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Abstract. This work deals with the computation and the selection of approxi-
mate – or ε-efficient – solutions of {0, 1}-knapsack problems. By allowing approx-
imate solutions in general a much larger variety of possibilities for the underlying
problem is offered to the decision maker while the potential loss of these almost
efficient solutions compared to related efficient ones can be adjusted a priori, de-
pending on the given application. In this paper, we propose a novel population
based stochastic algorithm for the computation of the entire set of ε-efficient so-
lutions, state a convergence result, and address the related decision making prob-
lem. For the latter we propose an interactive selection process which is intended
to help the decision maker to understand the landscape of the obtained solutions.

1 Introduction

Since Loridan ([9]) has introduced the concept of ε-efficiency for multi-objective opti-
mization problems (MOPs) more than two decades ago, it has been studied and used by
many researchers, e.g. to allow (or tolerate) nearly optimal solutions ([9], [19]), to ap-
proximate the set of optimal solutions ([13]), in order to discretize this set ([7], [16]), or
to tackle real world problems (e.g., [20], [1], [13]). One advantage of allowing approx-
imate solutions is that by this a larger flexibility is offered to the decision maker (DM)
whos task is to select an ’adequate’ solution according to the given problem (and to his
or her preferences) while the possible loss on the solution quality can be adjusted a pri-
ori. In this work we aim for the numerical treatment of {0,1}-knapsack problems which
have a wide range of real-world applications (e.g., captial budgeting ([11]), relocation
problems ([6]), or planning remediation ([5])), and in all of them the value of ε has a
physical meaning, and thus, the potential loss compared to possible exact solutions is



calculable. The explicit computation of approximate solutions has been addressed in
several studies, most of them employing scalarization methods (e.g., [19], [1], [2]). Re-
cently, an archving strategy has been proposed to maintain the entire set of ε-efficient
solutions (denote by Eε) in the limit using stochastic search algorithms. On the basis of
this work we will propose a novel population based search procedure which is designed
to compute the approximate solutions of the {0,1}-knapsack problems.

Furthermore, we will propose an interactive procedure which should help the DM
to explore the landscape of Eε , and which should thus ease his or her task to find the
’right’ solution according to the current situation.

The remainder of this paper is organized as follows: in Section 2, we give the re-
quired background for the understanding of the sequel. In Section 3 we state the prob-
lem and motivate why we have chosen to tackle it with stochastic search algorithms. In
Section 4 we propose such an algorithms and give some numerical results. Section 5
proposes an interactive selection procedure, and finally we conclude in Section 6.

2 Background

In the following we consider multi-objective optimization problems

min
x∈Q
{F(x)}, (MOP)

where the function F is defined as the vector of the objective functions F : Q →
Rk, F(x) = ( f1(x), . . . , fk(x)), and where Q ⊂ Rn is finite.

Definition 1. (a) Let v,w ∈ Rk. Then the vector v is less than w (v <p w), if vi < wi for
all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) y ∈ Rn is dominated by a point x ∈ Rn (x ≺ y) with respect to (MOP) if F(x) ≤p

F(y) and F(x) , F(y), else y is called nondominated by x.
(c) x ∈ Rn is called a Pareto point if there is no y ∈ Rn which dominates x. Denote by

PQ the set of Pareto points of a given MOP.

Definition 2. Let ε = (ε1, . . . , εk) ∈ Rk
+ and x, y ∈ Rn.

(a) x is said to ε-dominate y (x ≺ε y) with respect to (MOP) if F(x) − ε ≤p F(y) and
F(x) − ε , F(y).

(b) x is said to −ε-dominate y (x ≺−ε y) with respect to (MOP) if F(x) + ε ≤p F(y) and
F(x) + ε , F(y).

The definition in (b) is of course analogous to the ‘classical’ ε-dominance relation in (a)
but with a value ε̃ ∈ Rk

−. However, we highlight it here since it will be used frequently
in this work. While the ε-dominance is a weaker concept of dominance, −ε-dominance
is a stronger one. We now define the set of interest

Definition 3. [15] Denote by PQ,ε the set of points in Q ⊂ Rn which are not −ε-
dominated by any other point in Q, i.e.

PQ,ε := {x ∈ Q|@y ∈ Q : y ≺−ε x} (1)



Algorithm 1 gives a framework of a generic stochastic multi-objective optimization
algorithm, which will be considered in this work. Here, Q ⊂ Rn denotes the domain of
the MOP, P j the candidate set (or population) of the generation process at iteration step
j, and A j the corresponding archive.

Algorithm 1 Generic Stochastic Search Algorithm
1: P0 ⊂ Q drawn at random
2: A0 = ArchiveU pdate(P0, ∅)
3: for j = 0, 1, 2, . . . do
4: P j+1 = Generate(P j)
5: A j+1 = ArchiveU pdate(P j+1, A j)
6: end for

3 The Problem

In this section we present the class of MOPs which is beeing considered in this work
and make some discussions on it.

In the sequel we consider bi-objective {0,1}-knapsack problems of the following
form:

f1, f2 : {0, 1}n → R, f1(x) =

n∑

j=1

c1
j x j, f2(x) =

n∑

j=1

c2
j x j (2)

s.t.
n∑

j=1

w jx j ≤ W, x j ∈ {0, 1}, j = 1, . . . , n,

where ci
j represents the value of item j on criterion i, i = 1, 2; x j = 1, j = 1, . . . , n, if

item j is included in the knapsack, else x j = 0. w j is the weight of item j, and W the
overall knapsack capacity.

Here we are particularly interested in instances where the items have ’similar’ values
– i.e., where some ci

j’s (not necessarily all) are within a relatively small range – since
in that case the set of ε-efficient solutions can become large, even for small values of ε.

Table 1 shows some results for n = 500 items, and where the values ci
j are chosen

within the interval [10 − d, 10 + d], d = 1, 2, 3. We can observe that the magnitudes of
P̃Q – the number of nondominated solutions found by the search procedure– is nearly
independent from the choice of the interval. This does not hold for the magnitudes of

˜PQ,ε , i.e., the set of points which is not −ε dominated by any other test point. We see
that | ˜PQ,ε | gets larger the closer the values of the items are, and in all cases we have
| ˜PQ,ε | > P̃Q. However, in case the values of the items vary a lot, it can happen that
PQ = PQ,ε , even for large values of ε (see e.g. the model in [8], or [18]).

Example 1. Let a knapsack problem and a value of ε be given. If there exits a point
p ∈ PQ and two indices j1, j2 ∈ {1, . . . , n} such that

p j1 = 1, p j2 = 0, e j2 ≺ε e j1 , ω j2 ≤ ω j1 , (3)



|P̃Q| | ˜PQ,ε |
ci

j ∈ [9, 11] 8.7 144.93
ci

j ∈ [8, 12] 8.87 42.8
ci

j ∈ [7, 13] 9.07 26.93

Table 1. Some numerical results for MOP (2) with n = 500, averaged over 30 test runs. We have
taken the algorithm described in Section 4 using a population of 100 individuals ,with a number
of 10.000 generations. P̃Q denotes the set of nondominated solutions and ˜PQ,ε the set of points
which is not −ε dominated by any other test point generated by the algorithm.

where e j denotes the j-th unit vector, then for the point p̃ which is defined as

p̃ :=


pi if i < { j1, j2}
0 if i = j1
1 if i = j2

, (4)

the following holds:
p̃ < PQ and p̃ ≺ε p, (5)

and the Hamming distance of these two points is given by 2.
As an numerical example we consider n = 4, ω = 1, W = 2, and the weights

c1 = (10, 10, 5, 12)

c2 = (10, 9, 12, 7)
(6)

The Pareto set is given by the following three elements:

x F(x)
x1 := (1, 1, 0, 0) (20, 19)
x2 := (1, 0, 1, 0) (15, 22)
x3 := (1, 0, 0, 1) (22, 17)

Further we have x4 := (0, 1, 1, 0) with F(x4) = (15, 21) and x5 := (0, 1, 0, 1) with
F(x5) = (22, 16). When chosing ε = (1, 1) it holds that

x4 ≺ε x2 and x5 ≺ε x3,

and in both cases the Hamming distance is 2.
In the continuous case (i.e., continuous objectives defined on a continuous domain)
there are always ε-efficient points in the neighborhood of a Pareto point. To be more
precise, for every Pareto point p there exists a neigborhood Up of p such that every
point x ∈ Up is ε-dominating p (and thus, PQ,ε forms an n-dimensional set while PQ

is typically (k − 1)-dimensional). This is of course not the case for combinatorial prob-
lems and for ’sufficiently small’ values of ε, and hence in this case we expect that the
magnitude of PQ,ε is of the same order as the magnitude of PQ.



The next example shows that PQ,ε can be highly disconnected, which motivates to
tackle such problems with stochastic search algorithms since ’classical’ exact methods
designed to locate PQ and which utilize the locality of such MOPs, can probably not
be easily tuned in order to solve the problem adequately (however, the authors do not
foreclose that such algorithms will not exist in future).

Example 2. For this example, we consider n = 6, w = 1, W = 3, and the costs

c1 = (95, 120, 80, 98, 105, 87)

c2 = (107, 75, 115, 97, 90, 108)
(7)

Here, PQ consists of 18 points- two pairs of solutions having the same values in the
image space - including x1 = (1, 1, 1, 0, 0, 0) with F(x1) = (295, 297) (see Figure 1).
When choosing ε = (5, 5) – the value of εi = 5 relates to approximately 5 percent of the
average weight of one item – we see that x2 = (0, 0, 0, 1, 1, 1) with F(x2) = (290, 295)
is an ε-efficient solution since it is ε-dominating x1 (and only this point). The Hamming
distance is 6, thus the maximal possible value. There exists also x4 = (0, 1, 1, 1, 0, 0)
which is an ε-efficient solution since it is ε-dominating x3 = (1, 0, 0, 1, 1, 0), with
F(x3) = (298, 294), x3 ∈ PQ. The Hamming distance between x3 and x4 is 4.
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Fig. 1. The set of feasible solutions for the considered example. It can be observed that PQ,ε

contains one solution with dH = 6 and several solutions with dH = 4.



Further instances with larger distances of approximate solutions to PQ can be con-
structed, see also the example in Section 5 or [18].

4 A Stochastic Search Algorithm

4.1 The Algorithm

The algorithm is a population based evolutionary technique intended for providing PQ,ε

approximation sets. It is intended as the first component of an exploratory process which
offers to the users information about PQ,ε approximation sets, required in studying the
solutions landscape. The idea behind the exploration strategy is to improve the perfor-
mances obtained using the archiving strategy by adapting the ε values to the feasible
solutions landscape.

In [3], a basic structure of adaptative ε based exploration is proposed for {0,1}- mul-
tiple knapsacks problems in the context of the computation of PQ. There, the value of
ε is decreased by 1 each time the number of consecutive generations without improve-
ment attains a specific value.

In this paper we propose general assumptions requisite in obtaining the conver-
gence toward PQ,ε . These assumptions are taken into account in constructing a specific
decrease function together with a way of considering the distance criterion between two
consecutive archives in the adaptive process. For simplicity, we assume that all compo-
nents of ε are identical, i.e., ε = (ε∗, . . . , ε∗). The value of ε∗ is specified by the user, as
well as a maximal starting value, εmax. The maximal value can be deduced for specific
problems by performing bounds computations for the objective functions.

Algorithm 2 exposes the generic components of the proposed adaptive ε-approximate
searching strategy. The technique facilitates the reduction of the number of generations
required in order to attain a PQ,ε∗ final set.

As regards the termination criterion, for a given t, the two conditions t ≤ MaxNoGenerations
and εt ≥ εmin must be met in order to continue the loop. This implies that in the worst
case the algorithm will terminate after the maximal number of generations by employ-
ing the Decrease(t) adaptation for εt.

4.2 Discussion and Analysis

Adaptation of ε The distance criterion consists in computing a comparative metric
between At+1 and At - dist(At+1, At) = Metric(At+1, At). If the value of the improvement
falls bellow a specified threshold - denoted as MinimalQualityIncrease - the length of
the step used in decreasing the value of ε increases by ∆. For our purposes the C-metric,
proposed in [21], is computed between At+1 and At. It was chosen by its ability of
providing the percent of solutions from At+1 which are dominating the ones in At. Also
it has the advantage of being computed independently, without considering external
factors, as a specified point. Other comparative metrics can be similarly employed.

Let Decrease : N → [ε∗, εmax] be a monotonically decreasing function which de-
fines the value of ε in the adaptive process. The following assumption on Decrease is
necessary in order to ensure convergence in the limit toward PQ,ε :

∃t0 ∈ N : ε(t) = ε∗,∀t ≥ t0. (8)



Algorithm 2 Generic Adaptive ε-Approximation Search
1: t = 0;
2: ε0 = εmax

3: A0 = ∅
4: P0 ⊂ Q drawn at random
5: dist = 0
6: while ¬ Termination Criterion(Pt) do
7: Pt+1 = Generate(At,Pt);
8: Evaluate(Pt+1);
9: At+1 = ArchiveU pdate(εt, Pt, At);

10: ∆ = dist(At+1, At);
11: if ∆ < MinimalQualityIncrease then
12: εt+1 = Decrease(t + Increase(∆))
13: else
14: εt+1 = min(εt,Decrease(t));
15: end if
16: t = t + 1;
17: end while

For our computations we have used the following functions:

D(t) := εmax − exp−γ
(

β
MaxNoGenerations t

)2

∗(εmax − ε∗), for t ≤ t0, (9)

where β represents an arbitrarily large value.

ArchiveUpdate Here we use the archiving strategy proposed in [15] and which was
designed to maintain the entire set of ε-efficient solutions with generic stochastic search
algorithms. The archiving strategy is simply the one which keeps all obtained points
which are not −ε-dominated by any other test point, i.e.

ArchiveU pdatePQ,ε(ε, P, A) := {x ∈ P ∪ A : y ⊀−ε x ∀y ∈ P ∪ A}, (10)

The following theorem states a result on the underlying abstract algorithm of the
procedure proposed above.

Theorem 1. Let an MOP of the form (2) be given and ε ∈ Rk
+. Further let

∀x ∈ {0, 1}n : P (∃l ∈ N : x ∈ Pl) = 1 (11)

Then an application of Algorithm 1, where ArchiveU pdatePQ,ε() is used to update the
archive, leads to a sequence of archives Al, l ∈ N, with

lim
l→∞

dH(PQ,ε , Al) = 0, with probability one, (12)

where dH denotes the Hausdorff distance.

Proof. This is a direct consequence of a result from ([14]), which holds for the contin-
uous case.



Remark 1. a) The crucial assumption required to obtain convergence is (11). This is
e.g. fulfilled if the sequence (Pt)t≥0 of candidate sets obtained by Generate() is a homo-
geneous finite Markov chain with irreducible transition matrix ([12], [4]).

b) By (8) it is assured that PQ,ε is computed in the limit. In the first steps, where
larger values of εi are used (in order to increase the performance of the algorithm),
outer approximations of PQ,ε are generated since for all ε1, ε2 ∈ Rk

+ with ε1 ≤p ε2 it
follows that PQ,ε1 ⊂ PQ,ε2 . Condition (8) has to be added for theoretical purposes since
the function f : R+

0 → R+
0 ,

f (∆) = dist(PQ,ε+1∆, PQ,ε) = sup
p∈PQ,ε+1∆

inf
q∈PQ,ε

||p − q||, (13)

does not have to be continuous (e.g., if F(Q) is not convex).

4.3 Numerical results

A comparative study was entailed between applying classical archive which stores all
the nondominated solutions ArchiveU pdateND [16] based on the non-dominance rela-
tion and adaptive ε-approximation search based on the use of ArchiveU pdatePQ,ε .

For both algorithms a comparable number of evaluations has been performed, each
of the algorithms being executed having the same maximal number of generations,
namely 10,000 generations. The size of the population has been set to 100 individuals.
It can be observed from Figure 2 that the solutions obtained by the adaptive technique
include all the solutions provided by the ArchiveU pdateND. For the adaptive process
we used εmax = 5 and ε∗ = 2 (and thus ε = (2, 2)).

5 Interactive Selection Method

Having computed an approximation of PQ,ε (denote by ˜PQ,ε), the question naturally
arises how to select a suitable point out of this (large) set according to the given appli-
cation. The scope of this section is to propose such a selection mechanism.

The selection mechanism is intended as the second step of the exploration process.
The target users are developers that want to gather knowledge about the topology of the
landscape described by subsets of PQ,ε and of F(PQ,ε) sets. We provide tools that allow
focusing on specific regions.

In this section we assess the performance of interactive methods in guiding the user
through the selection process. The main steps of the Interactive Selection Method are
exposed in the followings. The selection mechanism starts in the image space due to its
low dimensionality. Given an approximation of PQ,ε , computed using the Algorithm 2.
We present to the user a filtered front - further denoted as F - composed only of the
Pareto non-dominated solutions from the PQ,ε . The user specifies a region by employing
graphical tools and/or by specifying a tolerance value for ε. The solutions from PQ,ε

contained in the specified interest region, R - further denoted as PQ,ε(R) - are graphically
depicted in both the objective and the decisional space.

Figure 3 captures the main steps of the interactive EMO technique applied for the
knapsack instance presented in Figure 2.



 148

 150

 152

 154

 156

 158

 160

 162

 154  156  158  160  162  164  166  168  170

"P_Q,epsilon"
"P_Q"

Fig. 2. Approximations of PQ and PQ,ε for an instance with n = 30 and for ε = (2, 2). Though ε
is relatively small, the set of approximate solutions is much larger than the set of nondominated
points, offering thus more possibilities for the DM.

Algorithm 3 Interactive component
1: F := nondominated solutions of ˜PQ, ε

2: while user ¬ satisfied do
3: R = User Input Interest Region(F )
4: ObjectiveSpaceDisplay (PQ,ε(R), P f

Q,ε)
5: DecisionalSpaceDisplay (PQ,ε(R))
6: end while
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Fig. 3. Visualization of the objective space (left) and of the decision space(right) for a typical run
of the proposed interactive EMO on the knapsack problem depicted in Section 3 for a 30 objects
instance.

Association coefficients were chosen as distance metrics for representing (PQ,ε(R))
in the decisional space. For every Pareto point from the interest region an associated
plot is presented to the user.

On the first axis of the plot, the Hamming distance is computed between the chosen
Pareto point and the points in the interest region. This allows for an initial clustering of
the data.

Regarding the second axis, the context is changed from the chosen Pareto point.
A measure of the correlation between the solutions in the specified region is chosen.
To this aim, an average of the Hamming distances of every point as regards the other
points in the interest region is presented to the user. As an example, when a point has
a large value on the second axis - as compared to other points on the first coordinate-
this means that there are a small number of similarities between them and the rest of the
points in the specified neighborhood. An in-depth study of distance measures for binary
variables can be found in [10].

For the given example we obtain in the chosen interest region three solutions with
Hamming distance 8 and other three solutions with Hamming distance 10. The two dif-
ferent perspectives - decisional and objective space - allow a better understanding of the
solutions landscape topology. As shown in Example 2, providing the decisional space
perspective is crucial. Two neighbor solutions, in the objective space, can represent very
different solutions in the decisional space - if not completely different.

In the real life production process it is possible that the values of the objective func-
tions are satisfactory to the user, while the proposed associated configuration cannot be
applied. Thus, analyzing in the decisional space solutions from a tolerance interval can
resolve the problem. Totally different solutions can lay on the tolerance interval and
thus satisfy the end-user needs.

6 Conclusions

As shown by the examples in Section 3, the objective space perspective alone can
be misleading in choosing the desired approximate solutions. The presence of totally



different solution configurations is tackled by the proposed adaptive technique. The
chances of obtaining a solution that fits the user demands are thus increased. The inter-
active techniques offers the last step needed in efficiently making use of the captured
information.

Among the extensions envisaged, a specific comparison metric that ensures the
speed-up of the adaptive process is considered. The interactive selection process can
also be integrated in the search procedure as part of an interactive evolutionary multi-
objective technique, as depicted in [17].

The hybridization between the algorithmic and the interactive part presented in this
paper induces results with provable performance guarantee. It also allows a more com-
plex evaluation of the solutions landscape structure.

References

1. R. Blanquero and E. Carrizosa. A. d.c. biobjective location model. Journal of Global Opti-
mization, 23(2):569–580, 2002.

2. A. Engau and M. M. Wiecek. Generating epsilon-efficient solutions in multiobjective pro-
gramming. European Journal of Operational Research, 177(3):1566–1579, 2007.

3. C. Grosan. Multiobjective 0/1 knapsack problem using adaptive epsilon -dominance. pages
551–562. Springer Verlag, 2006. Proceedings of 9th World on-line Conference on Soft Com-
puting in Industrial Application.

4. M. Iosifescu. Finite Markov Processes and Their Applications. Wiley, 1980.
5. L. Jenkins. A bicreteria knapsack program for planning remediation of contaminated light-

station sites. Eur. J. Oper. Res., 140:427–433, 2002.
6. M. M. Kostreva, W. Ogryczak, and D. W. Tonkyn. Relocation problems arising in conserva-

tion biology. Comp. and Math. with App., 37:135–150, 1999.
7. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and diversity in

evolutionary multiobjective optimization. Evolutionary Computation, 10(3):263–282, 2002.
8. M. Laumanns, L. Thiele, and E. Zitzler. Running time analysis of evolutionary algorithms

on a simplified multiobjective knapsack problem. Natural Computing, 3:37–51, 2004.
9. P. Loridan. ε-solutions in vector minimization problems. Journal of Optimization, Theory

and Application, 42:265–276, 1984.
10. R. Sokal P. Sneath. Numerical Taxonomy. The Principles and Practice of Numerical Classi-

fication. Freeman,San Francisco, 1973.
11. M. J. Rosenblatt and Z. Sinunany-Stern. Generating the discrete efficient frontier to the

capital budgeting problem. Operations Research, 37:384–394, 1989.
12. G. Rudolph and A. Agapie. Convergence properties of some multi-objective evolutionary al-

gorithms. In Proceedings of the 2000 Conference on Evolutionary Computation (CEC2000),
pages 1010–1016, 2000.

13. G. Ruhe and B. Fruhwirt. ε-optimality for bicriteria programs and its application to minimum
cost flows. Computing, 44:21–34, 1990.

14. O. Schütze, C. A. Coello Coello, and E.-G. Talbi. Approximating Pareto sets with stochastic
search algorithms. Research report, INRIA, 7 2007.

15. O. Schütze, C. A. Coello Coello, and E.-G. Talbi. Approximating the ε-efficient set with
stochastic search algorithms. To appear at the Mexican International Conference on Artificial
Intelligence (MICAI 2007), 2007.

16. O. Schütze, M. Laumanns, E. Tantar, C. A. Coello Coello, and E.-G. Talbi. Convergence of
stochastic search algorithms to gap-free Pareto front approximations. To appear in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2007), 2007.



17. E. Tantar, C. Dhaenens, J. Figueira, and E.-G. Talbi. Interactive hybridization of metaheuris-
tics and landscape analysis for multi-objective optimization. Working Paper 10/ISSN 1646-
2955, CEG-IST, Center for Management Studies, Instituto Superior Tecnico, Technical Uni-
versity of Lisbon, Portugal, 7 2007.

18. E. Tantar, O. Schütze, J. Figueira, C. A. Coello Coello, and E.-G. Talbi. Landscape based
adaptive search technique for {0,1}-knapsack problems. Research report, INRIA, 2007.

19. D. J. White. Epsilon efficiency. Journal of Optimization Theory and Applications, 49(2):319–
337, 1986.

20. D. J. White. Epsilon-dominating solutions in mean-variance portfolio analysis. European
Journal of Operational Research, 105(3):457–466, 1998.

21. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Computation,
3(4):257–271, 1999.


