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Abstract

Gibbard (1973) and Satterthwaite (1975) have shown independently that any
non-dictatorial voting choice procedure is vulnerable to strategic manipula-
tion, when individuals express their preferences trough weak relations on the
set of alternatives. This paper extends their result to the case of fuzzy weak
preference relations on the set of alternatives. For this purpose, the manip-
ulability and the dictatorship properties of fuzzy social choice functions are
stated in terms of a symmetric and regular component of individual fuzzy
weak preference relations. The proof of the established result is done by in-
duction on the number of individuals.

Key words: fuzzy preference relation, manipulability, fuzzy social choice
functions.
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1 Introduction

A voting choice procedure is known to be subject to strategic manipulation when
an individual reveals a non-sincere preference relation in order to change the so-
cial choice in his favor. Gibbard (1973) and Satterthwaite (1975) (henceforth G-S)
proved, independently, that any non-dictatorial voting choice procedure is subject to
manipulability whenever the set of alternatives contains at least three candidates. It
was assumed that individuals can express their preferences trough weak preference
relations on the set of alternatives. It is also well-known that, in many situations
individuals have some difficulties to express clearly their preferences on the set of
alternatives but they can, however, specify a preference degree for each ordered pair
of alternatives , i.e., they can express their preferences trough fuzzy weak preference
relations on the set of alternatives (Fodor and Roubens, 1994). Therefore, the choice
of a single alternative requires the use of a fuzzy social choice function (FSCF ).

In the literature (e.g. Barrett, et al. 1990; Garcia-Lapresta and Llamazares,
2000), there exist two ways to deal with an FSCF. The first one is based on the rule
“aggregation-and-defuzzification”. It consists of applying to a preference profile a
fuzzy social welfare function that leads to a social fuzzy relation, and then of gener-
ating, from the comprehensive fuzzy relation, a collective choice by applying a choice
function. The second one makes use of the rule “defuzzification-and-aggregation”,
and consists of applying a choice function that generates on the basis of each in-
dividual fuzzy relation his best alternative set, and then by using a voting choice
procedure the social choice is obtained on the basis of the individual choices.

This paper deals with the strategic manipulation of FSCF s whenever individuals
have fuzzy weak preference relations on the set of alternatives. The basic idea is
to specify the asymmetric component of a fuzzy individual weak preference relation
to define the manipulability and dictatorship of an FSCF. In fact, we explore the
ways for the decomposition of a fuzzy weak preference relation into a symmetric
component and an asymmetric component as in Dutta (1987), Richardson (1994)
and Fono and Andjiga (2005). We are particularly interested in the more general one
as it was proposed by Fono and Andjiga (2005). These authors worked on a certain
type of fuzzy weak relations satisfying a max-?-transitivity, where ? is a t-norm.
Given a fuzzy weak preference, we associate to each alternative a score equal to the
cardinal of the subset of alternatives with a null strict preference degree over the
considered alternative. Therefore, an individual can manipulate an FSCF if there
exists a fuzzy relation securing him an outcome with a greater cardinal score than
the one of the sincere social choice.
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The paper is organized as follows. Section 2 presents the main concepts, defi-
nitions, and notation. Section 3 presents the different definitions of manipulability
and dictatorship of an FSCF. Section 4 establishes the impossibility result regard-
ing the strategy-proofness of fuzzy social choice functions. The last section provides
concluding remarks.

2 Concepts: Definitions and notation

This section presents the basic concepts and properties of fuzzy operators and fuzzy
relations. In addition, it provides a review of how to decompose a fuzzy relation
into a symmetric component and an asymmetric one.

2.1 Mathematical preliminaries

Given a finite set of alternatives, X = {x, y, z, . . .} with |X| ≥ 3, fuzzy binary
relations can be introduced to model the vagueness or fuzzy aspects of preferences.
These fuzzy relations can be defined as fuzzy sets in the two-dimensional cartesian
product, X2 = X ×X with a membership function, R.

Consider a finite set of individuals, N = {1, 2, . . . , i, . . . , n}, the social choice
problem consists of finding the best alternative in X according to the preferences
of all individuals in N . The best alternative is also called the social choice. It is
assumed here that individuals express their preferences as fuzzy relations on the set
X. The formal definitions of fuzzy operators and fuzzy binary relations as well as
some of their fundamental properties are introduced next as in Fono and Andijga
(2005).

Definition 1 (t-norm) A t-norm is a function ? : [0, 1]× [0, 1] → [0, 1] satisfying
the following properties for all x, y, z, u ∈ [0, 1]:

1. x ? 1 = x,

2. x ? y ≤ u ? z if x ≤ u and y ≤ z,

3. x ? y = y ? x,

4. (x ? y) ? z = x ? (y ? z).
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Definition 2 (t-conorm) A t-conorm is a function ⊕ : [0, 1] × [0, 1] → [0, 1] sat-
isfying the following properties for all x, y, z, u ∈ [0, 1]:

1. x⊕ 0 = x,

2. x⊕ y ≤ u⊕ z if x ≤ u and y ≤ z,

3. x⊕ y = y ⊕ x,

4. (x⊕ y)⊕ z = x⊕ (y ⊕ z).

Definition 3 (quasi-inverse of a t-norm) Let ? be a continuous t-norm. The
quasi-inverse of ? is the internal composition law denoted by ‖ and defined for all
x, y ∈ [0, 1] as follows:

x‖y = max{t ∈ [0, 1], x ? t ≤ y}.

Definition 4 (quasi-subtraction of a t-conorm) Let ⊕ be a continuous t-conorm.
The quasi-subtraction of ⊕ is the internal composition law denoted by 	 and defined
for all x, y ∈ [0, 1] as follows:

x	 y = min{t ∈ [0, 1], x⊕ t ≥ y}.

Definition 5 (strict t-conorm) A t-conorm ⊕ is strict if for all x, y ∈ [0, 1],∀ z ∈
[0, 1[, with x < y, then x⊕ z < y ⊕ z.

Example 1

1. Let ?Z and ⊕Z denote the Zadeh’s min t-norm and the Zadeh’s max t-conorm re-
spectively, i.e., for all x, y ∈ [0, 1], x ?Z y = min{x, y} and x⊕Z y = max{x, y}. The
quasi-subtraction of ⊕Z is defined as follows:

for all x, y ∈ [0, 1], x	Z y = x, if x > y; and 0, otherwise.

2. Let ?L and ⊕L denote the Lukasiewicz’s t-norm and the Lukasiewicz’s t-conorm
respectively, i.e., for all x, y ∈ [0, 1], x ?L y = max{0, (x + y − 1)} and x ⊕L y =
min{1, (x + y)}. The quasi-subtraction of ⊕L, denoted by 	L, is defined as follows:

for all x, y ∈ [0, 1], x	L y = max{0, (y − x)}.
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Definition 6 (fuzzy binary relation)

A fuzzy binary relation (FBR) on X is a function R : X2 → [0, 1].

1. R is reflexive, if for all x ∈ X, R(x, x) = 1,

2. R is connected, if for all x, y ∈ X, R(x, y) + R(y, x) ≥ 1,

3. R is a fuzzy weak preference relation (FWPR) if it is reflexive and connected,

4. R is max-?-transitive if for all x, y, z ∈ X, R(x, z) ≥ R(x, y) ? R(y, z).

Remark 1 Let R be an FWPR and ? a t-norm.

1. For all (x, y) ∈ X2, R(x, y) is the degree to which x is at least as good as y,

2. R is a crisp binary relation if for all x, y ∈ X, R(x, y) ∈ {0, 1}.

Example 2

1. The max-?Z-transitivity is known as the min-transitivity, which definition is as fol-
lows,

∀ x, y, z ∈ X, R(x, z) ≥ min{R(x, y), R(y, z)},

2. The max-?L-transitivity is called the L-transitivity, which definition is as follows,

∀ x, y, z ∈ X, R(x, z) ≥ R(x, y) + R(y, z)− 1.

Definition 7 (symmetry and asymmetry) Let R be a crisp preference relation.
R is said to be

1. symmetric, if for all x, y ∈ X, R(x, y) = R(y, x),

2. asymmetric, if for all x, y ∈ X, R(x, y) ∧R(y, x) = 0.

2.2 Decomposing fuzzy binary relations

A crisp weak preference relation R can be decomposed into a crisp indifference
relation I and a crisp strict preference relation P , R = P ∪ I, if and only if

I is symmetric,
P is asymmetric,
I ∩ P = ∅.

This decomposition is unique (e.g. De Beats et al., 1995; Llamazares, 2005).
When R is an FWPR, there are many decompositions of R into a symmetric com-
ponent, I, and an asymmetric component, P . Let us recall two of them:
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1. Generic decomposition: Richardson (1994) uses a generic t-conorm ⊕ to model
a fuzzy union and replaces the condition “I ∩ P = ∅” by the following one:

“P is simple, i.e., ∀ x, y ∈ X, R(x, y) = R(y, x) ⇒ P (x, y) = P (y, x).”

The author states that if R, I, and P are fuzzy relations satisfying the following
properties,

1. ∀ x, y ∈ X, R(x, y) = P (x, y)⊕ I(x, y),

2. P is asymmetric and I is symmetric,

3. P is simple,

then ∀ x, y ∈ X,{
I(x, y) = R(x, y) ∧R(y, x),
P is regular, i.e., ∀ x, y ∈ X, R(x, y) ≤ R(y, x) ⇒ P (x, y) = 0.

But this decomposition does not stipulate how one can obtain the value of
P (x, y) when P (x, y) > 0. The answer to this question is given by Fono and
Andjida (2005).

2. Regular decomposition: Fono and Andjida (2005), determine for a given t-conorm
⊕, a class of regular fuzzy strict components of a certain FWPR, R. Each
class has a minimal element called the minimal regular strict preference PR

associated with ⊕. It is defined as follows:

Definition 8 (minimal regular fuzzy strict component) Let ⊕ be a con-
tinuous t-conorm, 	 be its quasi-substraction, and R be an FWPR. The min-
imal regular fuzzy strict component PR associated with ⊕ is defined as follows:

∀ x, y ∈ X, PR(x, y) = R(x, y)	R(x, y)

Proposition 1 (Fono and Andjida, 2005)

If R be an FWPR, and I and P be two fuzzy binary relations. If ⊕ is a strict
t-conorm or the Zadeh’s max t-conorm, then the two following statements are
equivalent:

1. I and P are, “the fuzzy indifference of R” and “the fuzzy strict preference
of R”, respectively, i.e., R, I, and P verify Richardson’s properties (a),
(b), and (c).
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2. for all x, y ∈ X,

{
(i) I(x, y) = R(x, y) ∧R(y, x),
(ii) P (x, y) = PR(x, y).

Example 3 (Dutta, 1987; Richardson, 1998)

1. If ⊕ is the Zadeh’s max t-conorm, then for all x, y ∈ X,

PR(x, y) =
{

R(x, y), if R(x, y) > R(y, x) ;
0, otherwise.

2. If ⊕ is the Lukasiewicz’s t-conorm, then for all x, y ∈ X,

PR(x, y) = max{0, (R(x, y)−R(y, x))}.

Remark 2 (Fono and Andjida, 2005)

1. If R is a crisp relation, then for any t-conorm ⊕, the minimal regular
fuzzy strict preference PR of R associated with ⊕ becomes the crisp pref-
erence of R defined by ∀ x, y ∈ X, xPRy ⇔ (xRy and not(yRx)).

2. For any x, y ∈ X, such that R(x, y) > R(y, x), the real value PR(x, y) is
the degree to which x is strictly preferred to y.

3. For any x, y ∈ X, such that R(x, y) = R(y, x), then x is equivalent to y
with degree I(x, y).

Now, a certain type of transitivity can be introduced as follows.

Definition 9 (pos-transitivity)

Let ⊕ be a continuous t-conorm, 	 be its quasi-substraction and R be an
FWPR. The minimal regular fuzzy strict component PR associated with ⊕ is
said to be pos-transitive, if

for all x, y, z ∈ X, (PR(x, y) > 0 and PR(y, z) > 0) ⇒ PR(x, z) > 0.

The pos-transitivity means that: if x is strictly preferred to y and y is strictly
preferred to z, then x is strictly preferred to z. Let now consider the following
condition.

Condition (ϕ-condition)
Let ? be a t-norm and R be a max-?-transitive FWPR. Consider α∗(x, y, z) =
R(x, y) ? R(y, z), and β∗(x, y, z) = min{(R(y, z)‖R(y, x)), (R(x, y)‖R(z, y))}.
R satisfies the ϕ-condition, if for all x, y, z ∈ X,
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R(x, y) > R(y, x) and R(y, z) > R(z, y) imply({
R(x, z) ∈ [α∗, β∗]
R(z, x) ∈ [α∗, β∗]

}
⇒ R(x, z) > R(z, x)

)
.

The following proposition characterizes the set of FWPRs composed of pos-
transitive minimal regular fuzzy strict components.

Proposition 2 (Fono and Andjida, 2005)

Let ? be a t-norm and R be a max-?-transitive FWPR.

PR is pos-positive ⇔ R satisfies the ϕ-condition.

In what follows, we will assume that a fuzzy strict preference of a given FWPR is
defined by any regular P and ⊕ is a strict t-conorm or the Zadeh’s max t-conorm.

3 Fuzzy social choice functions

This section introduces the fundamental definition of fuzzy social choice functions.
A definition of the manipulation of fuzzy social choice functions and its dictatorship
are also presented here.

Definition 10 (fuzzy social choice function)

Let RN = (R1, R2, . . . , Ri, . . . , Rn) be a profile of individuals’ preference relations. A
fuzzy social choice function (FSCF ) is a function that associates a single alternative
(in X) to a profile of individuals’ preference relations.

Consider the following additional notation,

- H? is the set of FWPRs satisfying both max-?-transitivity and the ϕ-condition.

- The elements of H? are called ?-fuzzy orders and are denoted by Ri or Ri, i ∈
N . Ri and Ri are considered to be distinct.

- (RN | Ri), is the profile of individuals’ preference relations (R1, . . . , Ri−1,
Ri, Ri+1, . . . , Rn), where individual i declares the fuzzy preference relation Ri

instead of Ri.

- PRi
is the regular strict preference of Ri.
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- NR(x) is the cardinality of the subset {y ∈ X | PR(x, y) > 0} and it is called
the score of x on the basis of R.

- gR : X → {0, . . . , q − 1} is a mapping that associates to each alternative x its
NR(x), where q = |X|.

- fR is an alternative such that maxy∈X{gR(y)} = g(fR).

- sR is an alternative such that gR(sR) is the second greater value in {gR(y), y ∈
X}.

Definition 11 (?-fuzzy social choice function)

Let ? be a t-norm. A ?-fuzzy social choice function (?-FSCF) is an FSCF such that
the profiles of individuals’ preference relations belong to (H?)n.

Example 4

Consider the following illustrative example with X = {a, b, c} and N = {1, 2, 3}. The
relations, Ri, for i ∈ {1, 2, 3} belong to H?, where ? is the Zadeh’s min t-norm. They are
presented in the following tables.

R1 a b c

a 1 0.7 0.8
b 0.5 1 0.6
c 0.5 0.5 1

R2 a b c

a 1 0.8 0.7
b 0.4 1 0.4
c 0.4 0.6 1

R3 a b c

a 1 0.4 0.7
b 0.8 1 0.7
c 0.4 0.4 1

Consider the Zadeh max t-conorm. For i ∈ {1, 2, 3}, each Ri can be decomposable according
to Proposition 1. One can observe that each Pi is pos-transitive, for i ∈ {1, 2, 3}. In
addition, according to R3, NR3(a) = |{c}| = 1, NR3(b) = |{a, c}| = 2 and NR3(c) = |∅| = 0.
Thus, gR3 : x ∈ X 7→ NR3(x), fR3 = b, and sR3 = a. Now let us apply the arithmetic
mean function as an FSWF to obtain the fuzzy social relation Rs. Then, we consider
C(X, Rs) = {x ∈ X : Rs(x, y) > Rs(y, x)} = {a} as the social choice. Such an FSCF
can be viewed as a ?-FSCF, where ? = min.

Rs a b c

a 1 0.63 0.73
b 0.56 1 0.56
c 0.43 0.5 1

Consider the context where a profile of individuals’ preference relations has to be
expressed in (H?)n, and the social choice is obtained by using a ?-FSCF, ν?. Suppose
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that an individual m ∈ N , with a sincere preference relation, Rm, knows the (n-
1) preference relations declared by the remaining individuals and the ?-FSCF, ν?.
Therefore, he can anticipate the outcome ν?(RN). The question to be asked is when
individual m will be motivated to change the social choice ν(RN). The answer to
this question is to check if there exists a social choice with a greater score than the
one that provides the outcome ν(RN) according to his sincere FWPR. If there exists
a binary relation, Rm, in H?, such that the outcome ν(RN | Rm) has a greater score
than the one of the outcome ν(RN), the individual m can manipulate the ?-FSCF,
ν?, by revealing Rm. Consequently, the manipulability of a ?-FSCF can formally
be introduced as follows. We provide at the same time the definition of dictatorship
and strategy-proofness.

Definition 12 (manipulability, dictatorship, and strategy-proofness)

Let ? be t-norm and ν? be a ?-FSCF .

1. The function ν? is said to be manipulable by the individual m at RN ∈ (H?)n

via Rm ∈ H? if NRm(ν?(RN | Rm))) > NRm(ν?(RN)).

2. The function ν? is said to be dictatorial if there exists d ∈ N such that for
every RN ∈ (H?)n, if ν?(RN) = a, then NRd

(a) ≥ NRd
(x),∀ x ∈ X.

3. The function ν? is said to be strategy-proof, if ν? is not manipulable.

Example 5

Let us go back again to the previous example. Individual 3 can manipulate the ?-FSCF.
Indeed, NR3(b) > NR3(a). Therefore, he can reveal the non-sincere fuzzy relation R′

3 to
obtain b as the social choice.

R′
3 a b c

a 1 0.1 0.7
b 1 1 1
c 0.3 0.3 1

Finally, unanimity for ?-FSCF s can be introduced as follows.

Definition 13 (unanimity)

Let ν? be a ?-FSCF . ν? satisfies unanimity if for all outcomes x and profiles RN

such that all individuals i, i ∈ N have the same alternative fRi
, then ν?(RN) = x.
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4 Impossibility result

The following theorem presents an extension of G-S fundamental result.

Theorem (impossibility result)
Let ? be t-norm and ν? be a ?-FSCF. If ν? is strategy-proof, then it is dictatorial.

The proof proceeds by induction on the number of individuals as in Sen (2001).

Step 1. This step consists of establishing the theorem in the case where N = {1, 2}.
Consider a strategy-proof ?-FSCF, ν?. Firstly, we will prove a first statement:
for a given profile R̃N = (R1, R2) the outcome of ν? must be an element of the
set {fR1 , fR2}. Secondly, we will show that if the first statement holds for one
profile, then it holds for any profile in (H?)2.

1. Fix a profile R̃N = (R1, R2) ∈ (H?)2. We prove that if fR1 6= ν?(R̃N),

then fR2 = ν?(R̃N).

Suppose that ν?(R1, R2) = c, fR1 = a, fR2 = b, and c is distinct
from a and b. Note that a and b must be distinct from each other,
otherwise we immediately contradict unanimity. Let R2 be a ?-
fuzzy order with fR2

and sR2
correspond to b and a, respectively.

• Observe that ν?(R1, R2) cannot be equal to b. In fact, if
ν?(R1, R2) = b, then NR2(ν

?(R1, R2)) > NR2(ν
?(R1, R2)),

since ν?(R1, R2) = b corresponds to fR2
. Thus, ν? is manip-

ulable at RN via R2. Therefore, ν?(R1, R2) must be different
from b.

• Let ν?(R1, R2) = x. Consider that the alternative x is dis-
tinct form a and b. We have NR2

(a) > NR2
(x) and ν? would

manipulate at (R1, R2) via a relation R with NR correspond-
ing to alternative a. The outcome would then be a because
of the unanimity of ν?. Therefore, ν?(R1, R2) = a.

• Let R1 be a ?-fuzzy order with fR1
and sR1

corresponding to a

and b, respectively. We must have ν?(R1, R2) = a, otherwise
individual 1 manipulates at (R1, R2) via R1.

• Let ν?(R1, R2) = x. If x = b, then individual 2 manipulates
at (R1, R2) via R2. If x is distinct from both a and b, then
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NR1
(x) < NR1

(b). Therefore, individual 1 will manipulate at

(R1, R2) via a relation R with NR corresponding to alterna-
tive b. Therefore, x = a. But, then individual 1 manipulates
at RN via R1.

2. Now, show that if ν?(RN) = x, with fR1 = x or fR2 = x, for a given R̃N ,
then it is holds for any RN .

Let RN be a profile where fR1 = a, fR2 = b, and a 6= b.

• Holding that individual’s 2 preference relation fixed at R2,
observe that the outcome for all profiles where sR1

= a, must

be a. Otherwise, individual 1 manipulates (R1, R2) via R1.

• Holding that 1’s preference relation fixed at R1, observe that
the individual 2 can never obtain outcome b by varying R2.
According to the point 1, it follows that the outcome must
be either a or b.

• Consider an arbitrary outcome c distinct from both a and
b. and c be sR1 . Let R1 be a ?-fuzzy order where c and a
are fR1

and sR1
, respectively. According to the point 1., it

follows that ν?(R1, R2) is either b or c. However, if it is b,
individual 1 would manipulate at (R1, R2) via R1. Therefore,
the outcome is fR1

.

• The proof is completed by showing that the outcome is fR1

irrespective of fR2 . Pick an arbitrary outcome x distinct
from b and c. Consider that b = fR2 and x = sR2 . Let R2 be
a ?-order, where sR2

= x and fR2
= b. Note that ν?(R1, R2)

must be either c or x. But if it is x then individual 2 will
manipulate at (R1, R2) via R2. Since x and c were picked
arbitrarily, 2. is established.

Step 2. Let n ≥ 3. Consider the following two statements

Statement (a) : for all k with k ≤ n, if ν? : (H?)k → X is strategy-proof,
then f is dictatorial.

Statement (b) : if ν? : (H?)n → X is strategy-proof, then ν? is dictatorial.

We will show that statement (a) implies statement (b).

Assume that statement (a) holds. Let ν? be strategy-proof ?-FSCF ν? :
(H?)n → X. Define a ?-FSCF µ : (H?)n−1 → X as follows. For all
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(R1, R3, . . . , Rn) ∈ (H?)n−1, µ(R1, R3, . . . , Rn) = ν(R1, R1, R3, . . . , Rn). Since
ν satisfies unanimity, µ satisfies unanimity as well. Note that µ is strategy-
proof. Otherwise, ν is manipulable. Pick an arbitrary n− 1 individual profile
(R1, R1, R3, . . . , Rn) and let µ(R1, R3, . . . , Rn) = ν(R1, R1, R3, . . . , Rn) = a.
Let R1 be an arbitrary ?-fuzzy order. Let ν(R1, R1, R3, . . . , Rn) = b and
ν(R1, R1, R3, . . . , Rn) = µ(R1, R3, . . . , Rn) = c. Since ν is strategy-proof,
a 6= b implies NR1(a) > NR1(b), c 6= b implies NR1(b) > NR1(c). Since PR1 is
pos-transitive, a 6= c, implies NR1(a) > NR1(c). Therefore, µ cannot be ma-
nipulated by individual 1. Since µ satisfies unanimity and it is strategy-proof,
statement (a) implies that µ is dictatorial. There are two cases to consider.

• Suppose that the dictator say, individual j, is one of the individuals from
3 through N . We will prove that j is a dictator for ν.

Pick an arbitrary profile (R1, R2, R3, . . . , Rn). Let a be sRj
and let ν(R1,

R2, R3, . . . , Rn) = b. Since j dictates in µ, individual 1 can change the
outcome from b in the profile (R1, R2, R3, . . . , Rn) to a by announcing
R2. Since ν is strategy-proof, we must have NR1(b) > NR1(a). Similarly,
since ν(R1, R1, R3, . . . , Rn) = a, we must have NR1(a) > NR1(b), or else
individual 2 will manipulate at (R1, R1, R3, . . . , Rn) via R2. Thus, we
have a = b. Therefore, ν(R1, R2, R3, . . . , Rn) = a = sRj

. This returns
that j dictates in ν.

• Finally, we need to consider the case where j is individual 1 in µ. Pick
arbitrary n − 2 individual profile (R3, R4 . . . , Rn). Now define a two in-
dividual ?-FSCF λ as follows: for all pairs of ?-fuzzy orders R1, R2,
λ(R1, R2) = ν(R1, R1, R3, . . . , Rn). Since individual 1 is a dictator in
µ, it follows that λ satisfies unanimity. Moreover, since ν is strategy-
proof, it follows immediately that λ is strategy-proof too. From step
1, we know that λ is strategy-proof, i.e., λ is dictatorial. In order
to complete the proof, we need only to show that the identity of the
dictator does not depend on the n − 2 profile (R3, R4, . . . , Rn) while 2
is dictator for (R3, R4, . . . , Rn). Now, progressively change preferences
for each individual from 3 through n from the first profile to the sec-
ond. There must be an individual j for 3 ≤ j ≤ n such that 1 is the
dictator in (R3, . . . , Rj−1, Rj, . . . , Rn) while 2 dictates in (R3, . . . , Rj−1,
Rj, Rj+1, . . . , Rn). Let a and b be such that NRj

(a) > NRj
(b). Pick R1

and R2 such that b = fR1 and a = fR2 , respectively. Then, ν(R1, R2, R3,
. . . , Rj−1, Rj, . . . , Rn) = b while ν(R1, R2, R3, . . . , Rj−1, Rj, Rj+1, . . . , Rn)
= a. Clearly j will manipulate at (R1, R2, R3, . . . , Rj−1, Rj, Rj+1, . . . , Rn)
via Rj. This completes the proof of step 2.
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Since the result is trivially true in the case of n = 1, steps 1 and 2
complete the proof of the theorem.

2

Concluding Remarks

This paper generalizes to the fuzzy context the well-known result of G-S on the
manipulability of crisp social choice functions. The paper shows how an individual
can manipulate a social choice even if the preferences of the individuals are fuzzy.
A new definition of the fuzzy manipulability and dictatorship of fuzzy social choice
functions was given by considering the decomposition of weak fuzzy individual pref-
erence relations. A future research avenue is to consider other types of fuzzy relation
decompositions (De Beats et al, 1995).
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