective is
to find the strength of the singularity elements dis-
tributed on the body surface and, consequently, to
compute the velocity and pressure distribution.

Based on Green‘s identity and applying the
Dirichlet boundary condition, Eq.(1) can be devel-
oped by a sum of source and doublet distributions
on the boundary of the body and the wake, yielding

1

4π

∫

body+wake

µ~n ·
∂

∂n

(

1

r

)

dS

−
1

4π

∫

body

σ

(

1

r

)

dS = 0 .

(5)

The source strength is required to be σ = ~Q∞ · ~n,
where ~Q∞ is the free-stream velocity vector.

The wake doublet strength comes from the Kutta
condition in terms of the doublet strength at the
trailing-edge. As a result, µ is constant in the wake
(µw) and is equal to the value at the trailing-edge
(µT E), resulting in

µw = const. = µT E ↔ µU − µL = µw , (6)

where µU and µL are, respectively, the upper and
lower surface doublet strengths at the trailing edge.

To obtain a solution for the problem, the body
surface is divided into N surface panels and NW ad-
ditional wake rectilinear panels, each one assumed
to have constant strength. This problem is then
reduced to a set of linear algebraic equations

N
∑

k=1

Ckµk +

NW
∑

l=1

Clµl +
N

∑

k=1

Bkσk = 0 , (7)

where for each collocation point the summation of
the influences of all k body panels and l wake panels
is needed. The influence of a panel on a collocation
point depends only on the panel geometry. Once
the strengths of each panel are calculated, the two
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tangential and normal velocity components are, re-
spectively,

Vl = −
∂µ

∂l
, Vm = −

∂µ

∂m
, Vn = −σ , (8)

where (l, m, n) are the local coordinates of the panel
being n normal to the panel. The total velocity on
panel k becomes

~Vk = (V∞l, V∞m, V∞n)k + (Vl, Vm, Vn)k . (9)

In an unsteady case, the wake shape is obtained
using a time-stepping method. Therefore, the wake
is directly related to the motion, being convected
with ~V∞ at each time step.

To compute the pressure distribution, the
Bernoulli equation for inviscid, incompressible and
irrotational flow will be used,

pref − p

ρ
=

V 2

2
−

v2
ref

2
+

∂φ

∂t
. (10)

Considering the infinity as the point of reference,
the pressure coefficient can be calculated from

Cp =
p − p∞

0.5ρV 2
∞

= 1 −

(

V

V∞

)2

−
2

V 2
∞

∂φ

∂t
. (11)

In order to solve Eq.(11) in time, a time discretiza-
tion method is needed. An implicit method is re-
quired, as the objective is to obtain the pressure
coefficient at time t + ∆t. The largely used option
is the Backward Euler Method. Applied to Eq.(11)
yields

Ct+∆t
p = 1−

(V t+∆t)2

V 2
∞

−
2

V 2
∞

(

φt+∆t − φt

∆t

)

, (12)

which is first-order accurate.

2.3. Implementation
In order to validate the results obtained by this pro-
gram [4] (named Cardeira for reference), a steady
aerodynamic analysis of a rectangular wing is em-
ployed. The results are compared with numerical
and experimental results of a similar panel method
developed by Baltazar [5]. To have the same condi-
tions, a mesh of 64x32 panels is used. The plots in
Figure 2 represent the pressure distributions in spe-
cific spanwise sections of the wing, with AR = 4 and
NACA 0015 airfoil, for angle of attack of 2.5◦. It can
be concluded that the results from both programs
are very similar. Moreover, these figures show a
good approximation between the numerical and ex-
perimental results, even at the wing tip.

In order to evaluate the results with the mesh
refinement, a rectangular wing with NACA 0010
airfoil, AR = 4, b/2 = 2m and c = 1m is evalu-
ated at α = 6◦. Table 1 presents the values of lift

Figure 2: Pressure distributions for specific spanwise
locations, with 64x32 panels and α = 2.5◦.

Mesh Steady Cardeira Steady Baltazar

CL CD CL CD

16x10 0.0884 0.0038 0.1082 0.0039

32x18 0.0940 0.0064 0.1024 0.0034

64x34 0.0959 0.0074 0.1002 0.0032

128x66 0.0965 0.0079 0.0993 0.0031

Table 1: Steady lift and drag coefficient results compar-
ison for different mesh sizes.

and drag coefficients for different meshes, which are
compared between the two programs.

It is concluded that, with an increasing mesh re-
finement, the values of CL are approximated from
Steady Cardeira to Steady Baltazar, while the op-
posite occurs regarding CD. However, the values
of drag are not so relevant for aeroelastic analysis
as the lift, not only because they are much lower
but also due to the pitching movement of the wing
being mainly caused by the action of the lift forces.

3. Structural Dynamics Model

The development of a computational structural dy-
namics model used to perform aeroelastic calcula-
tions is one of the main objectives of this thesis. It
is based on a finite element approach describing an
equivalent aircraft wing beam model.

3.1. Beam Element Formulation

The structure of the wing is modeled as a linear
finite element structure that can undergo bend-
ing and torsion, with all rigidity concentrated at
the nodes. This model has lower complexity and
lower computational cost than higher fidelity mod-
els. However, these factors are crucial in the pre-
liminary design stages and optimization, increasing
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computational efficiency while capturing the most
important structural responses.

To model the wing as an equivalent beam, a 3D
beam element was selected, as illustrated in Fig-
ure 3. This element has 2 nodes and 6 degrees
of freedom per node: 3 translational and 3 rota-
tional degrees of freedom. The element formulation
is based on Euler-Bernoulli beam theory [6], which
means the cross-sections remain rigid, thereby un-
coupling the bending and torsional displacements.
This approach is suitable for long beams such as
high aspect-ratio wings, neglecting the shear defor-
mations of the cross-section.

Figure 3: 3D beam element.

This element is composed of 4 sub-elements:

• 1 bar element subjected only to axial forces re-
sulting in axial deformation given by

d

dx

(

EA
dux

dx

)

+ b(x) = 0 , (13)

where A is the area of the beam cross-section,
E is the Young‘s modulus of the material, ux

is the axial displacement along the x axis and
b(x) is the axial applied force per unit length;

• 1 torsion element subjected to a twisting load
resulting in the free torsion equation

d

dx

(

GJ
dθx

dx

)

+ mx = 0 , (14)

where G is the shear modulus of the material,
J is the torsional moment of inertia, θx is the
torsion and mx is the distributed twisting load;

• 2 elements with translational and rotational
deformation in the xz and xy planes subjected
to shear forces and moments, resulting in the
bending equation

d2

dx

(

EIyy/zz

d2uz/y

dx2

)

− q(x) = 0 , (15)

where Iyy/zz is the area moment of iner-
tia about the y/z axis, uz/y is the verti-
cal/horizontal displacement and q(x) is a dis-
tributed force in the z/y direction along the x
axis.

The finite element approach used in this work is
based on the formulation from Reddy [6] and Cook

et al. [7]. In order to compute the element stiffness
and mass matrices, shape functions are necessary.
These functions relate the displacement field for the
beam, i.e., the axial displacement ux(x), deflections
uy(x) and uz(x) and angle of twist θx(x), with the
nodal values of these quantities. Linear shape func-
tions were used for the axial displacement and tor-
sion whereas cubic shape functions were used for
the transverse displacement. In the end, the shape
functions can be disposed in matrix form as

{u} = [N ]{d} , (16)

where u is the vector of displacements, N is the
matrix with the shape functions and d is the vector
of nodal displacements.

A formal procedure will be followed to formulate
the element stiffness and mass matrices, based on
potential and kinetic energy. The strain vector for
this element includes axial strain, curvatures and
twist angle which can be computed by















ǫx

κz
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θx















=









∂
∂x 0 0 0

0 ∂2

∂x2 0 0

0 0 ∂2

∂x2 0
0 0 0 ∂
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







[N ]{d} = [B]{d} ,

(17)
where B is the strain-displacement matrix. For
isotropic materials, the axial force, bending moment
in the two symmetric planes and torsional moment
are given by














Nx

Mz

My

Mx


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0 0 EIyy 0
0 0 0 GJ
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= [D]{ǫ} ,

(18)
where Nx is the axial force along the x axis and
(Mx, My, Mz) are the components of the bending
and torsion moments.

The potential energy of the finite element is given
by

V =
1

2
{d}T

∫

Ω

[B]T [D][B]dΩ{d}

− {d}T

∫

Ω

[N ]T {Fv}dΩ − {d}T

∫

S

[N ]T {Fs}dS ,

(19)

where Ω and S are, respectively, the element do-
main and surface, {Fv} and {Fs} represent the vol-
ume and surface forces, respectively and [K]e is the
stiffness matrix of the element, with the property
of being symmetric, given by

[K]e =

∫

Ω

[B]T [D][B]dΩ . (20)

While the stiffness matrix accounts for the elastic
deformation, it is still necessary to consider the in-

4



ertial properties of the element for a dynamic struc-
tural analysis. This is done by considering the ki-
netic energy of the finite element, given by

T =
1

2
{ḋ}T

∫

Ω

ρ[N ]T [N ]dΩ{ḋ} , (21)

where ρ is the material density of the element and
[M ]e is the mass matrix of the element, which is a
symmetric matrix, given by

[M ]e =

∫

Ω

ρ[N ]T [N ]dΩ . (22)

3.2. Computation of Cross-Section Properties
In order to compute the cross-section properties of
the wing, that is, the axial stiffness EA, the bend-
ing stiffness EIyy, the bending stiffness EIzz and
the torsional stiffness GJ , applied in the element
stiffness and mass matrices, a mathematical model
was developed. The several steps conducted are:

• Discretize cross-section into area segments: up-
per and lower surfaces and shear webs are dis-
cretized into many segments;

• Calculate area moments of inertia of each area
segment;

• Calculate shear center of the cross-section, the
point through which shear loads produce no
twisting;

• Transfer the area moments of inertia of each
area segment to elastic axis (origin at shear
center);

• Sum contributions of all area segments to de-
termine axial and bending stiffness;

• Determine torsional stiffness with Bradt-Batho
Shear Flow Theory (BSFT) [8];

• Calculate Von Mises equivalent stress and out-
put results.

3.3. Implementation
The CSD model was implemented in Matlab R© lan-
guage due to its strong matrix manipulation and
useful plotting tools. The input parameters needed
for the finite element analysis are:

• The number and coordinates of nodes in terms
of the global coordinate system;

• The cross-section properties, e.g., total area
and moments of inertia;

• The material properties, e.g., Young modulus,
shear modulus and density;

• Information for boundary conditions;

• The nodal forces relative to the global coordi-
nate system.

The elements are computed with the coordinates
of their nodes. A mesh with n elements has n + 1
nodes. Once the matrices are computed for each
element, they need to be assembled in the global
stiffness and mass matrices. In the end, a global
matrix is obtained whose size is equal to the total
number of degrees of freedom in the system (6 times
the number of nodes).

Without applying constraints to the system of
global equations, the matrices are singular and so
they cannot be inverted in order to solve the static
and dynamic problems. To overcome this, bound-
ary conditions must be applied to one or more de-
grees of freedom in the stiffness and mass matrices.
For example, a beam with a fixed support at one
of its ends, must have the first 6 degrees of freedom
nullified. These constitute the primary boundary
conditions. The secondary boundary conditions are
related to the loads applied on the structure, which
must be located on its nodes. Each node, in turn,
requires three forces and three moments. As a re-
sult, at each element the loads are inserted into a
vector F , whose components are the applied forces
and moments at each node. In the end, each ele-
ment load vector must be assembled into a global
load vector in order to match the global stiffness
and mass matrices ordering.

When analyzing the solution of a static or dy-
namic analysis, it is useful to obtain displacements
and rotations in the global coordinate system. The
element coordinates are related to the global coor-
dinates by

{dl} = [TR]{d} , (23)

where dl is the vector of displacements in element
Cartesian coordinates, d is the vector of displace-
ments in global Cartesian coordinates and TR is
called the transformation or rotation matrix. In
the end, the element stiffness and mass matrices
in global coordinates become

[K] = [TR]T [Kl][TR] , (24)

[M ] = [TR]T [Ml][TR] . (25)

3.4. CSD Program Validation
A first static linear analysis was performed and
the results compared with results from ANSYS R©

APDL, using BEAM4 elements matching the beam
element implemented in this thesis. For this, a
rectangular aluminum beam with EA = 1.4E9 N ,
EIyy = 1.17E6 N.m2, EIzz = 4.67E6 N.m2,
GJ = 2.241E6 N.m2, ρ = 2700 Kg.m−3 and a
length L = 10 m was selected.

To study the convergence of the tip displacement
of the cantilever beam with mesh refinement, the
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beam is subjected to an applied force Fz = 1000N
at the tip, in the positive z direction. The results
obtained are present in Table 2. As it can be seen,
the displacements converge very fast for both anal-
yses and the results are the same.

Elem. 1 10 100 1000 2000

Matlab R© 0.286 0.286 0.286 0.286 0.286

ANSYS R© 0.286 0.286 0.286 0.286 0.286

Difference (%) 0.000 0.000 0.000 0.000 0.000

Table 2: Convergence study of beam tip vertical dis-
placement and comparison with ANSYS R© APDL.

The same beam was used to perform a tran-
sient analysis with the Newmark time-integration
method choosing a time step size of 0.001 s and 10
finite elements. A load case with Fz = 1000N and
Mx = 1000N.m applied at the tip is tested. Fig-
ures 4(a) and 4(b) represent the transient response
of the beam subjected to the load case chosen. A
comparison with results from ANSYS R© APDL, us-
ing element type BEAM4, was employed. It can
be concluded that the vertical displacement results
were perfectly matched in both cases. On the other
hand, the torsional rotation results present a slight
deviation. However, the frequency and mean value
are identical.

(a) Vertical displacement of beam tip node.

(b) Torsional rotation of beam tip node.

Figure 4: CSD transient numerical results and compar-
ison with ANSYS R© APDL.

Finally, a modal analysis was performed and the
results were used to validate the structural model.
For this, a prototype high aspect ratio wing that
has been extensively reported in the literature, and
is present in the paper from Patil et al. [9], is

modeled. The author presents exact results for fre-
quencies of an equivalent beam with torsion, flap-
wise bending and chordwise bending. Therefore,
the first five natural frequencies were extracted and
compared with the same ones obtained in Table 3 in
SI units. All frequencies are very similar with rela-
tive differences below 1%. Adding the good results
from the previous analyses, it is concluded that the
structural model developed is accurate enough to
perform aeroelastic analyses.

Matlab R© [9] Difference (%)

1st flap. 2.243 2.243 0.000

2nd flap. 14.057 14.056 0.007

3rd flap. 39.369 39.356 0.033

1st torsion 31.081 31.046 0.113

1st chord. 31.727 31.718 0.028

Table 3: Equivalent beam first five natural frequencies
(in rad/s) calculated with developed code and compared
to results from [9].

4. Fluid-Structure Interaction

Fluid-Structure Interaction (FSI) deals with the
coupling and interaction between the fluid and
structural domains. The range of FSI models can
be divided in monolithic and staggered categories.
In this work, only staggered algorithms will be stud-
ied.

4.1. Staggered Coupling Methods

The most basic staggered method is referred to as
the Conventional Serial Staggered (CSS) procedure
in [10] and it is outlined in Figure 5, where u is the
structure state vector (nodal displacements), w de-
notes the fluid state vector, p represents the fluid
pressure, x is the fluid grid position, the subscript
n designates the nth time step, and the equalities
shown at the top hold on the fluid/structure inter-
face boundary.

Figure 5: Conventional Serial Staggered (CSS) proce-
dure [10].

One possible enhancement for this method is to
subcycle the fluid computations, reducing the over-
all number of structural integrations. The algo-
rithm is identical to the CSS, where the difference

6



resides in the number of fluid subcycles used, which
is given by

nS/F =
∆tS

∆tF
(26)

where ∆tS and ∆tF are, respectively, the structure
and fluid time steps.

Unlike the CSS, another possible methodology is
to use a structural predictor. This methodology,
unlike the CSS, does not require that the fluid and
the structural boundaries are matching after each
time step. Therefore, a prediction for the global
state of the structure after a time step is introduced
and the fluid is time-integrated, assuming the fluid
grid is matching the location of the structure that
was predicted. At the end of a time step, continuity
of the structural and fluid grid displacements at the
interface is a priori not satisfied unless the struc-
tural predictor is perfect. The use of subiterations
aims to remedy this aspect, where each block of
Figure 5 is repeated until convergence is achieved.
Two types of predictors were implemented, a lin-
ear first-order and a second-order accurate given,
respectively, by

ũn+1 = un + ∆tS u̇n , (27)

ũn+1 = un + ∆tS(1.5u̇n − 0.5u̇n−1) . (28)

Another alternative method is presented in [10],
which predicts the structural displacement at the
middle of each time step, and is referred as the Im-
proved Serial Staggered Algorithm (ISS).

4.2. Implementation
The structural nodes are located at the middle and
at the limits of each ring of panels of the fluid grid,
as shown in Figure 6. This option is justified with
the necessity of mapping the fluid forces computed
at the middle of the panels to the structural nodes,
hence the position of the nodes at the middle of the
ring, and the necessity of extrapolating the struc-
tural displacements to the CFD grid points, which
corresponds to the panel corner points, hence the
position of the nodes at the sides of each ring. Con-
cerning these last nodes, their only role is to transfer
the displacement to the CFD grid points. Thereby,
no nodal forces are applied on them.

Figure 6: CFD and CSD grids.

Assuming the pressure is constant at each panel,
the forces at each collocation point are calculated

and an orientation vector is computed to seek the
components of the force vector in the global refer-
ence system. Then, these components are mapped
to the structural nodes by an equivalent force sys-
tem as D‘Alembert‘s Principle requires.

In order to update the CFD grid at every time
step, a linear extrapolation procedure was employed
to transfer the displacements of the beam model to
the original CFD grid, resulting in the new CFD
surface mesh. The new positions of the CFD grid
were obtained assuming a rigid link connection be-
tween the structural nodes positioned at the limits
of each ring of panels and the respective panel cor-
ner points. The links are assumed to be perpendic-
ular to the elastic axis of the wing. The displace-
ment of a CFD panel corner point can be separated
into three components: a translation component uz,
a translation component ux and a rotation compo-
nent θy. Figure 7 demonstrates this procedure. The

Figure 7: Extrapolation procedure.

subscript 0 denotes the original location of the CFD
grid panel corner points while the subscript 1 de-
notes the new location. Obtaining the structural
solution and knowing the values of uz, ux and θy at
each location on the spanwise direction and at each
time step, the new location is obtained by

x1 = x0cos(θy) + z0sin(θy) + ux , (29)

z1 = z0cos(θy) − x0sin(θy) + uz . (30)

To validate this extrapolation and the transfer-
ring of the forces from the fluid to the structure grid,
a static analysis was conducted and validated with
results from [11]. In that paper, the static defor-
mation of a wing with angle of attack 10◦ is calcu-
lated when subjected to a free-stream velocity of 25
m/s. Figure 8 illustrates the results computed with
the developed code and the paper results. Despite
the different aerodynamic model used to achieve the
aeroelastic solution, the results are very close.

5. Results

The created aeroelastic framework was used to per-
form a benchmark of the FSI staggered algorithms,
a parametric study and an aero-structural optimiza-
tion.

5.1. Reference Input Data
A rectangular wing with a NACA0015 airfoil, chord
of 1 m, semi-span of 7 m and 2◦ angle of attack was
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Figure 8: Wing static bending displacement at 25 m/s
and angle of attack 10◦.

selected as the reference case. The wing is made of
a single material (aluminum skin and spars) with
properties E = 75 GPa, G = 30 GPa and ρ = 2800
kg/m3. The internal structure is composed of two
spars which go from the root to the tip, placed at
30% and 70% of the chord, respectively, with 1 cm
of thickness. The wing skin thickness is 5 mm. The
root of the wing is fixed, simulating the place where
it is attached to the fuselage of the aircraft. It is
subjected to a free stream velocity of 75 m/s and
the fluid density is assumed to be ρ = 1 kg/m3

corresponding to an altitude of 1371 m at standard
atmosphere conditions (considering a temperature
offset of 20 oC). For the sake of efficiency, a coarse
grid of 20x10 panels is chosen and a time step size
of 0.1 s for the structural solver is selected.

5.2. Benchmark of FSI Staggered Algorithms

The algorithms used for comparison are: CSS1:
Conventional Serial Staggered Algorithm; CSS2:
Serial Staggered Algorithm with First Order Struc-
tural Predictor ; CSS3: Serial Staggered Algorithm
with Second Order Structural Predictor and CSS4:
Improved Serial Staggered Algorithm.

The first tests aim to study the influence of subit-
erating the CSS2 and CSS3 algorithms. Different
analyses were conducted in order to study the be-
havior of the aeroelastic response of the wing. How-
ever, the results are practically not affected by the
use of subiterations, which suggests the predictors
give a good approximation of the displacement at
the end of each time step. Since the computational
time increases linearly with the amount of subiter-
ations used, it is not advantageous to use them.

The following tests are relative to the influence of
subcycling the fluid solver. The main advantage of
using subcycles is the possibility of having a small
enough time step size for the fluid solver, while hav-
ing a larger time step for the structural solver. This
way, efficiency is obtained while preserving accu-
racy. The different analyses conducted are shown
in Figure 9.

It can be concluded that increasing the number of
subcycles also increase the maximum displacement
in the negative direction while slightly decreasing
the maximum displacement in the positive direc-

a) CSS1

b) CSS2

c) CSS3

d) CSS4

Figure 9: Influence of subcycling in the aeroelastic wing
behavior.

tion. This aspect is valid for every staggered algo-
rithm tested. However, the stability of the move-
ment remains unchanged while varying the number
of subcycles. For example, in every analysis per-
formed, the behavior from CSS1 is stable while the
behavior from CSS3 is divergent, being already be-
yond the flutter velocity.

Figure 10 makes this aspect more clear. Both
the CSS1 and CSS4 algorithms predict a stable be-
havior of the wing unlike the CSS2 and CSS3 al-
gorithms. The most divergent movement occurs
when employing the CSS3 algorithm, which uses a
second-order predictor in contrast to the first-order
predictor used by the CSS2 algorithm.

8



Figure 10: Comparison of the tip velocity displacement,
using 15 subcycles and no subiterations.

5.3. Aeroelastic Parametric Study
This study will be focused on the bending move-
ment of the wing using the reference input data and
changing one parameter at a time. Only some of the
parameters studied will be presented here, namely,
the free-stream velocity, sweep angle, spars thick-
ness, material density and Young modulus. The
results are plotted and compared to the reference
case in Figure 11.

Overall, the study revealed results which are in
very good agreement to the theoretical influences of
the parameters studied.

5.4. Aero-structural Optimization
The constrained optimization problem conducted
can be formulated as

minimize
~x

f(~x) = W ingMass

subject to CL = 0.04, σV M ≤ 270MP a, δtip ≤ 0.7m ,

where ~x is a vector containing 10 design variables:
taper ratio λ, sweep angle Λ, dihedral angle Γ, twist
angle at tip θtip, angle of attack α, front and rear
spars location xspar,f and xspar,r, spars and skin
thicknesses tspars and tskin. Table 4 lists the chosen
variables lower and upper bounds, as well as the
initial and optimal values.

Parameter
Lower

bound

Upper

bound
Initial Optimal

λ 0.3 1 1 0.3 (min)
Λ (◦) 0 10 0 0 (min)
Γ (◦) 0 10 0 0.05
θtip (◦) 0 10 0 3
α (◦) 1 10 2 3.8
xspar,f (%) 10 40 30 10 (min)
xspar,r (%) 50 90 70 90 (max)
tspars (m) 0.01 0.05 0.01 0.01 (min)
tskin (m) 0.001 0.01 0.005 0.001 (min)

Table 4: Design variables: bounds and optimal values.

In order to satisfy the constraint related to the lift
coefficient, the wing angle of attack and twist angle
increase, mainly because the taper ratio decreases
and, consequently, the wing surface area does too.
As a result, the lift generated must be higher, which
is provided by the change in those parameters.
Since the objective was to minimize the total mass,
the taper ratio decreases while the thicknesses di-
minish. Finally, it is concluded that some of the

a) Influence of free stream velocity.

b) Influence of sweep angle.

c) Influence of spar thickness.

d) Influence of material density.

e) Influence of Young modulus.

Figure 11: Parametric study.

optimal values are either in the predefined lower or
upper bounds, as shown in Table 4. This may indi-
cate that the solution is not properly constrained.
In fact, the solution is not tip deflection constrained
nor stress constrained since the optimal values of
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these properties are much lower than the respective
bounds: δtip,optimal = 0.23m < δtip,max = 0.7m
and σoptimal = 72MPa << σmax = 270MPa.

It is concluded that the wing is still very rigid
and the optimal thicknesses, which are already in
the lower bound limit, could be smaller since the
objective is to reduce the wing mass. However, the
bounds must be chosen carefully as a too low value
could lead to a solution failing to meet other con-
straints. It should be noticed that no buckling ef-
fects were considered in the analysis. Had this been
done, possibly a different optimal thickness would
have resulted.

Finally, it is shown that CL converges to the de-
sired value, being the only constraint that is fully
met.

6. Conclusions

A computational tool was developed with the pur-
pose of studying the aerolelastic behavior of a 3D
aircraft wing. It comprises three main parts: a fluid
model based on panel method, a structural model
based on beam element formulation and a coupling
procedure.

The aerodynamics were modeled according to po-
tential fluid theory in which the pressure forces were
calculated based on a panel method. The structural
model consisted of a one-dimensional beam clamped
at the aircraft fuselage, and representative of the
wing elastic axis. The coupling of the fluid and
structural models was a crucial part of this work.
The equivalent beam was placed inside the wing
and a linear extrapolation procedure was employed
to transfer the displacements of the beam model to
the original fluid grid, assuming a rigid link connec-
tion between the structural nodes and the fluid grid
points.

Several coupling algorithms were taken from the
literature and presented, before being implemented
and tested. After studying the effect of these al-
gorithms on the aeroelastic results of a reference
case wing, it was concluded that the use of sub-
cyles has a major impact on the amplitude of the
movement but does not change its stability while
the use of subiterations do not have any significant
impact. Furthermore, when using a structural pre-
dictor, the movement becomes divergent. Addition-
ally, a parametric study was conducted with one of
these algorithms. All tests revealed results which
were physically correct.

Finally, a simple aero-structural optimization
case study was conducted. The objective was to
minimize the wing mass while constraining the tip
deflection, maximum stress and lift coefficient.

An important step for future work would be to
construct a wing model to perform tests in a wind
tunnel to validate the aeroelastic results computed
with this framework.
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