
Multiple Criteria Sorting Models

with Category Size Constraints

Vincent Mousseau∗, Luís C. Dias†, José Rui Figueira‡§∗

August 22, 2007

∗LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16,

France, e-mail: mousseau@lamsade.dauphine.fr
†INESC-Coimbra, R. Antero de Quental 199, 3000-033 Coimbra, Portugal, e-mail: ldias@inescc.pt
‡CEG-IST, Center for Management Studies - Instituto Superior Técnico, Technical University of Lisbon,

Tagus Park, Av. Cavaco Silva, 2780-990 Porto Salvo, Portugal, email: figueira@ist.utl.pt
§Visiting Researcher at DIMACS, Rutgers University, CoRE Building, 96 Frelinghuysen Road Piscataway

NJ 08854-8018 USA

i

Abstract

We consider the Multiple Criteria Sorting Problem, that aims at assigning each
alternative from a finite set A to one of the predefined categories. Sorting problems
usually refer to absolute evaluation (the assignment of an alternative does not de-
pend on the remaining ones), as opposed to ranking and choice problems in which
the very purpose is to compare alternatives against each other. However, we may
identify decision situations where the Decision Maker has concerns or constraints
about the number or the proportion of alternatives assigned to each category. We
therefore introduce the concept of category size and the concept of Size Constrained
Sorting Problems. In such problems, the Decision Maker intends to define standards
for absolute evaluation, subject to a relative evaluation of the category sizes (which
indirectly involves comparison among the alternatives). We propose how to con-
duct a preference elicitation process to define a sorting model taking into account
the conciliation between concerns relative to category size and concerns relative to
sorting examples. As an illustration, we propose a procedure to infer the values
for preference parameters that accounts for specifications provided by a Decision
Maker about the size of categories, in the context of the UTADIS sorting model.

Keywords: Multiple Criteria Decision Analysis, Sorting problems, Category size,
UTADIS

ii

Introduction

Modeling a real-world decision problem using multiple criteria decision aiding involves defining
a set of nalt alternatives A = {a1, a2, . . . , analt

} evaluated on ncrit criteria g1, g2, ..., gncrit
, each

criterion, gj, being associated to a scale Xj. Several problem statements (or problem formu-
lations) can be considered. Roy [Roy85] distinguishes three basic problem statements: choice,
sorting and ranking (see also [Ban96]).

Given a set A of alternatives, choice problems consist in determining a subset A∗ ⊂ A, as
small as possible, composed of alternatives being judged as the most satisficing. Optimization
problems are particular cases of choice problems. Ranking problems consist in establishing a
preference pre-order (partial or complete) in the set of alternatives A.

Sorting problems consist in formulating the decision problem in terms of a classification, in
order to assign each alternative from A to one of the ncat predefined categories C1, C2, . . . , Cncat

.
The assignment of an alternative a to the appropriate category should rely on the intrinsic value
of a (and not on the comparison of a to other alternatives from A).

Among these problem statements, a major distinction concerns relative versus absolute judg-
ment of alternatives. This distinction refers to the way alternatives are considered and to the
type of result expected from the analysis. In the first case, alternatives are directly compared
one to each other and the results are expressed using the comparative notions of “better” and
“worse”. Choosing and ranking are typical examples of comparative judgments. The presence
(or absence) of an alternative a in the set of the best alternatives A∗ results from the compar-
ison of a to the remaining alternatives. Similarly, the position of an alternative in a ranking
depends on its comparison to the remaining ones.

In the case of absolute judgments, each alternative is considered independently from the
others in order to determine its intrinsic value by means of comparisons to norms or references.
Sorting problems refer to absolute judgments and consist of assigning each alternative to one
of the pre-defined categories. The assignment of an alternative a ∈ A results from its intrinsic
evaluation on all criteria (the assignment of a to a specific category does not influence the
category to which another alternative should be assigned). Various methods have been devel-
oped for such assignment problem (see for instance [MR77], [DGJL80], [MO91],[Yu92], [Per98],
[Bel00] and [DMFC02], see also [ZD02] for a review).

This paper deals with sorting problems where the Decision Maker (DM) has some concerns
or constraints about the number or the proportion of alternatives assigned to each category.
More precisely, we are concerned with what we call Size Constrained Sorting Problems (SCSP),
related to a new notion regarding the size of the categories, i.e., “the proportion of alternatives
assigned to the category Ck”. SCSPs arise when the DM has an idea about how the alternatives
should be distributed among the categories. For instance, imagine a sorting model to assign
students to grades A,B,C, and D. The DM is asked the following question “If all of this year’s
students fall into the same category (it does not matter which one), would you be compelled
to change the sorting model?”. If the answer is yes, then we would have a SCSP.

1

The purpose of this paper is to present this new type of problem statement, and to illustrate
how it can be dealt with in the context of inferring the parameters of a multi-criteria decision
aiding model. In such model construction processes (also known as disaggregation processes,
see [DGJL80, ZD00, JLS01, DZZ01, DMFC02]), the model’s parameters are inferred in order to
satisfy the DM’s requirements, in contrast with processes that ask the DM to directly provide
the parameter values. The DM’s requirements are usually sorting examples that the model
should reconstitute. To these requirements, we consider adding requirements relative to cate-
gory sizes, noting that trade-offs may be necessary.

In the next section, we present four illustrative examples that motivate the usefulness of
the notion of category size for decision aiding, aiming to show that it is very common that a
Decision Maker (DM) has some concerns about the proportion of alternatives falling into each
category. We analyse, in Section 2, the consequences of using category size in the sorting prob-
lem statement and define the SCSP. We contrast this new type of problem statement against
choice and ranking problem statements, and make a distinction between static SCSPs (alter-
natives are known when the model is built and divulged) and anticipatory SCSPs (alternatives
are not known at that time). Section 3 formally defines the notion of category size. Two ways
to consider category size in preference elicitation processes are proposed in Section 4. The first
is to proceed by trial and error; the second one is to include constraints related to category
sizes into parameter inference formulations. An illustrative example is provided in Section 5,
where we adapted the UTADIS method to deal with category size constraints. A final section
presents conclusions and suggests further research.

1 Motivating examples

In order to motivate the introduction of the notion of category size for decision aiding, let us
consider several realistic illustrative decision problems in which this notion can play an im-
portant role in the modeling process. In each of the following examples, the DM provides
specifications about the respective size of categories.

Example A

Consider a corporate distribution company composed of a large number of retail stores. The
head of this company wants to sort the stores according to performance-related categories. This
sorting is to be grounded on several criteria (e.g., profit, customer complaints, market share,
...). The CEO formulates this problem as a sorting problem in which retail stores should be
assigned to one of the following five categories:

C1 Underperforming retail store (immediate corrective action required),

C2 Retail store having a bad performance,

C3 Retail store having an average performance,

2

C4 Retail store having good results,

C5 Retail store that outperform (exceptional results stemming from an outstanding manage-
ment).

In this situation, the CEO might want to identify and analyze only the cases corresponding
to exceptions, i.e., retail stores that have either very positive or very negative results. Her
idea is that most of the retail stores fall into the C3 situation and that only very few of them
correspond to C1 or C5. She views the distribution of the retail stores among the five categories
as “bell-shaped” (symmetric unimodal), as illustrated in Figure 1 (left).

Example B

Consider a credit manager in a financial institution who decides whether or not to grant
loans to clients. His role is to accept/reject loan files or possibly refer to his superior for difficult
or ambiguous cases. His decision is grounded on the various elements documented in the file.
This decision problem can be formulated through a multiple criteria trichotomic segmentation
(accept / refer to superior / reject).

However, the credit manager does not want to send too many files (no more than 10% in
average) to his superior. In such a case, it is natural to conceive a sorting model with three
categories in which the central class is smaller in size than the remaining ones (when consider-
ing a set of “typical” loan files), as illustrated in Figure 1 (second from left).

Example C

Every year the director of a department of a firm wants to split the grant budget among
her collaborators. She considers four levels of bonuses (A: high, B: medium,C: small,D: none)
according to several performance criteria discussed in the beginning of the year with her col-
laborators (the bonuses packages A, B and C are also stated in the beginning of the year).

The bonus policy of the director is such that very few collaborators get an A-bonus, a little
more get a B-bonus, a significant proportion get a C-bonus and a large proportion of them get
no bonus. In this situation, the shape of the category size distribution can be considered as
“increasing” (or “decreasing” according to the way the categories are labeled), as illustrated in
Figure 1 (third and fourth from left).

Example D

Each year, the responsible of a University training program faces the same problem when
defining the foreign language courses. He wants to split a group of students into three groups of
different levels (beginners, intermediate, advanced). The assignment of a student to a specific
class is grounded on his/her skills (oral expression, listening comprehension, grammar, written
expression, ...). In this situation, it might be required that the three classes should not be “too
different” in size. Such a decision problem can obviously be formulated as a multiple criteria
sorting problem. One of the specificities of this problem consists of the “uniform” size of the
categories representing the three classes, as illustrated in Figure 1 (right).

3

These four decision problems illustrate prototypical sorting decision situations in which cat-
egory size somehow intervenes in the modeling process. An analyst designing a decision aiding
model for these situations should consider in the modeling process the information on the shape
of the category size distribution, as suggested by the DM.

The reader will easily imagine various other problems in which this notion is an important
aspect of the decision model definition. Each of these examples suggest constraints about
the proportion of alternatives assigned to each category. Figure 1 depicts typical category
size distributions, which we may call “bell-shaped” (Example A), “Dichotomic” (Example B),
“Increasing/Decreasing” (Example C), and “Uniform” (Example D).

C1 C2 C3

Uniform

C1 C2 C3

Bell-shaped

C1 C2 C3

Dichotomic

C1 C2 C3

Increasing

C1 C2 C3

Decreasing

Figure 1: Typical category size distributions

2 Size Constrained Sorting Problems

We refer to Size Constrained Sorting Problem (SCSP) as decision situations formulated through
a sorting model in which specifications about the size of the categories are introduced. These
specifications take the form of implicit or explicit constraints on category size.

In example A for instance, these constraints specify that “the distribution of the retail stores
among the five categories is bell-shaped”. In example B, the credit manager does not want to
refer to his superior more than 10% of the files. In the Example C, the director’s view on the
“relative proportion” of A, B, C and D-bonuses specifies constraints on the size of the corre-
sponding categories. In example D, the constraints express the statement “the three groups
should not be too different in size”.

2.1 SCSP vs. “Standard” Sorting Problem

SCSPs differ from “standard” sorting problems, since constraints on the size of categories in-
troduce implicit relative evaluation among alternatives. More precisely, in a “standard” sorting
problem the assignment of an alternative a to a specific category only depends on the intrinsic
characteristics of a (and the norms defining the categories), while in SCSPs its assignment
depends not only on its intrinsic characteristics but also on the other alternatives in A. Let us
note, however, that this does not mean that alternatives will be directly compared. Rather, in a

4

given situation both the set A and the relative judgements about the category sizes contribute
to shape the implicit definition of each category.

For instance, in Example D introduced above, a student that has average/low skills might
be assigned to the “beginners” class when a large proportion of students have high skills, but
he/she might have been assigned to the “intermediate” class if the average level of students
were lower. As another example let us suppose, in Example B, that the credit manager faces
an exceptional situation in which a majority of loan files are uncertain and ambiguous. In such
a case, a standard sorting model would assign a large proportion of files to the “central” class
(i.e., refer to superior). The introduction of constraints about the size of this category would
“force” the model to assign some alternatives previously assigned to the central class to the
lower and higher classes, keeping in this refer to superior category only the most ambiguous
cases.

Consequently, it follows that SCSPs possess some of the characteristics of the relative prob-
lem statements (choice and ranking) namely regarding the dependence of the result with respect
to the set of alternatives. In SCSPs the assignment of an alternative depends on its intrinsic
characteristics, but also on the assignment of the other alternatives. Such a problem statement
is however distinct from relative problem statements and can be considered as an intermediate
situation, since it deals both with relative and absolute issues. Absolute evaluation is present
in the sorting model, and the very idea of sorting, while comparative evaluation stems from the
inclusion of constraints concerning category size.

2.2 SCSP vs. choice and ranking problems

It is interesting to note that choice problems can be expressed through a SCSP, if the categories
are ordered. Consider a sorting problem with two categories (C1: select, C2: reject). Let us
impose that the size of C1 is equal to n. If we pose n = 1, then this problem corresponds to
a choice. Moreover, relaxing the constraint concerning the size of C1 (i.e., increasing the value
for n) leads to interesting formulations with respect to the choice problem.

Conversely, some SCSPs can be formulated as choice or ranking problem statements, but
only if the categories are ordered. If there exists a size constraint stating that the first category
should contain k alternatives, this corresponds to the choice of the k best alternatives. If there
exist size constraints stating that k1 alternatives belong to C1, k2 alternatives belong to C2, etc.,
this may be accomplished by ranking the alternatives from the best to the worst and breaking
the ranking into ncat segments.

However, there exist SCSPs that cannot be formulated using a relative formulation (choice
or ranking). For instance, a situation like Example B cannot be solved by ranking the alterna-
tives because we would not know which segment with 10% of the alternatives (in the middle
of the ranking) should be selected. Indeed, to solve a SCSPs by ranking the alternatives is
possible only if the DM states the required sizes for all the categories, and even then the size
constraints might not be respected if the ranking was not a linear order (i.e. if the ranking has
ex-aequo alternatives).

5

2.3 Anticipatory SCSPs

We can distinguish among situations in which the set of alternatives A is completely known
or not before building the model. Suppose that we have a complete description of the set of
alternatives A. In this case, constraints on category size may be specified during the model
definition. The resulting model explicitly integrates these constraints, and it may be possible
to guarantee that the resulting sorting respects these constraints. For instance, in Example D,
the three groups of students are to be defined considering the actual students of the current
year. This is what we could call a “Static” SCSP.

In other situations, a sorting model is being built to evaluate alternatives that will appear in
the future or alternatives with performances that vary over time. In these situations, A is not
known beforehand and we hence face uncertainty concerning the alternatives’ performances. A
sorting model is to be built taking into account constraints about the size of the categories,
given the alternatives that are realistically likely to appear. We will refer to these problems as
“Anticipatory” SCSPs.

In static SCSPs the sorting model is only a means to an end (the partitioning of set A),
which as we have described might in some occasions be accomplished even without building a
sorting model (namely, resorting to a ranking). In contrast, in anticipatory SCSPs, the sorting
model is the objective of the decision aiding process.

In anticipatory SCSPs, the model is built (and may be divulged) before the actual alterna-
tives are known, and constraints about category size may possibly be violated when the actual
set of alternatives is considered. For instance, in example C, the director of the department
would want to announce the criteria for granting bonuses, and if the employees work exceed-
ingly well she may have to grant more A bonuses than she was expecting. anticipatory SCSPs
may also correspond to situations where the alternatives arrive separately and have to be eval-
uated as soon as they arrive (rather than all at the same time), as for instance loan applications.

3 Definition of category size

We have referred to the size of category Ck resulting from a sorting model as “the proportion of
alternatives assigned to the category Ck”. Let us consider a specific sorting model that uses a
set of preference parameters Ω (such as criteria weights, limits of categories, ...). Let P denote
the domain of possible values for the parameters in Ω. Let C(ai, p) denote the index of the
category to which ai ∈ A is assigned when the model parameters take values p ∈ P. Let each
alternative be defined by its evaluations on ncrit criteria. For the jth criterion (j = 1, . . . , ncrit),
the evaluations may take values on a scale Xj. Let K = {1, . . . , ncat} be the set of category
indices.

Given a set of alternatives A and a vector of parameter values p ∈ P, we define the size of
each category Ck as the proportion of alternatives from A that are assigned to Ck, i.e.,

µp(Ck) =
|{ai ∈ A : C(ai, p) = k}|

|A|
(1)

6

The above definition satisfies the following desirable properties:







µp(Ck) ≥ 0, ∀k ∈ K
∑ncat

i=1 µp(Ck) = 1
µp(∪k∈K ′Ck) =

∑

k∈K ′ µp(Ck), ∀K ′ ⊂ K

(2)

In such situations, there is a complete knowledge about the alternatives, which excludes
anticipatory SCSPs. In the case of anticipatory SCSPs, the set A would be a set represen-
tative of alternatives likely to appear in the future, based on a record of past alternatives
and/or forecasts from experts. Hence, we should refer to the size of category Ck resulting
from a sorting model as “the proportion by which an evaluation vector corresponding to a typ-
ical distribution of alternatives (as provided by a representative set) is assigned to the category”.

An additional analysis is to find the maximum and minimum size of each category, given a
domain for the vector of parameters p. Assuming that the information provided by the DMs
allows to define a domain P ⊂ P, we may compute:

µmin
p (Ck) = minp∈P (µp(Ck))

µmax
p (Ck) = maxp∈P (µp(Ck))

(3)

This provides the DMs an idea of the interval for the size of each category given the lack
of precise knowledge about the parameter values. These intervals become narrower as more
information about the parameter values is added (i.e., as P becomes smaller).

4 Considering category size in preference elicitation pro-

cesses

In some situations the parameter values are not precisely known. The lack of a precise vector
of preference-related parameter values may stem from various sources:

• the DMs find it hard to precisely answer some questions regarding their preferences,

• the DMs may not fully understand the role of all the parameters,

• the model may be used in the future and the DMs may not know how their preferences
will evolve,

• etc.

The elicitation of a multiple criteria sorting model amounts at assigning precise values to
the preference parameters used by the aggregation model, i.e., to select an appropriate p∗ ∈ P.
This task can be accomplished either,

• by a direct questioning procedure with the DM,

• or indirectly through the use of an inference program that induces parameter values
that restore holistic judgments (e.g., assignment examples) provided by the DM (see for
instance [JS82] and [JLS01] for such a disaggregation approach).

7

In this section we discuss how the concept of category size may be exploited in such pref-
erence elicitation processes. As input, we consider a domain P0 ⊂ P for possible parameter
values and a set A of alternatives to assign to categories.

The concept of category size may be used to support an elicitation process by trial and error,
where the DM chooses a combination of values for the parameters p ∈ P and observes the com-
puted category sizes corresponding to it through pictures similar to those in Figure 1. If what
the DM sees does not correspond to his/her intuition of what the distribution of category sizes
should look like, then he/she may change the parameter values, by trial and error, until a satis-
factory distribution is found. However, unless the DM is using a very simple assignment model
(e.g. one that depends on a small number of parameters and such that the effects of chang-
ing each parameter are easy to predict), then a trial and error process may become cumbersome.

Therefore we consider the case where the sorting model is inferred. In such cases, the DM
does not have to be an expert in the sorting method, and may simply provide assignment
examples for a subset of alternatives A∗ ⊂ A, i.e., alternatives for which the DM defines a spe-
cific assignment. In addition, the DM can provide some constraints related to his/her intuitive
view on the “size of each category”, and may provide additional constraints on parameter values.

Constraints on category sizes can be expressed in various manners:

• exact values, e.g., “there should be 5% alternatives in C1”;

• bounds, e.g., “there should be at most 5% alternatives in C1”;

• intervals, e.g., “there should be between 5% and 10% alternatives in C1”;

• comparisons, e.g., “there should be more alternatives in category C1 than in C2”.

This information can be translated into constraints on p (defining P ⊂ P) in a mathemat-
ical program, because a set of alternatives A has already been fixed. The details of such a
mathematical program will vary from a sorting method to another (the next section provides
an example for a UTADIS-like method).

Since assignment examples and constraints on category size are expressed through con-
straints in the inference mathematical program, these two types of constraints might be con-
flicting. This implies that the inference program should specify how such potential conflicts
among these constraints are to be solved (see Section 5, for further discussion in the UTADIS
framework).

The set A used to build the model (set of representative actions) should be representative of
the actual set of alternatives that will be evaluated, avoiding any kind of biases. For instance,
if a model is being built to evaluate mortgage loan requests and typically 20% of the requests
come from single-income families, then approximately 20% of the alternatives in A should re-
flect this characteristic. The set A will also need to contain enough elements for the precision
envisaged. For the subset A∗ of examples, the only requirement is that the DM feels confident
in assigning those examples to categories.

8

If the DM is capable of holistically evaluating all the elements of the representative set A

(i.e., A∗ = A), for instance using a database of past decisions, then the size constraints might
not be needed: the resulting category sizes might already reflect the requirements of the DM.
However, the size constraints might be needed if the DM found the result did not fulfill those
requirements, meaning that some examples might have to be assigned to different categories.

Using size constraints allows to work with a set of examples A∗ much smaller than the
representative set A, containing only the judgements in which the DM is more trustful. An
important aspect to note in this approach is that the example set is not necessarily a represen-
tative sample in what concerns category size. For instance, referring to motivating example A
(retail stores), the CEO could provide two examples for each category and still state that most
alternatives should fall into category C3. This allows eliciting examples (e.g., “Please provide
one example for each category”) without linking the number of examples in each category to
the size of the category (the example in Section 5.2 also illustrates this point). This is possible
because category sizes will be measured considering the representative set A and not just the
set of examples A∗.

Finally, let us note that in anticipatory SCSPs the actual set of alternatives will seldom
be equal to the set A used to build the model. Therefore, the inferred model that satisfies
all category size constraints when A is considered, may no longer satisfy some of them when
the unknown future alternatives are considered instead. For this reason, when a DM places
a constraint like “there should be 5% alternatives in the top category”, he/she should expect
that around 5% alternatives, and not exactly 5%, will appear in the top category when using
the model in the future. The DM may even determine beforehand (e.g., using a Monte-Carlo
simulation) the probability of violating each constraint.

This characteristic of anticipatory SCSPs should not be seen as a drawback. Indeed, it may
be essential. For instance, in Example A (Section 1) the CEO may provide size constraints
stating that less than 10% of the retail stores should fall into categories C1 or C5, whereas
more than 50% should be sorted into C3. This reflects the CEO’s view of normality, and a
model might be built using past data as a representative set. However, if for some reasons
the performances of the actual retail stores become atypical (e.g. 30% of them fall into C1),
then the CEO would want to be alerted for that. Surely, she would not want a model that
would automatically adjust its parameters to keep the underperformers under a 10% size barrier.

5 Illustration: a UTADIS-like method dealing with SCSPs

In order to illustrate the use of the category size concept, we propose a procedure to infer
the preference parameters values that account both for assignment examples and specifications
about the size of categories, in the context of the UTADIS sorting model ([DGJL80], [ZD00]).

9

5.1 A brief reminder of the UTADIS method

UTADIS is a multiple criteria sorting method that assigns alternatives ai ∈ A = {a1, a2, . . . , ai,

. . . , analt
} to one of the predefined ordered categories C1, C2, . . . , Ck, . . . , Cncat

(C1 being the
worst category) on the basis of a set of criteria {g1, g2, . . . , gj, . . . , gncrit

}. In what follows, we
will assume, without any loss of generality, that preferences increase with the value on each
criterion. Let F = {1, . . . , j, . . . , ncrit} denote the set of criteria indices, I = {1, . . . , i, . . . , nalt}
denote the set of alternatives indices, and by K = {1, . . . , k, . . . , ncat} the set of categories
indices. The UTADIS sorting method is an additive utility model of the form:

u(ai) =
∑

j∈F

uj(gj(ai)) ∈ [0, 1], ∀ i ∈ I, (4)

where,

• gj(ai) is the evaluation of alternative ai on criterion gj, ∀i ∈ I, ∀j ∈ F ,

• uj is a piecewise linear utility function for criterion gj, ∀j ∈ F , each uj ranges on the set
[0, wj] (we pose without loss of generality

∑

j∈F wj = 1).

UTADIS assigns each alternative ai ∈ A by comparing u(ai) to a set of category limits,
b1, . . . , bk, . . . , bncat−1 such that bk > bk−1, k = 2, ..., ncat − 1. These limits are used to assign
alternatives in the following way (Figure 2 illustrates the assignment process described above):



























ai ∈ C1 ⇔ 0 ≤ u(ai) < b1
...

ai ∈ Ck ⇔ bk−1 ≤ u(ai) < bk

...
ai ∈ Cncat

⇔ bncat−1 ≤ u(ai) ≤ 1

(5)

Let gm
j (gM

j , respectively) be the minimum (maximum, respectively) evaluation on criterion

gj, ∀j ∈ F . The interval [gm
j , gM

j] is divided into Lj equal subintervals: [g0
j , g

1
j [, . . . , [gl

j, g
l+1
j [,

. . . , [g
Lj−1
j , g

Lj

j] (g0
j = gm

j and g
Lj

j = gM
j), where gl

j is computed as follows:

gl
j = gm

j +
l

Lj

(gM
j − gm

j), l = 0, . . . , Lj and j ∈ F (6)

Each piecewise linear function uj is defined by the utilities of breakpoints uj(g
0
j) ≤ uj(g

1
j) ≤

. . . ≤ uj(g
Lj

j) (we recall that uj(g
0
j) = 0 and uj(g

Lj

j) = wj). If gj(ai) ∈ [gl
j , g

l+1
j [, then the partial

utility is obtained by linear interpolation: uj(gj(ai)) = uj(g
l
j) +

gj(ai)−gl
j

gl+1

j
−gl

j

(uj(g
l+1
j) − uj(g

l
j)).

Hence, the parameters of the UTADIS sorting model are the following:

• The utility of each breakpoint gl
j, i.e., uj(g

l
j), for j ∈ F and l = 1, . . . , Lj .

• The category limits, bk, for k = 1, . . . , ncat − 1.

10

u1(g1(ai))

g1(ai)b

b

b

b

u2(g2(ai))

g2(ai)b

b

b

b

uncrit
(gn(ai))

gncrit
(ai)

...

b

b

b

b

u(ai) =
∑

j∈F uj(gj(ai))

u(ai)

0

1

b1

Cncat

...

C1

bncat−1

? b

b

b

Figure 2: UTADIS sorting scheme

Let A∗ ⊂ A denote a subset of alternatives that the DM intuitively assigns to a specific
category (A∗ contains the assignment examples). UTADIS aims at inferring the parameters
values that best match the assignment examples. Suppose the DM stated that alternative
ai ∈ A⋆ should be assigned to the category Ck (ai → Ck). This statement generates constraints
on the parameters values: bk−1 ≤ u(ai) < bk. In order to integrate these constraints in a
mathematical program, two slack variables δ−(ai) and δ+(ai) are introduced as follows (ǫ is an
arbitrarily small positive constant):

{

u(ai) − bk − δ−(ai) ≤ ǫ

u(ai) − bk−1 + δ+(ai) ≥ 0
(7)

The linear program (8)-(17) infers the parameter values that best restore a set of assignment
examples:

min z =
∑

ai∈C1
δ−(ai) + . . . +

∑

ai∈Ck
(δ−(ai) + δ+(ai)) + . . . +

∑

ai∈Cncat
δ+(ai) (8)

s.t :
∑

j∈F uj(gj(ai)) − b1 − δ−(ai) ≤ ǫ, ∀ai ∈ C1 (9)
∑

j∈F uj(gj(ai)) − bk − δ−(ai) ≤ ǫ, ∀ai ∈ Ck, k = 2, . . . , ncat − 1 (10)
∑

j∈F uj(gj(ai)) − bk−1 + δ+(ai) ≥ 0, ∀ai ∈ Ck, k = 2, . . . , ncat − 1 (11)
∑

j∈F uj(gj(ai)) − bncat−1 + δ+(ai) ≥ 0, ∀ai ∈ Cncat
(12)

uj(g
l+1
j) − uj(g

l
j) ≥ 0 ∀j ∈ F, l = 1, . . . , Lj − 1 (13)

uj(g
0
j) = 0, ∀ j ∈ F (14)

∑

j∈F uj(g
Lj

j) = 1 (15)

bk − bk−1 ≥ ǫ, k = 2, . . . , ncat − 1 (16)

δ−(ai), δ
+(ai) ≥ 0, ∀ai ∈ A⋆ (17)

5.2 Considering category size constraints in UTADIS

Let us consider the data of a real-world application concerning a credit granting application
[Yu92]. This application deals with 40 alternatives evaluated on 7 criteria to be assigned to 3

11

ordered categories: C1: to reject, C2: to analyze, C3: to accept.

The knowledge of the credit manager leads to define intervals of variation for the parameters
values as follows:

• the shape of the functions uj is imprecisely known: partial utility functions uj are defined
as follows: uj(g

h
j) = wj.u

h
j where uh

j ∈ [uh
j , u

h
j], h=0..5 (intervals [uh

j , u
h
j] are defined in

table 1 hereafter).

• the criteria weights are such that wj ∈ [0.1, 0.2], ∀j ∈ F , (note: wj = uj(g
Lj

j)) and

• the categories profiles or limits are such that b1 ∈ [0.5, 0.6] and b2 ∈ [0.65, 0.7].

g1 g2 g3 g4 g5 g6 g7

[u0
j , u

0
j] 0 0 0 0 0 0 0

[u1
j , u

1
j] [0.25, 0.6] [0, 0.18] [0, 0.16] [0, 0.2] [0, 0.125] [0, 0.175] [0, 0.3]

[u2
j , u

2
j] [0.5, 0.65] [0.22, 0.42] [0.14, 0.34] [0.2, 0.4] [0.1, 0.3] [0.18, 0.45] [0.1, 0.5]

[u3
j , u

3
j] [0.65, 0.8] [0.62, 0.82] [0.44, 0.64] [0.6, 0.8] [0.7, 0.9] [0.425, 0.7] [0.45, 0.8]

[u4
j , u

4
j] [0.75, 0.99] [0.8, 1] [0.86, 0.99] [0.8, 1] [0.875, 1] [0.7, 0.85] [0.75, 0.9]

[u5
j , u

5
j] 1 1 1 1 1 1 1

Table 1: Shape of the partial utility functions

Moreover, the credit manager usually sends about 10% of the files to his/her superior for
further analysis, which means that, C2 should contain “approximately” 4 files out of 40. Hence,
our purpose is to build a model taking into account the constraint about the size of category C2.

As a first step, it may be helpful to compute the minimum and maximum size for each
category (see (3)). This will give an idea of the possible category sizes before considering any
size constraints or sorting examples. Let us define the decision variables yik such that:

yik =

{

1, if the alternative ai → Ck

0, otherwise.
∀i : ai ∈ A, k = 1, 2, 3 (18)

These yik variables can be defined in a mathematical program by the following constraints
where M is a large positive constant and ε a small positive constant.

∑ncrit

j=1 uj(gj(ai)) − bk + Myik ≤ M − ε, (19)

−
∑ncrit

j=1 uj(gj(ai)) + bk−1 + Myik ≤ M, (20)

Hence the expression
∑nalt

i=1 yik denotes the number of alternatives assigned to category Ck.
The following program computes the maximum value for the size of Ck (the computation of
the minimum is analogous). These computations lead to the results given in Table 2. It
appears that, considering the imprecision of the data, the size of C2 is in the interval [0, 21]
(see Table 2). However, the credit manager wants to send approximately 10% of the files (i.e,

12

±4 files) to his/her superior.

Max
∑40

i=1 yik

s.t.
∑7

j=1 uj(gj(ai)) − bk + Myik ≤ M − ε, i = 1, . . . , 40, k = 1, 2 (21)

−
∑7

j=1 uj(gj(ai)) + bk−1 + Myik ≤ M, i = 1, . . . , 40, k = 1, 2 (22)

uj(g
l+1
j) − uj(g

l
j) ≥ 0 ∀j ∈ F, l = 1, . . . , Lj − 1 (23)

uj(g
0
j) = 0, ∀ j ∈ F (24)

uj(g
h
j) ∈ [wju

h
j , wju

h
j], h = 1, ..., 4, ∀j ∈ F (25)

uj(g
Lj

j) = wj ∈ [wm
j , wM

j], j = 1, . . . , 7, (26)

b2 ≥ b1 + ε, (27)

bk ∈ [bm
k , bM

k], k = 1, 2 (28)

yi1 + yi2 + yi3 = 1, i = 1, . . . , 40 (29)

yik ∈ {0, 1}, i = 1, ..., 40, k = 1, 3 (30)

µmin
p (Ck) µmax

p (Ck)

C1 3 22
C2 0 21
C3 12 30

Table 2: Intervals for the size of categories µp(Ck)

Furthermore, as assignment examples, the credit manager has identified some files (a42, a53,
a61) for which he/she should refer to his/her superior, as well as some files to be rejected (a22,
a27, a41) and some to be accepted (a80, a90). Note that this set of examples does not have
to reflect the relative proportion of alternatives that is envisaged for the second category (i.e,
±10% files).

A possible approach to take into account both the assignment examples and the category
size constrains is a lexicographical one: first, one checks whether it is possible to satisfy the
assignment examples; then, among the multiple models that reassign correctly the assignment
examples, one tries to satisfy the category size constraints as much as possible. The linear pro-
gram (8)-(17) allows to verify that the provided assignment examples fit the UTADIS additive
model (z∗ = 0). If it did not fit (z∗ > 0) then, either z∗ would be considered as an accept-
able error, or the examples should be revised, or a suitable compromise between the different
types of constraints ought to be found (more details on the latter option will be provided below).

In order to cope with the manager’s requirements concerning the category size, we define a
mathematical program to infer (in the domain of acceptable values of the parameters) a model
as compatible as possible with this constraint on the size of C2, while conforming to the DM’s
assignment examples.

As the expression
∑nalt

i=1 yik denotes the number of alternatives assigned to category Ck and
can be used to define constraints on the size of Ck. In our case, the statement ‘C2 should

13

contain approximately 10 % of the files” (i.e., 4 alternatives) can be formulated by using the
two following constraints:

{
∑nalt

i=1 yi2 ≥ 4 − σ
∑nalt

i=1 yi2 ≤ 4 + σ
(31)

where σ is a variable to be minimized. Moreover, the assignment examples can be easily in-
tegrated as constraints by setting the values of the corresponding yik variables (ai → Ck ⇔
yik = 1). In the following mathematical program, the eight assignment examples that were
provided by the DM are enforced by the constraint (34).

Min σ

s.t.
∑7

j=1 uj(gj(ai)) − bk + Myik ≤ M − ε, i = 1, . . . , 40, k = 1, 2 (32)

−
∑7

j=1 uj(gj(ai)) + bk−1 + Myik ≤ M, i = 1, . . . , 40, k = 1, 2 (33)

y42,2 = y53,2 = y61,2 = y22,1 = y27,1 = y41,1 = y80,3 = y90,3 = 1 (34)
∑40

i=1 yi2 ≥ 4 − σ (35)
∑40

i=1 yi2 ≤ 4 + σ (36)

uj(g
l+1
j) − uj(g

l
j) ≥ 0 ∀j ∈ F, l = 1, . . . , Lj − 1 (37)

uj(g
0
j) = 0, ∀ j ∈ F (38)

uj(g
h
j) ∈ [wju

h
j , wju

h
j], h = 1, ..., 4, ∀j ∈ F (39)

uj(g
Lj

j) = wj ∈ [wm
j , wM

j], j = 1, . . . , 7, (40)

b2 ≥ b1 + ε, (41)

bk ∈ [bm
k , bM

k], k = 1, 2 (42)

yi1 + yi2 + yi3 = 1, i = 1, . . . , 40 (43)

yik ∈ {0, 1}, i = 1, ..., 40, k = 1, 2, 3, σ ≥ 0 (44)

After solving this mathematical programming model we have the following results:

• the optimal value of program (32)-(44) is σ∗ = 6: there exists no combination of parameter
values that satisfies the credit manager’s request both in terms of assignment examples
and requirement about the size of C2. In other words, when the credit manager wants to
restore his/her assignment examples, the minimal size for C2 is 10 (6 alternatives more
than desired size for C2).

• The 10 files to analyze are: {a42, a43, a44, a51, a52, a53, a54, a57, a59, a61},

On the basis of this first result, the credit manager may want to refine the analysis and get
a deeper understanding on how the size constraint is conflicting with the assignment examples.
To do so, one may use a bi-criteria formulation to find a compromise among the violation of
size constraints and the violation of sorting examples. This might be needed if (32)-(44) did
not manage to satisfactorily address the DM’s concerns about the category size, which would
be revealed by an optimal value for σ too high (according to the DM’s perspective). To obtain

14

the efficient frontier of this bi-criteria problem, we replace constraint (34) by a relaxed version
of this constraint:

y42,2 + y53,2 + y61,2 + y22,1 + y27,1 + y41,1 + y80,3 + y90,3 ≥ T (45)

where T would be progressively decreased (T=8, 7, 6, and so on) until reaching an acceptable
compromise between the number of assignment examples satisfied and the category sizes. This
highlights which assignment examples were responsible for the high values of σ in the optimal
solution of (32)-(44). Doing so, we obtain three efficient solutions to this bi-criteria problem
(these solutions are represented in Figure 3):

A All assignment examples are correctly assigned but the size of C2 is 10 (optimal solution
of program (21)-(30)),

B One assignment example is incorrectly assigned (a42 is assigned to C1, instead of C2), and
the size of C2 is 5: {a53, a56, a61, a62, a63}.

C Two assignment examples are incorrectly assigned (a53 and a61 are assigned to C3, instead
of C2), and the size of C2 is 4: {a28, a42, a51, a58}.

Number of incorrect

Assign. examples

Distance to

the desired

size for C2

0

1

2

0 1 2 3 4 5 6

b

b

b

C

B

A

Figure 3: Bi-criteria representation of solutions

Conclusion

Sorting problems consist of formulating the decision problem in terms of a classification that
assigns each alternative from A to one of the predefined categories C1, C2, . . . , Cncat

. The as-
signment of an alternative a to the appropriate category should rely on the intrinsic value of
a (and not on the comparison of a to other alternatives from A). On the contrary, the very
nature of ranking and choice problems is to compare alternatives one to another to determine
a preference order or the subset of the best one(s). Hence ranking and choice refer to relative
evaluation while sorting refers to absolute evaluation.

This paper introduces the notion of SCSP and its interest in decision aiding. We have mo-
tivated the use of the notion of category size in sorting problems and given a formal definition
to this notion. We have shown that considering constraints on category size leads to define
a new type of problem, the SCSP, that has both an absolute and relative evaluation aspects.
It has aspects of an absolute evaluation, because alternatives are compared with the implicit

15

standards of the DM and the alternatives are not directly compared. It has also aspects of a
relative evaluation: the implicit standards defining the categories will depend on the set A of
alternatives being sorted and the judgements about category sizes, therefore the category of an
alternative may change if A changes.

We have proposed how to make the category size concept operational even in decision situa-
tions where the DM’s preferences are imprecise. The UTADIS illustration shows an operational
process to take into account category size constraints as well as constraints derived from sorting
examples. The lexicographic sequence will be particularly useful when the set of examples is
easily reproduced by a UTADIS model. Otherwise, the DM may withdraw some of the exam-
ples or use a more complex bi-criteria model to find a suitable compromise among his/her two
objectives.

We deem the notions of category size and SCSP open a new research avenue that ought to
be pursued. On the one hand, future research may work on the design of elicitation procedures
that allow DMs to specify contraints on category size, thus integrating the notion of category
size in the various existing sorting methods. On the other hand, new multicriteria sorting
methods might be devised to deal specifically with SCSPs.

Acknowledgements:
This work has benefited from the luso-french grant no: 07863YE (GRICES/EGIDE) and
FCT/FEDER grant POCI/EGE/58371/2004. The third author was also supported by the
grant SFRH/BDP/6800/2001.

References

[Ban96] C.A. Bana e Costa. Les problematiques de l’aide a la decision: vers l’enrichissement
de la trilogie choix-tri-rangement. RAIRO/ Recherche Operationnelle, 30(2):191–
216, 1996.

[Bel00] N. Belacel. Multicriteria assignment method PROAFTN: methodology and medical
application. European Journal of Operational Research, 125(1):175–183, August
2000.

[DGJL80] J.M. Devaud, G. Groussaud, and E. Jacquet-Lagreze. UTADIS: Une methode de
construction de fonctions d’utilite additives rendant compte de jugements globaux.
In European working group on MCDA, Bochum , Germany, 1980.

[DMFC02] L.C. Dias, V. Mousseau, J. Figueira, and J.N. Clímaco. An aggrega-
tion/disaggregation approach to obtain robust conclusions with ELECTRE TRI.
European Journal of Operational Research, 138(2):332–348, April 2002.

16

[DZZ01] M. Doumpos, S.H. Zanakis, and C. Zopounidis. Multicriteria preference disaggrega-
tion for classification problems with an application to global investing risk. Decision
Sciences, 32(2):333–385, 2001.

[JLS01] E. Jacquet-Lagrèze and Y. Siskos. Preference disaggregation: 20 years of MCDA
experience. European Journal of Operational Research, 130(2):233–245, April 2001.

[JS82] E. Jacquet-Lagrèze and Y. Siskos. Assessing a set of additive utility functions for
multicriteria decision making: the UTA method. European Journal of Operational
Research, 10:151–164, 1982.

[MO91] R. Massaglia and A. Ostanello. N-tomic: a support system for multicriteria seg-
mentation problems. In P. Korhonen, A. Lewandowski, and J. Wallenius, editors,
Multiple Criteria Decision Support, pages 167–174. Springer Verlag, LNEMS 356,
Berlin, 1991.

[MR77] J. Moscarola and B. Roy. Procédure automatique d’examen de dossiers fondée
sur une segmentation trichotomique en présence de critères multiples. RAIRO
Recherche Opérationnelle, 11(2):145–173, 1977.

[Per98] P. Perny. Multicriteria filtering methods based on concordance/non-discordance
principles. Annals of Operations Research, 80:137–167, 1998.

[Roy85] B. Roy. Méthodologie multicritère d’aide à la décision. Economica, Paris, 1985.

[Yu92] W. Yu. Aide multicritère à la décision dans le cadre de la problématique du tri:
méthodes et applications. PhD thesis, LAMSADE, Université Paris Dauphine, Paris,
1992.

[ZD00] C. Zopounidis and M. Doumpos. PREFDIS: a multicriteria decision support system
for sorting decision problems. Computers & Operations Research, 27(7-8):779–797,
June 2000.

[ZD02] C. Zopounidis and M. Doumpos. Multicriteria classification and sorting methods:
A literature review. European Journal of Operational Research, 138:229–246, 2002.

17

