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Abstract

The constant evolution of surgical interventions in medicine has saved countless lives and improved

overall patient health. However, the increasing complexity of variables and information in the operating

room has created challenges for surgical teams, potentially impacting intervention outcomes. Partic-

ularly in high-risk procedures like cardiac surgeries, preventable errors often result from teamwork or

system constraints. Improving the access, visualization, and integration of information in the operating

room is a crucial challenge to enhance the flow of surgery and minimize disruptions that can impact pa-

tient safety. In this dissertation, an EMG-based hands-free Augmented Reality (AR) system is proposed

to assist the surgeon and auxiliary team during surgery, in visualizing patient information on demand, in

real-time. The system is composed by a head-mounted Augmented Reality see-through headset, which

displays relevant clinical information about the patient being intervened (e.g., vital signals, previous med-

ical imaging). The displayed information is controlled by the user, through specific forehead movements,

captured by facial electromyography. Studies were carried out to assess optimal EMG acquisition and

processing, as well as different electrode models were evaluated. A mobile application, ARSurgery,

was developed as the interface for the AR system, including the algorithm responsible for detecting and

classifying facial muscle inputs. The developed system was tested with two groups of subjects, includ-

ing surgeon doctors, obtaining a very satisfactory performance, with mean precision and recall rates of

0,951 and 0,988, respectively.

Keywords

Augmented Reality, Surface Electromyography, Onset Detection, Operating Room, Signal Processing,

Hands-free Control
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Resumo

A contı́nua evolução da medicina no âmbito das intervenções cirúrgicas tem salvo inúmeras vidas e

melhorado a saúde dos pacientes. No entanto, a crescente complexidade de variáveis e informação

no bloco operatório apresenta novos desafios para as equipas cirúrgicas, podendo inclusivamente afe-

tar a intervenção. Particularmente em procedimentos de elevado risco, parte das falhas consideradas

evitáveis resultam de constrangimentos na equipa ou no sistema. Melhorar o acesso, a visualização

e a integração da informação no bloco operatório é um desafio fundamental para melhorar o fluxo da

cirurgia e minimizar interrupções que possam afetar a segurança do paciente. Nesta dissertação, é

proposto um sistema de Realidade Aumentada (RA) hands-free, baseado em eletromiografia (EMG)

facial, para auxiliar o cirurgião e respetiva equipa, durante a cirurgia, na visualização de informação

sobre o paciente, em tempo real. O sistema é composto por um visor de RA transparente, ajustado à

cabeça do cirurgião, que exibe informações clı́nicas relevantes sobre o paciente intervencionado (e.g.,

sinais vitais, imagiologias prévias) quando necessário. As informações exibidas são controladas pelo

utilizador através de movimentos faciais especı́ficos na zona da testa, capturados por eletromiografia.

Foram realizados estudos para otimizar a aquisição e processamento do sinal EMG, bem como testa-

dos e avaliados diferentes modelos de elétrodos. Foi desenvolvida uma aplicação móvel, ARSurgery,

como interface para o sistema de RA, incluı́ndo o algoritmo responsável pela deteção e classificação

dos movimentos faciais captados. O sistema desenvolvido foi testado em dois grupos de indivı́duos,

incluindo cirurgiões, tendo sido obtido um desempenho bastante satisfatório, com valores médios de

precisão e sensibilidade de 0,951 e 0,988, respetivamente.

Palavras Chave

Realidade Aumentada, Eletromiografia de Superfı́cie, Segmentador, Bloco Operatório, Interação Homem-

Máquina, Controlo Mãos-livres
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1.1 Problem Description

The continuous advancements in medicine, specifically in the realm of surgical procedures, have played

a pivotal role in improving the overall well-being of patients and, in numerous instances, even saving

lives. However, this evolution, promoted by technological advances in equipment and procedures, has

led to an exponential growth in the complexity of variables and information to take into account while per-

forming surgery. The Operating Room (OR) has become an extremely complex environment, currently

involving the collaboration of many different areas of expertise and personnel (e.g. anesthesiologists,

surgeons, nurses, perfusionists, among others), each focused on particular tasks and responsibilities.

In addition, throughout the surgical procedure, there is an ongoing necessity to constantly verify and

monitor various types of information, both pre-operative (such as medical records and previous imag-

ing modalities) as well as real-time physiological data / vital signs. This complex information flow and

coordination of tasks by the different specialists in the OR can potentially cause disruptions in the flow

of the surgery, which may lead to technical errors and less favorable outcomes for the patient being

intervened [1].

This is especially noticeable in the case of higher-risk procedures, such as cardiac surgeries. The

incidence of surgical adverse events among the latter is close to 12%, compared with 3% in other

surgical procedures, being that 54% of these incidences were posteriorly considered preventable [2,3].

Thus, it is extremely important to find ways to minimize these preventable errors, especially since they

are often not related with technical skills or training, but instead are associated with teamwork or system

failures.

Particularly, when it comes to the information flow in the OR during surgery, currently the latter is still

mostly static, with several monitors and displays being scattered along the room, and with the surgeon

and auxiliary team having to actively seek the information. This shifts their concentration between the

patient and the information source, and inclusively at times forces them to move around the OR. These

interruptions, designated as Flow Disruptions (FDs), create a break in the flow of the surgery, and can

contribute to hand-eye coordination challenges as well as dispersion of attention [1], possibly leading

to technical errors. Therefore, one of the current challenges, especially in this rapidly advancing tech-

nological landscape, lies in finding ways of facilitating the access and visualization of information, and

creating solutions to integrate it, so that the medical team can more easily acquire the knowledge they

need, without disrupting the surgery flow.
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1.2 Motivation

In the Operating Room (OR), the environment comprises the physical space, the equipment, and the in-

dividuals involved, such as staff members and patients. During a surgical procedure, the physical layout

of the OR has a direct impact on the process, and must be optimized to ensure maximum ergonomic

efficiency within the environment, so the medical team can interact efficiently and safely. However, er-

gonomics is still considered suboptimal with respect to patient safety in the OR [4–6], with layout-related

disturbances accounting for more than half of the surgical Flow Disruptions (FDs) [7].

Alongside unfavorable patient outcomes, flow disruptions can also contribute to increase the duration

of the surgery (up to 32%), which subsequently incurs greater expenses [8, 9]. Since the study of

surgical adverse events is so important to prevent future incidents, and these are often correlated with

FDs that happen along the surgery, there has been a great effort to understand and evaluate the main

causes of the latter. To better characterize FDs, several authors have divided them in different categories

[4, 6, 8, 10–12]. Because most categories overlap across studies, this work adopts the division made

by Palmer et al. (2013) in which FDs can arise from arise from any combination of six classes: (1)

Communication; (2) Usability; (3) Physical layout; (4) Environmental hazards; (5) General interruptions;

and (6) Equipment failures [4]. Each category and subdivision is described in Table 1 of Palmer et al.’s

study (2013, p. 1070).

Specifically regarding the access to information in the OR, it currently remains responsible for a

portion of these FDs. For example, the need to check for pre-operative exams of the patient in an external

computer causes a temporary interruption in the surgery (general interruption FD), and can also create

difficulties in communication and lead to the increase of the environmental noise level (communication-

related FD). On the other hand, if the OR is a smaller space and the monitors are scattered around it,

this may obstruct or prevent movements by the staff (layout related FD). Furthermore, when the surgeon

is checking the patients’ vital signs in real-time on a monitor, or even during an image-guided (e.g.,

angiography-guided) procedure, there are temporary losses of focus as well as of the visual field of the

patient being intervened. These can result in unwanted hands movements, that may further lead to

technical errors.

This work focuses on tackling information-related FDs, finding suitable alternatives to access infor-

mation in the OR. Improving this aspect may have direct consequences in the reduction of FDs during

surgery, contributing to the general improvement of the surgery process and outcome, and to the de-

crease in surgery time. However, when thinking about alternative ways for the surgeon and/or auxiliary

medical team to view the necessary information, other than the standard monitors distributed around

the OR, the initial challenge that emerges is determining how surgeons will interact with the information

source (i.e., display) and effectively control the contents being presented. Moreover, since surgeons

4



usually have both hands occupied during procedures while manipulating surgical tools, this adds an

additional layer of complexity.

One possible solution for the latter restriction is to make the interaction between the user and the dis-

play hands-free. There are different ways to control technology without using hands, such as voice

control, using limbs / hands movements, among others. These however, although being common

Human-Machine Interfaces (HMIs), are not ideal for the surgical environment. The voice control is

not adequate due to the noise level already present in the OR, which makes it difficult to use. The limbs

movements, especially hands movements, can be counterproductive in relation to what the surgeon is

performing surgically. Hence, for this project, the input selected to control the display of information

were the user’s facial expressions, because it offers less constraints than the others methods, partic-

ularly in this context of application. One method to achieve this type of control is resorting to surface

Electromyography (sEMG) sensors, placed on the skin above the muscle, that detect electrochemical

changes associated with muscle activation (in this case, facial muscles), indicating the performance of

facial gestures.

Regarding the anatomical placement of the display, in order to build an alternative that effectively mit-

igates potential attention-related FDs caused by fixed monitors, it is preferable to present the information

within the surgeon’s field of vision. The most efficient way to achieve this would be having a display that

accompanies the surgeons head movements, ensuring that it remains within their line of sight whenever

necessary. For this purpose, this work explores the utilization of an Augmented Reality headset, since

this type of system can be fixed on the user’s forehead, directly in front of his eyes.

Figure 1.1 shows a typical OR layout for cardiac surgery. Although the size and design of the OR

can vary, it generally constitutes a complex environment, with a high number of different visual displays

distributed along the room.
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Figure 1.1: Illustration of a standard operating room (OR) layout during cardiac surgery, emphasising the monitors
scattered around the OR displaying different data sources 1.

1.3 Research Goals

Building upon the main findings outlined in Section 1.2, the research goal in this work is to devise a novel

system based on Augmented Reality (AR) head mounted displays and hands-free control using EMG,

as a way of minimising attention-related FDs and improving surgical procedures. The main research

questions addressed, can be summarised as follows:

1. How can access to information in the Operating Room be facilitated, namely the information that

is currently displayed on static monitors scattered throughout the room?

2. Having a system that allows easy access to this information, how can the surgeon interact with it

to control the contents being presented to him, knowing that both his hands are typically occupied

and that he has specific surgical equipment placed on himself (limiting the available space for

additional devices)?

3. How can this interaction be performed in a safe way, without compromising the sterility level re-

quired in the surgical environment?

The proposed solution addresses directly these questions. It enables the relevant clinical information

about the patient (both pre-operative as well as real-time physiological data / vital signs) to be presented

in line of sight. Furthermore, the surgeon and auxiliary medical team can navigate through the content

during surgery with minimal FDs.
1 Adapted from commons.wikimedia.org, with author: Pfree2014; minor changes applied to the image.
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The AR system can be controlled through forehead gestures, resorting to electromyographic signals,

collected by sEMG sensors included in the AR headset. Both the gestures and the control mechanism

should be user-friendly and easy to operate, to guarantee that the system actually assists the doctors

in viewing the information they need, rather than introducing additional entropy into the already complex

process that is the surgery.

For this purpose, another goal of the project is to evaluate which type of forehead movements results

in a more efficient control of the system, and to build the appropriate algorithm to identify them in the

sEMG signal. Finally, one last component of the project consists in designing an experimental protocol

to: (1) Validate the developed prototype; (2) Ensure the system is functioning properly; and (3) Evaluate

its overall performance, in a simulated environment.

1.4 Achievements

This project included several components, both hardware and software related. The different tasks were

successfully accomplished throughout this project, namely:

• Development of a mobile application for the visualization of clinical relevant information. This app

is the interface between the user and the Augmented Reality (AR) display, and its contents are

mirrored in real-time on the latter.

• Development of an interactive algorithm based on facial surface electromyography (sEMG), for

hands-free control of the mobile app, and therefore, the AR system display.

• Design of an experimental protocol for the acquisition and analysis of facial sEMG data. This

study was approved by the Ethics Committee of Instituto Superior Técnico (Statement nº 19/2021).

Implementation of this protocol on a group of subjects, resulting in the creation of a sEMG signals’

dataset.

• Interface of the mobile app with a general-purpose biomedical data acquisition platform for vital

signs monitoring.

• Building of a hands-free EMG-controlled AR system full prototype, including the integration of

sEMG sensors, compatible with standard surgical apparatus.

• Design of an experimental protocol to validate the developed prototype and evaluate its perfor-

mance. Implementation of this protocol in two distinct groups of subjects: (1) a control group

composed by regular individuals, and (2) an expert group composed by surgeon doctors.

• Interviews with different surgeon doctors, to gather requirements for the AR system, as well as

possible constraints (related to the surgical environment), to consider upon building the solution.
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1.5 Organization of the Document

This chapter outlined the context and motivation behind the present work, as well as the the main objec-

tives and contributions accomplished. In Chapter 2 the relevant background concepts are introduced,

with the main principles behind muscle physiology and key concepts on electromyography described.

Free-hands modes of human-machine interaction are presented. Chapter 3 introduces the methodology

for the development of a novel hands-free Augmented Reality system to be integrated in the Operating

Room. Requirements and constraints are identified for the proposed solution. Chapter 4 details the

technical implementation of the system and choices made for the final prototype, as well as the method-

ology validation protocol. Chapter 5 showcases the findings of the evaluation conducted on the different

elements of the system, including the system’s overall performance. Chapter 6 then outlines the main

conclusions and proposes the future work.
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2.1 Augmented Reality

Figure 2.1: Illustration of the different types of Mixed Reality Technologies: AR, AV and VR 1.

Augmented Reality (AR) was created to simplify users’ life, and refers to the integration of digital informa-

tion - in the form of text, graphics, audio and other virtual enhancements - with the user’s environment, in

real time. AR technologies therefore include all systems that enhance the real world by superimposing

computer-generated information on top of it.

With the recent advances in display and optical technologies, together with the continuously evolving

digital processors, AR technologies have been emerging and increasingly applied to different industries,

such as health care, education, engineering design, manufacturing, retail and entertainment [13].

Particularly in the medical field, AR technologies have offered a new approach for treating patients,

explaining complex medical situations to patients and their relatives, educating and training medical

professionals, and also for planning surgeries [14].

The concept of Augmented Reality can be viewed as part of the Reality-Virtuality (RV) Continuum

framework. This framework, originally proposed by Paul Milgram and Fumio Kishino in 1994 [15], de-

picts the spectrum between real-world environments (reality) and virtual environments (virtuality). This

taxonomy was recently revised to adapt to the context of modern technology and mixed reality modalities

that have emerged over time [16], and currently comprises four main categories:

• Physical Reality: This category represents the real-world environment in which we naturally exist.

1 Image retrieved from https://covrisolutions.wordpress.com/2020/08/08/the-reality-virtuality-continuum/.
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It encompasses our physical surroundings, objects, and interactions without any augmentation or

virtual elements.

• Augmented Reality: This category represents environments where virtual elements are overlaid

onto the real world, allowing users to perceive and interact with both real and virtual objects simul-

taneously. Examples of AR include head-up displays, where digital information is projected onto a

transparent screen in the user’s field of view.

• Augmented Virtuality: In AV where the primary focus is on virtual elements with minimal real-

world presence. In AV, virtual elements are dominant, but real-world objects or data are integrated

into the virtual environment to enhance the overall experience or provide additional context. An

example of AV is a virtual training simulation that includes real-world data or objects to provide

context or improve realism.

• Virtual Reality: VR environments provide fully immersive experiences by completely replacing

the user’s real-world perception with a virtual environment. Users typically wear a head-mounted

display and interact with the virtual world through input devices like controllers or hand tracking.

In essence, while VR fully transports the user into a virtual world, disconnecting them from the

physical reality, AR enhances the perception of reality by overlaying virtual objects onto the user’s live

view [17]. This distinctive characteristic makes AR the most suitable technology to use upon this project,

as it is crucial to ensure that the surgeon’s senses, particularly vision, remain unobstructed and uncom-

promised during surgery.

2.2 Hands-free Control Modes

For the proper functioning and control of a technological device, its user must be able to communicate

and interact with it, giving his input to the machine. This interaction, designated by Human-Machine

Interaction (HMI), requires a user interface, that can include different input devices and modes. Common

examples of HMI are the computer, in which typically the user uses a keyboard and a mouse as input

devices to control it, or even smartphones, where the control is mainly done via touchscreen.

However, there are instances in which using the hands to control the different technologies is not the

best option nor the most efficient, especially when the operator’s hands must remain engaged in their

primary task. Furthermore, individuals with physical impairments may face challenges or limitations in

using conventional hand-dependent control mechanisms. Hence, in recent years there has been an

emphasis on the development of alternatives that are hands-free, i.e., input modalities that don’t depend

on using the hands [18].
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In this section the main hands-free input modalities will be briefly discussed, as well as some of their

advantages and disadvantages.

2.2.1 Speech-based Control

Speech-based control typically uses machine learning methods to map the user’s input speech waveform

into corresponding text or a discrete output. These outputs are then used to identify a specific command

that will trigger corresponding actions.

This type of control mechanism is very efficient for applications in which the speech commands are

used to navigate through menu items, or perform direct control tasks (e.g. stop / resume), since isolated

or connected words are sufficient as inputs. In these cases, changes in the computer display (e.g. icon

highlighting) can serve as feedback to show the user that the voice command was well recognized.

On the other hand, continuous speech recognition systems that do not require pauses between

words, are more adequate for applications in which the operator uses the system to fill out information

fields, report forms (e.g. medical transcriptions) and related assets [19, 20]. For these cases, the rec-

ognized speech should appear in the display the user is interacting with, in order to give him feedback

about the intended action.

However, there are still several challenges with voice control systems. One of them being background

noise interference that can limit the system performance in high and dynamic noise environments, which

is the case of the OR during surgical procedures [21]. To overcome this, the microphone should be put

near the mouth of the user, which entails other hardware complications. Another challenge, particularly

for single word commands, concerns the design of the input vocabulary. The commands must be simple

and straightforward, so they don’t add up complexity and do not distract the operator, but, on the other

hand, they should also be specific enough so that parallel dialogues do not interfere with the system,

and vice-versa.

For these reasons, this type of user interface, although hands-free, has constraints that limit its

application in the control of the Augmented Reality system developed in this project.

2.2.2 Eye-based Control

Eye-tracking control technology is based on devices that measure the movement and position of the

eye in real time. This type of user interface is better suited for control activities in which the user is

looking at a display, since the direction of the gaze acts as a real-time pointer instead of traditional input

sources such as the computer mouse. Eye dependent interfaces are especially useful for people with

motor disability (e.g. persons with Amyotrophic Lateral Sclerosis - ALS), since they often present severe

motor impairment, making it difficult to use standard input devices as controllers to communicate with

the technology. There are different methods to track eye movements:
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• Video-based tracking, using image processing to optically detect one (or more) features of the

eye, and tracking them to map the eye’ position. However, these type of methods impose some

constraints in terms of computing power and conditions of use, such as lighting, the presence of

spectacles, shape of the eyes, etc. Furthermore, many require the camera to be head-mounted -

as illustrated in fig. 2.2a - which adds hardware and usability constraints [22].

• Using special contact lenses equipped with technology that can facilitate eye-tracking (e.g. encap-

sulated photodetectors). This method offers less constraints, but is more intrusive since it requires

the placement of contact lenses directly on the eyes [23].

• Measuring the electrical potential of the muscles that position the eye, to infer about their move-

ment, i.e., Electrooculography (EOG). EOG is based on the existence of an electrostatic field that

rotates with the eye. By recording small differences in the skin potential around the eye resorting

to electrodes, its position can be detected [18]. EOG-based eye-tracking is quite straightforward

to implement, making it a good option when the aim is to execute simple commands, since the

detection of eye movement - up/down, left/right, and eye-blinking - is discrete [24]. However, for

optimal measurement of the EOG signals, ideally the electrodes should be placed near the upper

and lower lids of the eye (as illustrated in Figure 2.2b) - to detect vertical movements - or on the

external canthi, to detect horizontal movements. This aspect prevents the EOG-based eye tracking

from being a good candidate to implement in this project, since having electrodes placed near the

eye during extended periods of time can be uncomfortable for the surgeon, and can also disturb

the correct functioning of other surgical apparatus, such as the magnifying glasses.

(a) (b)

Figure 2.2: Illustration of eye-based controlled devices: On the left, a wearable eye-tracking headset, manufactured
by Pupil Labs2. On the right, an EOG-based HMI application [25].

2 Image retrieved from https://pupil-labs.com/products/core/
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2.2.3 Brain-Computer Interfaces

Brain-Computer Interfaces (BCIs) are systems that establish a direct communication between the brain

and an external device (e.g., computer, prosthetic limb), without relying on traditional physiological path-

ways like muscles or nerves. This type of interfaces recognize the user’s intention of command by

detecting and interpreting brain activity. The activity of the brain can be measured with sensors im-

planted inside the body (invasive BCIs) or with external sensors (non-invasive BCIs). For non-invasive

BCIs, this is achieved by placing a set of surface sensors on the scalp of the user, and measuring either

electric activity (with electroencephalography, EEG), magnetic activity (with magnetoencephalography,

MEG), or metabolic activity (e.g., with functional near-infrared spectroscopy, fNIRS) [26]. fNIRS mea-

sures changes in blood oxygenation to infer brain activity, but its low temporal resolution limits its ability

to capture rapid changes accurately, and therefore, is not frequently used for BCIs. Conversely, EEG and

MEG allow higher temporal resolution. However, although MEG provides higher spatiotemporal resolu-

tion than EEG, it also requires a large and expensive magnetometer, hence, generally, for non-invasive

BCIs, EEG is the preferred technology, as illustrated in Figure 2.3.

Electroencephalographic (EEG) activity is assessed by positioning electrodes at various points on

the scalp. The electrical signals are recorded as voltage differences between two electrodes, typically

with one serving as a reference for the others. Measuring the activation of a specific brain region requires

positioning electrodes as close as possible to that area, and therefore electrodes placed at different cor-

tical positions allow measuring different neural processes. EEG allows recording different patterns of

brain activation: Spontaneous brain activity, which is measured in the absence of any explicit task or

stimulus, and induced activity, that emerges as a response to an event, such as a sensory stimulus or

a specific action. Thus, EEG-based BCI systems rely on detecting changes in the brain patterns pro-

duced as a response to some voluntary or involuntary mental command. One of these types of neural

processes that BCIs can use as inputs are Event-related Potentials (ERPs), which appear as a response

to external sensory stimuli. These include P300, Steady-state evoked potentials, and Error-related po-

tentials. On the other hand, BCIs can also use neural processes that do not require explicit stimuli,

being instead associated with internal brain events, for e.g., Event-related desynchronization/synchro-

nization (ERD/ERS), and Slow cortical potentials (SCP) [27]. Although EEG-based BCIs are a promising

technology with benefits in various fields, they have several limitations, such as lower signal resolution

compared to other methods, susceptibility to artifacts and noise contamination, and the need for proper

electrode placement and signal processing techniques. Furthermore, EEG signals may be affected

by individual variations, making it necessary to calibrate the system for each user, and require a larger

training period [28]. These added constraints, both hardware and processing-wise, particularly the wiring

setup, which involves placing the electrodes along the scalp, may jeopardize the necessary sterility and

interfere with the medical apparatus.
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Figure 2.3: Illustration of an EEG-based Brain-Computer Interface. 3.

2.2.4 EMG-based Control

Electromyography (EMG) based control involves using muscle electrical activity to interface with and

control different devices and technologies. The EMG signals are captured by placing surface electrodes

on the skin above the interest muscle(s), and analysing the electrical signals produced during muscle

activation. This type of signal is particularly useful for HMI, assuming the subject does not have any

impairments that hinder the necessary muscle activity.

Different studies have proven the efficiency of EMG-based HMI across diverse fields, including in

Prosthetics and Assistive Devices [29–31], Wearables and Applications [32] and Proactive Healthcare

and Wellness [33,34].

EMG-based control allow the monitoring and interpretation of muscle activity in various body parts

such as limbs, hands and face, and, unlike EEG-based control, which typically requires a larger number

of electrodes, can be achieved with a relatively smaller number of electrodes. Furthermore, EMG-based

control provides the ability to distinguish commands based on the duration of the stimulus, offering

an additional level of flexibility and control options. By analyzing the temporal characteristics of EMG

signals, such as the duration of muscle activation, users can perform different actions and commands,

resulting in a more adaptable and versatile control interface. For this reasons, EMG is an efficient and

practical choice for implementing control interfaces.

3 Image retrieved from https://www.resna.org/sites/default/files/conference/2017/emerging_technology/

Obiedat.html.
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2.3 Electromyography

EMG consists in measuring the electrical activity of skeletal muscles, resorting to electrodes placed

directly on the muscle, or on the skin above it - surface electromyography (sEMG). In the context of

pathology, this technique can be used to assess the health of muscles and the nerve cells that control

them (motor neurons), helping to diagnose a variety of neuromuscular diseases, motor problems, nerve

injuries, or degenerative conditions, such as ALS and muscular dystrophy. However, EMG can also be

used in biomedical related applications, such as prosthetics control, grasp recognition, exoskeletons,

and human computer interaction [35].

2.3.1 Muscle Physiology

The electrical activity capable of being measured by the electrodes, is produced from two states of a

skeletal muscle - at rest, and during contraction. When the skeletal muscle is at rest, each of the muscle

cells has an electric potential of approximately –80 mV (resting potential). However, when the muscle

is contracted, it generates an electric potential in its Motor Unit (MU). MUs represent the anatomical

and functional element of the neuromuscular system, and designate each group of muscle fibers and

corresponding motor neuron. These electric potential differences are produced when a motor neuron

activates a neuromuscular junction, by sending two intracellular action potentials in opposite directions.

These action potentials are then propagated by depolarizing and re-polarizing each one of the muscle

fibers [36]. Hence, the sum of the intracellular action potentials of all muscle fibers of a MU is called a

Motor Unit Action Potentia (MUAP), and the EMG signal captured by the electrode is a linear summation

of several trains of MUAPs. The MUAP waveform can be characterized by a number of parameters

related to the structure and physiology of the MU. The most commonly analyzed parameters are the

MUAP’s amplitude, duration, phase, turn and baseline. Figure 2.4a illustrates a (1) motor neuron (and

its axons), a (2) muscle (composed by a set of muscle fibers), and (3) the connection between the axon

terminals, and each muscle fiber, through the neuromuscular junction. Figure 2.4b shows a MUAP, being

recorded by an EMG electrode, as the summation of the action potentials of all the single muscle fibers

present in the recording uptake area of the electrode. It also shows the MUAP typical waveform, and the

main parameters that can be calculated.
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(a) (b)

Figure 2.4: (a) Illustration of a Motor Unit (MU) with emphasis on its main components - one motor neuron, con-
nected with group of muscle fibers 4. (b) Schematic representation of a motor unit with n muscle
fibers [36]. The algebraic summation of the AP of all the single fibers present in the recording uptake
area of the electrode (AP1+AP2+...+APn) generates the motor unit action potential (MUAP). The main
parameters of the MUAP waveform are indicated: amp = amplitude; dur = duration; p = phase; t = turn;
BL = baseline.

2.3.2 EMG Signal

As described in Section 2.3.1, EMG is a biosignal that results from the electrical variations generated

by the MUAPs during muscle contraction. It is worth mentioning that there are two types of muscle

contraction - static and dynamic. The first one happens when the joints do not move, and so the lengths

of the adjacent muscle fibers do not change (e.g. maintaining the hand contracted to hold a cup of

coffee). The second occurs when the joints are in motion, which causes the muscle fibers to also change

their lengths (e.g. waving the hand to do a salutation gesture). The EMG signal can be modeled as a

stochastic process that depends on both the static and the dynamic types of muscle contraction. The

Mathematical Model for a Static Contraction (MMSC) can be described as a stationary process, because

the mean and covariance remain approximately the same over time, and the EMG signal depends

exclusively on muscle force. Equation (2.1) represents the MMSC, where N is the number of active

MUs, si(t) is the train of impulses that indicate the active moments of each MU, mi(t) are the MUAPs of

each MU, and * represents the convolution function.

4 Image retrieved from https://awesomeopensource.com/project/iandanforth/pymuscle.
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EMG(t) =

N∑
i=1

si(t) ∗mi(t) (2.1)

On the other hand, the dynamic contraction is a non-stationary process, given by Equation (2.2),

where a(t) represents the intensity of the EMG signal (information signal), w(t) corresponds to the unit-

variance Gaussian process representing the stochastic aspect of the EMG (carrier signal), and n(t) is

the noise from the sensors and physiological artifacts [37].

EMG(t) = a(t)w(t) + n(t) (2.2)

However, the signal measured by the electrodes will greatly depend on their placement in relation to

the muscle fibers being analysed - the closer to the muscle fiber the electrode is placed, the better the

EMG signal acquired. In the clinical context, the EMG signal is often even measured with the electrode

inserted directly on the target muscle, through a needle, which is an invasive procedure, as illustrated

in Figure 2.4. In this case, the area of the recording surface has typically around 1 mm of radius, and

comprises about 100 muscle fibers. Although each MU has hundreds of muscle fibers, these are widely

spread throughout the cross section of the muscle, which makes the needle electrode record only around

4-6 fibers from each MU [38].

The waveform and firing rates of the MUs captured in the EMG recording can give relevant diagnostic

information. When it comes to using EMG for human computer interaction, the signal is not recorded

directly on the target muscle, but instead, on the skin surface overlying said muscle, resorting to surface

Electromyography (sEMG), to make the process less invasive and overall more feasible in out of the

lab contexts. However, this surface recording entails some limitations, particularly, the intensity and

overall quality of the acquired signal. With sEMG, excitation level is acquired from a large area including

several MUs, being mostly used to measure superficial, large, and easily accessible muscles, hence,

selective recording of deep muscles is not possible [39]. Also, due to the relatively large pick-up area of

the EMG skin electrodes, unwanted signals from neighboring muscles may be recorded i.e., crosstalk.

To minimize this error source, aspects such as electrode placement in relation to the target muscle,

electrode size, and inter-electrode distance must be closely pondered. Another factor that influences

the sEMG signal quality is the presence of other tissues between the target muscle and the electrode,

namely, adipose connective tissue, and skin. The passage of the EMG through the tissues attenuates

the signal’s amplitude and frequency, and depends on the muscle to skin distance [40].

Furthermore, especially during dynamic muscle contractions, the movement of the muscle in relation

to the overlying skin can introduce errors and unintentional variations in the EMG signal.

Lastly, two other factors that can affect the EMG signal relate to the properties of the sEMG electrodes

and amplifiers used - namely, the type of adhesion the electrodes have with the underlying skin. If the
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amplifiers designed to amplify the captured signal, and the process of converting it from analog to digital

(A/D conversion), are deemed acceptable, the Signal-to-Noise Ratio (SNR) - measure that reflects the

signal’s quality - depends mainly on the electrode to skin contact. The electrodes’ contact surface can be

either the metal they are constituted by (e.g. in the case of dry electrodes), or they can be covered by an

electrolytic, conductive gel layer (e.g. in the case of pre-gelled electrodes). This layer is added with the

aim of reducing the impedance on the electrode-skin interface, which allows to measure the signal with a

higher intensity (and therefore higher SNR), less distortions, and a lower power line interference [41,42].

Although the described limitations can impact the quality of the EMG signal recording, nowadays

it is possible to use sEMG in a wide range of biomedical applications, provided the requirements for

its optimal usage are accomplished. The average EMG signal measured with surface electrodes has

amplitudes ranging between 0 and 10 mV (peak-to-peak) prior to amplification, and frequencies between

10 and 250 Hz [43,44].

Figure 2.5: Time domain (top) and frequency domain (bottom) representation of an EMG signal.
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3.1 Workflow

Building upon the description of the existing solutions, and motivated by the lack of suitable hands-free

control methods for AR headsets in the context of OR, as characterized in Chapter 2, the present chapter

aims to detail how the proposed solution was developed and implemented. Figure 3.1 outlines the main

components of the proposed approach.

Figure 3.1: Schematic diagram of the Augmented Reality System main components: Augmented Reality head-
mounted display; BITalino for EMG control of the headset, with connected sEMG electrodes; ARSurgery
mobile application. Optional components for direct acquisition of patient’s biosignals: EpiBOX interface;
BITalino connected to the patient

The developed AR system is composed by different components that interact with each other:

• An optical see-through AR Headset with hands-free control, which should be placed and adjusted

on the user’s head;

• A mobile application - ARSurgery - whose screen is mirrored on the AR headset display in real-

time, i.e., the content being displayed for the user is the application itself;

• A BITalino with an EMG sensor using three electrodes (bipolar montage and reference electrode),

to collect data from which the commands used to interact with the ARSurgery app will be detected

[45];

• The mobile application also allows to connect a second BITalino measuring biosignals directly from

the patient, if desirable. This connection is made through a Raspberry Pi device, configured for

that purpose (EpiBOX). EpiBOX connects to the patient’s BITalino and ARSurgery via Bluetooth

and WiFi technologies, respectively.

The system and the choices made its development will be further explained in the next sections.

3.2 Requirements and Hardware Restrictions

The system was designed having in mind two main aspects: on the one hand, the characteristics and

features that were found to be key for its appropriate functioning, and, on the other hand, the design

requirements and restrictions existing within the OR and surgery context. Different aspects and features

were considered due to the specific context of application, namely: (1) The Augmented Reality headset

requirements, to be able to integrate it in a surgical environment without disrupting the surgery’s flow;

(2) The type of sEMG electrodes being used to capture the control signals from the user; and (3) The

facial triggering signals chosen as input for the HCI.
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Figure 3.2: Illustration of the AR headset superimposed with the surgeon’s commonly required equipment. The
figure divides the surgeon’s head / face in three different regions according to usability constraints and
available space: (a) Sterile region, (b) Constrained region and (c) Available region.

Figure 3.2 illustrates the AR headset superimposed with the surgeon’s commonly required equip-

ment. In the figure, the surgeon’s head / face is divided in three different regions according to usability

constraints and available space: (a) Sterile region - areas that must remain protected with surgical cap

and mask in order to maintain a sterile environment; (b) Constrained region - area where the magnifying

glasses and/or surgical headlamp occupy the surgeon’s face, hence being an already obstructed area;

(c) Available region - mostly unobstructed area, where the AR headset and EMG electrodes may be

placed. It is important to note that the headset component comprised by the projector and the display,

marked with an (*) in the figure, when placed on the user’s head, occupies part of the forehead (either

above the left or right eye).

3.2.1 AR Headset Requirements

Regarding the main device of this system - the Augmented Reality headset - to be used by the surgeon

doctor and / or auxiliary medical team: during surgery, the head-mounted device must be completely

see-through, to allow a clear view without any obstructions in the field of vision. Additionally, this device

must be easy to both put on and remove. Firstly, to avoid unnecessary time delays in pre- and post-
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surgery. Also, in case of emergency or malfunctioning of some part the system, it is imperative that the

surgeon is able to easily remove the headset so it does not further disrupt the procedure. Ultimately, the

technology being user-friendly promotes its acceptance by the users, so the simpler the device is to put

on, the better. It is also important for the device to be light and adjustable, so that it lays comfortably

on the surgeon’s head and does not increment his fatigue, especially since it will be maintained for the

duration of the procedure. Finally, a key factor to consider was the surgical apparatus and headwear the

surgeon already has to use when performing surgery. This includes surgical clothing (scrubs, gown and

cap) and surgical mask. Also, depending on the type of surgery, the doctor may use magnifying glasses

and / or surgical headlamp. In Figure 3.3 examples of these surgical items are presented.
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(a) Surgical mask (b) Surgical scrub cap

(c) Magnifying glasses (d) Surgical apparatus

Figure 3.3: Standard surgical apparatus used by surgeon doctors during surgery.

These equipment, particularly the magnifying glasses and headlamp, occupy a significant part of the

surgeon’s forehead, so the chosen AR headset must be compatible with those devices, and adjust on

the head in such manner that does not interfere with them.

Lastly, a feature that was considered as a nice-to-have for the headset, was having an integrated

camera. Having a camera merged in the headset allows for further developments in terms of the features

the system can offer to the user. Examples of these features will be detailed in Section 6.2.

Taking all these requirements into account, different AR headset models were analysed, and for

the prototype it was decided to use the ViP-display (version A1) AR Headset manufactured by ROTA-

CIONAL1, a portuguese company dedicated to the development of electronic devices, particularly, this

type of AR Headsets. This model was selected since it is completely see-through, fully compatible with

the use of eyeglasses, adjustable to different users’ head anatomy, and also has adjustable brightness

/ contrast, which allows to adapt to various light environments. ViP-display - the chosen AR headset

model chosen for the development of this prototype - is shown in Figure 3.4 and its main specifications

are presented in Table 3.1.

1Available at https://rotacional.com/vipdisplay/.
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Figure 3.4: ViP-display (version 1) AR headset, manufactured by ©ROTACIONAL.

Table 3.1: Summary of the ViP-display AR headset main specifications

ViP-display AR headset main specifications

Display

Resolution 1920×1080p (FullHD)

Color Depth RGB 16 Million colours

Contrast Ratio >10 000:1 (color)

Maximum Luminance ≥ 100 to 500 Cd/m2

FOV (diagonal) ≥ 30º

Eye Relief Adjustable (worn Eyeglasses Simultaneously)

Luminance Brightness adjustment Indoor and Outdoor

Control Contrast adjustment Indoor and Outdoor

Connection
Communication Wi-Fi

Power Supply Built-in (autonomy for 1 work shift)

Measurements
Dimensions 185×44×228 mm (w × h × l)

Weight 111 g

3.2.2 Choosing the Appropriate Type of sEMG Electrodes

Regarding the type of sEMG electrodes to be used in this system, there was the necessity to choose

dry electrodes, instead of the more standardly used gelled self-adhesive electrodes. Although the latter

type typically performs better in terms of the EMG signal quality that it records, it is also less practical

to apply on the skin and requires a more careful maintenance resulting also in higher costs. The choice

of using dry electrodes in this project was made considering different studies supporting that signal

quality obtained by dry Ag/AgCl electrodes, although slightly inferior to pre-gelled Ag/AgCl electrodes, is

satisfactory, and has been progressively used in HCI applications [46]. The electrodes were connected

via 3-lead UC-E6 cable to a BITalino EMG sensor 2 . The main characteristics of the EMG sensor are

presented in Table 3.2.

2Available at https://www.pluxbiosignals.com
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In terms of the dry Ag/AgCl electrode model used in the developed prototype, two different models

were tested and compared. The two models differed in terms of shape and distance to the skin – one

being more elevated (Er) and the other one, more proximal (Ef) to the skin. In addition, for comparison

purposes, tests were also performed with standard gelled self-adhesive electrodes (Eg), considered

as the reference in this study, since they are typically more conductive than the non-gelled type. The

different electrodes are illustrated in the Table 3.3. Results for these comparison tests will be presented

and discussed throughout Section 5.1.2.

Table 3.2: Summary of PLUX Biosignals’ EMG sensor main characteristics

Parameter Value

Gain 1009

Range ±1.64 mV (with VCC = 3.3 V)

Bandwidth 25-480 Hz

Consumption ∼0.17 mA

Input Voltage Range 2.0-3.5 V

Input Impedance 7.5 GOhm

CMRR 86 dB

Table 3.3: Illustration of the electrodes used in the signals’ acquisitions and summary of their main characteristics

Electrode denomination Illustration Sensor material Conductive gel Durability Diameter

Raised profile - Er Ag/AgCl No Reusable 11 mm

Flat profile - Ef Ag/AgCl coated polymer No Reusable 10 mm

Gelled (reference) - Eg Ag/AgCl coated polymer Yes Disposable 24 mm

3.2.3 Facial Expressions Chosen as Input for the HCI

To choose the type of movements that act as inputs for navigating through the content displayed in the

AR headset screen, different aspects were taken into account. Firstly, the control mechanism has to be

hands-free, and interfere the least possible with the primary tasks the user is performing. Limb move-

ments are not the most appropriate since usually the surgeon and auxiliary medical team already have

them occupied. Thus, it was decided to use facial commands, i.e., facial EMG signals, as inputs for

the AR system. There are a range of facial movements commonly used in HCI applications, such as
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lower lip raising, left and right side smirks, closing lips, clenching molar teeth, etc. [47, 48], but these

involve placing electrodes on the lower half of the face in order to get useful signal. On the other hand,

choosing movements that move muscles of the face’s superior half, allows to also place the electrodes

on that region (Figure 3.2), which is more convenient since the electrodes may then be integrated in the

AR headset headband. Hence, three different commands were selected for analysis as potential com-

mands: single-eye winking (W), brief eyebrows’ raising (BER) and extended eyebrows’ raising (EER).

These three command movements are illustrated in Figure 3.5. Additionally, since periodic blinking is a

physiological human behaviour, this movement was also included in the analysis, to study its impact on

the acquired electromyographic signal and consequent interaction with the AR system.

(a) Single-eye winking command (b) Eyebrows’ raising command

Figure 3.5: Illustration of the facial commands chosen as input for the AR system: single-eye winking, brief eye-
brows’ raising and extended eyebrows’ raising.

3.2.4 Electrode Placement on the Face

Building upon the logic followed to choose the most adequate input commands, the electrode placement

was also chosen considering the usability requirements for this system. In order to minimize the impact

of the AR system in the surgeon’s primary tasks, and due to the limited space available in the surgeon’s

head (as described in Section 3.2.1) it was determined to integrate the electrodes in a position prone

for integration in the AR headset itself, within the headband. Furthermore, as shown in Figure 3.2,

the headset itself already occupies a portion of the user’s forehead, hence, it is desirable to place the

electrodes in the medial region, between the two frontalis muscles, and above the procerus muscle.

It is worth mentioning that bipolar montages of EMG electrodes benefit from placing the electrodes

adjacent to each other, along the direction of the muscle being measured, while placing a reference

electrode further away, in an electrically neutral tissue. In this type of montage, the two electrodes

capture two distinct potentials in the muscle of interest, with respect to the reference electrode, being

then differentially amplified, thus eliminating common components in the two signals.
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However, for HCI applications, and because the purpose of measuring the EMG signal is to distin-

guish between muscle rest and muscle activation in the temporal domain, and not necessarily to gather

information about the EMG signal shape, the best approach in terms of usability is to place the elec-

trodes horizontally, with the reference electrode slightly above. Figure 3.6a shows the AR headset with

an attached support substrate built for the purpose, that fastens to the headband with snap buttons,

where the electrodes can be adjusted according to the user’s forehead. Particularly, it shows (a) the

headset’s projector, (b) the EMG electrodes, (c) an elastic band which, in this prototype, adjusts the

support substrate to the user’s forehead, and (d) the snap buttons that adjust the case to the headband.

Figure 3.6b illustrates the surgeon using the modified headset together with their remaining surgical

equipment. The adequacy and quality of EMG signals being acquired with this specific montage were

assessed through comparison tests, that will be presented and discussed in Section 5.1.2.

(a) ViP-display AR headset with attached electrodes (b) Surgeon using the modified AR Headset

Figure 3.6: AR head-mounted display with attached EMG control system. The left image depicts the main com-
ponents of the system: (a) AR headset projector; (b) bipolar montage of EMG electrodes to control
the system; (c) adjustable strap to maintain the electrodes correctly placed on the user’s forehead; (d)
support substrate with snap buttons. to fix the EMG electrodes. The right image illustrates a surgeon
using the developed system, together with the surgical apparatus used during surgery.
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3.3 Application Structure and Displayed Pages

The mobile application, named ARSurgery, developed as the interface for the AR display, was built

assuming two phases: a (1) setup phase, and (2) the display phase itself, which is hands-free. The

setup phase, leads the user in connecting the different devices to the app (via Bluetooth and WiFi), and

allows the user to calibrate the app in order to optimize the EMG commands recognition. It is worth

mentioning that the auxiliary devices (BITalino and EpiBOX) should be switched on beforehand, and be

ready to allow connections. Additionally, the smartphone where the app is running must have Bluetooth

and WiFi enabled. After the devices are connected and the app is conveniently calibrated, the user can

proceed to control the displayed information on the app, and consequently, on their AR headset display,

in real-time.

The hands-free control mode allows the user to switch between the different pages of the app, each

one containing relevant clinical information about the patient being intervened, e.g., their biosignals, or

previous imaging exams. The built prototype, illustrated in Figure 3.7, includes two pages among which

the user can navigate: (1) Biosignals Viewer and (2) Monitor Viewer. The screen designated Biosig-

nals Viewer continuously displays the patient’s biosignals being acquired (through a dedicated BITalino

connected to the patient). The second screen, designated Monitor Viewer, continuously presents the

view from the phone’s camera. This feature can be used to emulate one of the monitors present in the

OR, chosen according to the needs of the surgeon, by positioning the phone’s camera in front of said

monitor. The user can switch between these two pages, and a third one that is completely dark, acting

as a hands-free switch-off for the head-mounted AR display.
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Figure 3.7: ARSurgery displayed pages. At the top, from left to right: Home page; Calibration Page; Patient’s
Biosignals Viewer page. At the bottom, Camera Viewer page.
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This Chapter outlines the implementation of the prototype, providing a comprehensive overview of

the choices made throughout its development and detailing the technical aspects of the implementation

process. Furthermore, it describes how the different components of the methodology were validated

and explains the evaluation of the system’s performance.

4.1 BITalino Integration

To acquire the EMG signal responsible for the app control, there needs to be an interface which collects

the data, and sends it to the app in real-time. There are different options available that are able to serve

this purpose, but considering the usability factor and the context where the system is to be used, wireless

technologies are more advantageous. Hence, it was decided to use a BITalino (r)evolution Board BLE 1,

to collect the signal arising from the EMG electrodes. Its main characteristics are presented in Table 4.1.

This all-in-one board has all the needed electronic blocks for biosignal acquisition pre-connected, and

can connect via Bluetooth Low Energy (BLE) to the device handling the captured data, in this case, the

smartphone with ARSurgery mobile application. BITalino connects to the EMG sensor via micro-USB,

and is fully portable as it already comes with a rechargeable LiPo battery.

(a) BITalino (r)evolution Board BT/BLE (b) BITalino (r)evolution Board BT/BLE protected
with a 3D printed PLA enclosure

Figure 4.1: BITalino (r)evolution Board, featuring its assembled version.

Furthermore, BITalino can record a variety of biosignals additionally to the EMG, including Electrocardiography

(ECG), Electroencephalography (EEG) and Electrodermal Activity (EDA). With this feature, a second

BITalino device can be used to record biosignals of the patient being intervened, and present them di-

rectly on the mobile app (and therefore on the surgeon’s AR headset), without the need to emulate the

OR monitor in which they are being displayed.
1Available at https://www.pluxbiosignals.com/products/bitalino-revolution-board-kit-ble-bt?variant=

41622003941567.
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For this, it is necessary to connect the second BITalino to the ARSurgery app. Since most smart-

phones do not allow pairing two Bluetooth devices simultaneously, a workaround solution was to connect

the optional BITalino measuring patient’s biosignals to the mobile app via Wi-Fi. As the BITalino board

used in this project does not have built-in Wi-Fi connection, the alternative was to use an adaptation

of EpiBOX [49] as the interface between this second BITalino and ARSurgery. EpiBOX was developed

as an automated platform that enables the long-term acquisition of biosignals. This platform uses a

Raspberry Pi as the recording unit (EpiBOX Core), and is coupled with a Python software (PyEpiBOX)

responsible for the data communication, acquisition configuration, and storage, and with an Android

mobile application (EpiBOX App) providing the interface for the interaction with the system. The Epi-

BOX platform was adapted for this project, to incorporate the visualization of the data coming from the

patient’s BITalino, directly in ARSurgery.

Figure 4.2: Architecture of the (optional) connection between ARSurgery and the BITalino measuring patient’s
biosignals, through the EpiBOX interface.

Table 4.1: Summary of BITalino (r)evolution Board BT/BLE main specifications

BITalino main specifications

Sampling Rate 1, 10, 100 or 1000Hz

Analog Ports 4 in (10-bit) + 2 in (6-bit) + 1 auxiliary in (battery) + 1 out (8-bit)

Digital Ports 2 in (1-bit) + 2 out (1-bit)

Communication Bluetooth or BLE

Range up to 10m (in line of sight)

Sensors EMG; ECG; EDA; EEG; ACC; LUX; BTN

Size 100x65x6mm

Battery 500mA 3.7V LiPo (rech.)

4.2 Final Prototype

4.2.1 Application description

In the setup phase, illustrated in Figure 4.3a, the user should start by connecting the devices of the

system to the app. By pressing the top left and right buttons (Figure 4.3a - 3©), the app automatically
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connects, respectively, to the BITalino measuring the control EMG and to the BITalino acquiring biosig-

nals from the patient, in case it exists. It is important to note that the homepage has two start modes

the user can choose from - with or without measuring patient’s biosignals (Figure 4.3a - 1© or 2© respec-

tively). After the BITalino devices are connected, the EMG sensor from the user’s forehead should be

calibrated. For this step, the user must press the calibration buttons (Figure 4.3a - 5©) and follow the

indications that appear on the screen. For the ”Gather Stats” button, this consists in remaining still for

7 seconds while the app retrieves some characteristics of the EMG signal during rest (indicated in Fig-

ure 4.3a - 7©). It is worth mentioning this step is only completed if the standard deviation value obtained

is inferior to 0.2, otherwise, the user must readjust the electrodes and do another trial. This value was

decided based on the average standard deviation of the test trails performed beforehand. As for the

”Gather Test Trial”, the steps consist in performing three separate eyebrows’ raising movements, one of

the triggering movements chosen as a command for the application. On the lower half of the calibration

page, the EMG signals being acquired for the calibration are presented in real-time (Figure 4.3a - 6©).

This can give the user a visual feedback of their actions, and inform them about the intensity and sim-

ilarity of his commands. After this, the user may press ”Start EMG control” (Figure 4.3a - 8©) and the

application is ready to be controlled by the user in a hands-free manner.

Resorting to the facial commands, the user can navigate between three different screens in the

ARSurgery displays - Patient’s biosignals viewer, Monitor viewer, and black screen - previously described

in Section 3.3. The Monitor viewer, in addition to display the OR chosen screen in real-time, also

allows to photograph and/or record said screen. This feature can become useful for keeping track

of the patient’s health state during surgery, and for subsequent teaching purposes, especially if an

outlier procedure takes place. Additionally, future advances in this system that use an AR headset with

integrated camera, may take advantage of this recording option to actually film the surgery from the

user’s point of view. Furthermore, ARSurgery includes an instructions page (Figure 4.3b - right), where

the user can find a summarized explanation for each step.
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(a) ARSurgery displayed pages for the setup phase, with sequential guidance.

(b) From left to right: Patient’s Biosignals Viewer page; Camera Viewer page; Off / See-Through Mode; Instructions
page

Figure 4.3: ARSurgery displayed pages, with sequential guidance for the setup phase.

ARSurgery was developed in such way that it can be used in both portrait and landscape modes.

Thus, it allows the user to explore the app in portrait mode, if desired. However, if the application is

mirrored on the AR headset right at the beginning, as it should, it can be fully used in landscape mode,

maximizing the headset screen usable area.

Finally, the app - particularly the calibration phase - was all-around protected with a blocking / noti-

fication system that prevents the user from progressing in an undesired order or missing steps, e.g., in

case the user selects ”Connect BITalino EMG” without having the smartphone Bluetooth enabled, the

app warns the user that he should turn it on beforehand. While the app is gathering the EMG signal

characteristics, it notifies the user with a ”Gathering rest stats” popup, as well as a ”Stats completed!”

once the process is concluded. Examples of these messages are shown in Figure 4.5.
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Figure 4.4: Illustration of ARSurgery portrait and landscape modes.

Figure 4.5: Examples of ARSurgery displayed notifications and warnings.

4.2.2 Smartphone - AR Headset connection

The connection between the smartphone where ARSurgery is installed, and the AR head-mounted

display, is made resorting to the screen mirroring feature, which establishes a direct wireless connection

between the sender (smartphone) and the receiver (AR headset). Screen mirroring can be achieved with

the default application most smartphones include, such as Smart View for Android devices or AirPlay for

iOS devices, or with any third party application developed for that purpose, e.g. Chrome Cast, available

on the App Store. With screen mirroring, the content being displayed on the smartphone, in this case,

ARSurgery, is presented on the AR headset in real-time. This interface is very suitable for this type of

systems, since it is user friendly and practical to operate, in addition to being wireless, which is desirable
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in this context.

4.2.3 Signal processing and onset detector

To identify the facial commands done by the user, the system must include an onset detector, capable

of processing the EMG signal and distinguishing muscle activations from periods of myoelectric silence.

Furthermore, the onset detector should be computationally light, since it is to be implemented on a

mobile application, and should perform in real-time, i.e., with low latency, to efficiently interpret user’s

commands. The detector used to identify onsets and offsets on the EMG signal was based on an

amplitude threshold, computed beforehand, in the setup phase. In order to enhance the quality of

the EMG analysed by the threshold detector, the signal was pre-processed and filtered in real-time.

Experimental tests were carried out to compare the performance of different filters, both with Finite

Impulse Response (FIR) and Infinite Impulse Response (IIR), for these specific application. Based on

these experimental tests, further presented and detailed on Section 5.1.2, it was decided to process the

input signal in real-time using a Weighted Moving Average (WMA) filter, with a window size of 100 data

points.

Figure 4.6: EMG raw signal - without applying noise attenuating filters (left). EMG signal, filtered with a Weighted
Moving Average (WMA) FIR filter, with a window size of 100 samples (right).

4.2.4 Methodology validation

To evaluate the system’s overall performance, and the success of the hands-free control mechanism of

the AR headset, an experimental study was designed and conducted. The experiment was composed

by two distinct tests: a first one, whose goal was to measure the response level of the app’s algorithm

to the input movements of the user, and a second, to evaluate the prototype’s overall performance, with

the electrodes integrated in the AR headset.

For the first test, the participants only interacted with the electrodes and the developed app, dis-

regarding the headset. The electrodes were placed on the participants’ forehead with the help of a

headband, built for that purpose. As for the second test, the participants were asked to place the AR

headset, attached with the support substrate for the electrodes, on their forehead. Both montages are

shown in Figure 4.7.

In both tests, the participants were asked to use the ARSurgery app, following a defined protocol,

with a set of at least two trials, each composed by a specific sequence of the forehead movements

described above – brief eyebrow raises, and extended eyebrow raises, designated by BER and EER

respectively. The protocol was designed to let the user run across all pages. The first test evaluates

the quality of the recognising mechanism and generated response. The second test, on the other hand,
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(a) (b)

Figure 4.7: Montages used in Test 1 (left) and Test 2 (right).

evaluates the prototype as a system, validating its general usability, and if factors such as the headset’s

weight and ergonomics do not interfere with its use.

Additionally, and since surgeon doctors represent the main interest group for this project, it was also

asked for a group of surgeons to answer a two-part survey regarding the developed system’s suitability

and usability.

The results for both tests as well as the answers to the survey are presented in Section 5.1.5.
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5.1 Characterization and optimization of the EMG signal and hard-

ware

As introduced in Sections 3.2.2, 3.2.3 and 4.2.3, a primary experimental study was conducted, to gather

information about the facial EMG signal, and further decide about the optimal conditions for its recording.

This study’s goal was to ascertain which electrode type should be used in the signal acquisition, as well

as to define the most suitable pipeline to process the signal, including which type of digital filter to use.

Three participants took part in this study. The inclusion criteria for participation was being of legal age

(> 18 years) and the absence of impairments that could compromise the execution of the required tasks.

The characteristics of the participants are depicted in the Table 5.1.

Table 5.1: Summary of participants characteristics

Subjects Subject 1 Subject 2 Subject 3

Gender Female Female Male

Age (years) 23 57 54

Average (Age) 43.7 ± 15,4

The acquisition of the electromyographic signals was carried out following an experimental protocol

composed by four different facial gestures - brief (BER) and extended (EER) (≈ 3 seconds) eyebrows’

raising, single-eye winking (W), and Eye Blink (EB). The movements of brief eyebrow’s raising, single

eye winking and extended eyebrow’s raising are the movements being tested as potential inputs for

the control of the augmented reality headset. The eye-blinking is included in the protocol for further

testing regarding the control of false positives since blinking is a physiological action that occurs naturally.

The defined sequence of the facial gestures for each trial is depicted in Figure 5.1. For simplification

purposes, in this trial representation, BER, W and EB movements were considered transient in time,

although that may slightly vary depending on the individual performing them.

Figure 5.1: Illustration of the experimental protocol for the acquisition of the electromyographic signals. BER = Brief
Eyebrow Raise; W = Single-eye wink; EER = Extended (≈ 3 seconds) Eyebrow Raise; EB = Eye-Blink.
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5.1.1 Electromyographic signal pre-processing

To analyze the acquired electromyographic signals, namely, to evaluate their quality, a set of pre-

processing steps was performed. Firstly, the time series values (Analog to Digital Converter (ADC))

sampled from the EMG sensor’s channel were converted to their physiological unit of measurement,

mV, according to the transfer function represented in Equation (5.1)

V CC is the operating voltage, 3300 mV.

GEMG is the sensor gain, 1009.

n is the number of bits of the channel, 10.

signalEMG(mV ) =

(
ADC
2n − 1

2

)
∗ V CC

GEMG
∗ 1000 (5.1)

The second step applied to the time series was the subtraction of the baseline average along the

signal, to center the time series around 0 mV, and the third step was to perform a full wave rectification,

to enhance the performance of the algorithms applied later on.

Lastly, the time frames corresponding to each muscle activation onset and offset were manually

annotated - signal ground truth - resorting to the SignalBit software [50, 51], to ensure that the regions

corresponding to the different movements were precisely delimited.

An illustration of the pre-processing applied to the EMG signals, along with the onset annotations, is

presented in Figure 5.2.

5.1.2 Electromyographic signal quality

Since muscle activity is being measured with surface electromyographic (sEMG) sensors, the acquired

signals are contaminated with noise, reducing the quality of the signal, i.e., reducing its Signal to Noise

Ratio (SNR). In addition, this noise also depends on the type of electrodes used during the signals’ ac-

quisition, as well as the positioning of the electrodes’ montage in relation to the muscle being analyzed,

in this case, the forehead of the subjects. Thus, in order to determine which type of electrodes results in

a higher quality signal, as well as their optimal positioning in the forehead, several tests were performed

while varying these two parameters. To assess the sEMG signal quality, different metrics were com-

puted, for both the baseline of the signal, as well as for the time frames of muscle activation. The SNR,

defined in the Equation (5.2) was also computed for the entirety of the signal. The metrics computed for

each region are designated in the Table 5.2. The mean, standard deviation, and maximum amplitude

were calculated for the regions of muscle activity and for the signal’s baseline. The signal’s integral was

also calculated for the facial movement time periods.

SNR(dB) = 20× log10
Power(activation)

Power(baseline)
(5.2)
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Figure 5.2: Illustration of the EMG signal before and after the pre-processing: conversion to mV units, subtraction
of the baseline mean and full wave rectification. Red vertical lines indicating the manually annotated
onset and offset for each muscle activation.

Table 5.2: Metrics computed from the signal, depending on the signal’s region

Signal Region
Metrics Calculated

Mean (µ) Standard deviation (σ) Maximum amplitude Integral of region (
∫
) SNR (dB)

Baseline X X X

Activation region X X X X

Total signal X

Electrode model selection

Regarding the electrodes used in this experiment, two types of non-gelled Ag/AgCl electrodes were

analysed, due to the nature of their application being an augmented reality headset. The first set of tests

were performed between the standard electrodes, Eg, and the raised profile dry electrodes, Er - pre-

sented on Table 3.2. These tests were performed with both types of electrodes applied simultaneously

on the skin of the subjects, proximal to each other, to ensure the comparison between the two of them

was the most accurate possible. In these tests, two movements were tested - eyes’ blinking (natural

physiological movement) and single-eye winking (one of the voluntary movements to test as input for the

AR system), EB and W, respectively.

Figure 5.3 shows a portion of the simultaneously acquired signals, in this case, a sequence of inter-
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calated EB and W (EB - W - EB - W). Please note that, as expected, the signal obtained when using

the standard Eg electrodes shows a higher resolution, having more defined activation regions during

both movements being executed. The probability histograms on Figure 5.4 show the different features

calculated for the two signals. As expected, the Eg signals present a higher Signal-to-Noise ratio than

the Er ones (35,1 dB vs 5,25 dB). The Eg baseline results are also more reliable, being less distributed

across values, and the standard deviation of the signal is also lower for the Eg , meaning lower noise

acquired. In terms of the muscle activation regions, in this case, the single-eye winking, the Eg elec-

trodes provide signals with higher integral (32,75 mV vs 5,47 mV) and maximum amplitude (0,7 mV

vs 0,1 mV), i.e., a higher intensity signal. Nonetheless, although the results for the Eg electrodes are,

as anticipated, generally better, even with the Er dry electrodes, it is still possible to clearly detect the

peaks corresponding to the single-eye winking movements, which is the main goal, and the statistics are

generally on the same order of magnitude as the Eg. The low resolution of the EB movements recorded

with the latter is not concerning at all, since the goal is to actually discard physiological eye-blinking that

may happen during the usage of the system.

Figure 5.3: Illustration of the EMG signal acquisition using two types of electrodes simultaneously - Ag/AgCl pre-
gelled electrodes - Eg (top), and Ag/AgCl raised profile dry electrodes - Er (bottom).
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(a) Signal-to-Noise Ratio (SNR)

(b) Baseline average, standard deviation and maximum amplitude

(c) Single-eye Winking (W) average, standard deviation, maximum amplitude and integral

Figure 5.4: Statistical comparison of EMG test trials using Ag/AgCl pre-gelled electrodes - Eg (blue), and Ag/AgCl
raised profile dry electrodes - Er (yellow). Top graph: Signal-to-Noise Ratio (SNR). Middle graphs:
Average, Standard Deviation, and Maximum Amplitude of signal baseline. Bottom graphs: Average,
Standard Deviation, Maximum Amplitude, and Integral of signal for single-eye winking (W) movement.
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Following this primary experiment, a second set of tests was done, to compare the two types of dry

electrodes, Ef and Er. However, for these, each electrode type was tested separately, with different trials

recorded for each one of the electrodes. The number of trials each subject performed with the different

electrodes is shown in Table 5.3.

Table 5.3: Number of trials performed by each subject, with each of the three types of electrodes - Er, Ef and Eg.

Electrode type Subject 1 Subject 2 Subject 3 Total:

Ef 3 5 0 8

Er 3 0 3 6

Eg 7 0 0 7

Total: 13 5 3 21

The metrics for the signal’s baseline, for each signal segment - Brief Eyebrow Raise (BER), Single-

eye Wink (W) and Extended Eyebrow Raise (EER), and for the total signal, were computed according

to Table 5.2, and the results were aggregated in histograms, to better illustrate the comparison between

the two types of electrodes. Each segment of the signal has histograms for its corresponding metrics,

and each histogram contains the comparison between the two Ag/AgCl dry electrodes models studied

– Ef (represented in pink) and Er (represented in yellow). Additionally, each histogram shows probability

density estimation curves for the different electrode models, as well as vertical lines indicating the mean

result of that metric. The results are presented in terms of relative frequency, i.e., the bars height sums

up to 1, to consider the imbalance between number of trials acquired with each electrode type, and to

normalize the data.

The histograms were divided according to two criteria: (1) number of included subjects, and (2)

filtering of the signal. In a first phase, trials from all subjects were included for the calculation of the

metrics. After that, to investigate the impact of inter-subject variability and detect possible outliers,

the trials were split by subject, and computed for each of them, individually. On the other hand, the

metrics were computed both for the “raw signal”, i.e., without any type of noise attenuating filter, and

also after applying a filter to it. In this case, the filter selected to present was the “adaptive filter error”,

which consists in calculating the difference vector between the original signal and the signal resulting

from applying an adaptive Least Mean Square (LMS) filter. For abridgement purposes, the first set of

histograms, in Figure 5.5, show the results while considering all subjects, and without filtering the signal.

The second set of histograms, in Figure 5.6, show the metrics considering only one of the subjects,

and passing the adaptive filter on the signal. Additionally, to help in the interpretation and comparison

between electrode models, the relative difference between their metrics’ mean values was obtained,

according to Equation (5.3). These results are summarized in Table 5.4 and Table 5.5.

Diff(%) =
signalEf − signalEr

signalEf
× 100 (5.3)
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(a) Signal-to-Noise Ratio (SNR)

(b) Baseline Average, Standard Deviation and Maximum Amplitude

(c) Extended Eyebrows’ Raising (EEB) Average, Standard Deviation, Maximum Amplitude and Integral

Figure 5.5: Statistical comparison of EMG test trials using raised profile (Er - yellow) and flat profile (Ef - pink)
Ag/AgCl dry electrodes. Statistics include all subjects without signal filtering. Top graph: Signal-to-
Noise Ratio (SNR). Middle graphs: Average, Standard Deviation, and Maximum Amplitude of signal
baseline. Bottom graphs: Average, Standard Deviation, Maximum Amplitude, and Integral of signal for
extended eyebrows’ raising movement.
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(a) Signal-to-Noise Ratio (SNR)

(b) Baseline average, standard deviation and maximum amplitude

(c) Extended Eyebrows’ Raising (EEB) average, standard deviation, maximum amplitude and integral

Figure 5.6: Statistical comparison between EMG test trials obtained with Ag/AgCl dry electrodes - raised profile (Er
- yellow), and flat profile (Ef - pink). Statistics are based on Subject 1, with signal filtering using an LMS
adaptive filter. Top graph: Signal-to-Noise Ratio (SNR). Middle graphs: Average, Standard Deviation,
and Maximum Amplitude of signal baseline. Bottom graphs: Average, Standard Deviation, Maximum
Amplitude, and Integral of signal for extended eyebrows’ raising movement.
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Table 5.4: Relative difference (%) between metrics’ mean values obtained for Ef and Er electrode models, while
considering all subjects, and without applying any filter to the signals.

Signal Region
Metrics Calculated

Mean (µ) Standard deviation (σ) Maximum amplitude Integral of region (
∫
) SNR (dB)

Baseline -32,44% -28,51% 11,11%

W 50,00% 50,00% 58,82% 61,17%

BER 33,33% 20,00% 26,67% -5,81%

EER 20,00% 20,00% 22,86% 33,42%

Total signal 43,48%

Table 5.5: Relative difference (%) between metrics’ mean values obtained for Ef and Er electrode models, while
considering one subject, and applying an adaptive filter on the signals.

Signal Region
Metrics Calculated

Mean (µ) Standard deviation (σ) Maximum amplitude Integral of region (
∫
) SNR (dB)

Baseline -15,14% -43,93% -120,35%

W 63,11% 57,11% 37,50% 65,88%

BER 6,13% 0,00% 0,00% 30,86%

EER -0,92% 0,00% 17,65% -7,06%

Total signal 32,50%

Some conclusions can be withdrawn when analyzing the histograms (and corresponding tables) with

the obtained statistics for the signals, both pre- and post-filtering. Looking at the SNR histograms, the

Ef electrodes reach greater values than the Er - 41,40 dB vs 23,4 dB (all subjects, pre-filtering) and

90,08 dB vs 60,8 dB (one subject, post-filtering). This corresponds to an SNR increase of 43,48 % /

32,50 % for the Ef model. Furthermore, the baseline statistics also favor the usage of the Ef electrodes -

both the average and the standard deviation of the baseline are significantly lower for these electrodes,

which is the desirable, since the baseline ideally corresponds to myoelectric silence. For the mean and

standard deviation of the signals, there is a respective decrease of 32,44% and 28,51% (all subjects, pre-

filtering), and 15,14% and 43,93% (one subject, post-filtering). Finally, it is worth analysing the statistics

for the input facial movements being studied, particularly the Extended Eyebrows’ raising (EER), which

is the one represented in the histograms. Before filtering the signal segments corresponding to facial

movements, their mean, maximum amplitude and integral are significantly higher for the Ef electrodes.

This is according to the expected, as these metrics are interconnected. A signal with generally higher

amplitude tends to result in a higher integral and is more likely to reach a greater maximum value.

Additionally, the standard deviation is also expected to increase as it is derived from a signal with higher

amplitude, implying larger variations in magnitude. On the other hand, when looking at the filtered

signals, the difference between Er and Ef electrodes is severely decreased, demonstrating the effect of

applying a smoothing filter on the signal, to reduce noise contamination.
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With these results was possible to decide on the Ef Ag/AgCl dry electrodes, more proximal to the

skin – shown in the second row of Table 3.3, to conduct further testing, and integrate the Augmented

Reality system.

Filtering of the acquired signal

The next step was to study if applying a digital filter to the acquired signals would enhance them, and if

so, which type of filter should be applied. Because the goal is to detect electromyographic onsets and

offsets (temporal features), the aim of applying a filter is to reduce noise the electrodes may capture,

enhancing the signal’s SNR the most possible. That way, the most important features to retain are

temporal, meaning that filters which attenuate components with certain frequencies can be applied, for

example moving averages. Several filters were selected as candidates to be analysed. Although there

are various types of complex filters that have a high level performance, considering this signal processing

should be done in real-time, and on a mobile (Android/iOS) Operating System, the filters were selected

considering also their computational complexity. Both Infinite Impulse Response (IIR) filters and Finite

Impulse Response (FIR) filters were tested:

• IIR Butterworth filters:

– 2nd order, with low cutoff frequency fc,low = 20Hz and high cutoff frequency fc,high = 450Hz;

– 10th order, with low cutoff frequency fc,low = 20Hz and high cutoff frequency fc,high = 40Hz;

• FIR Moving Average filters:

– Simple Moving Average (SMA), with window size = 10 samples;

– Exponential Moving Average (EMA), with window size = 10 samples;

– Gaussian Moving Average (GMA), with window size = 10 samples;

• FIR Adaptive Least Mean Square (LMS) Error filter, with step size = 5 samples.

The performance of the filters on the EMG signal enhancement was evaluated through the outcome

from an onset detector applied to the filtered signal. The selected onset detection algorithm was based

on the approach proposed by Hodges and Bui (1996) [52], available on the BioSPPy Python toolbox
1. This detector receives as inputs: (1) the filtered EMG signal; (2) a sample segment corresponding

to a rest period (electromyographic silence); (3) the sampling rate; (4) the detection threshold, i.e., the

value from which the signal is considered a muscle activation; and (5) the detection window size, i.e.,

the number of samples for which the mean must exceed the defined threshold (in seconds).

1Available at https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/emg.py.
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The performance of the detector while varying the filter was evaluated through Precision-Recall

curves. These curves summarize the trade-off between the true positive rate – recall – and the pos-

itive predictive value – precision. The mathematical expressions for these concepts are shown in Equa-

tion (5.4) and Equation (5.5).

Recall =
#TruePositives

(#TruePositives+#FalseNegatives)
(5.4)

Precision =
#TruePositives

(#TruePositives+#FalsePositives)
(5.5)

These performance metrics are widely used in machine learning contexts, because they allow to

evaluate, for a certain classifier, which set of hyper-parameters optimize it, defining a balance between

both False Negatives and False Positives rates. To establish the definition of the different variables - True

Positives (TPs), False Positives (FPs) and False Negatives (FNs) - in this specific context, several steps

were performed. Firstly, all the segments (pairs of onset-offset) corresponding to muscle activations were

annotated, for each EMG signal acquisition performed following the defined protocol. This annotations

- ground truth - were registered, once again, resorting to the SignalBit software. As for the detections

given by the detector, each one was classified as a True Positive (TP) or False Positive (FP), depending

on its temporal location. If the detection coincided with a real onset, within a certain time tolerance, the

detection would be considered as a TP. Otherwise, it would be a FP. In the case of multiple detections in

the region of the real onset, the closest to it would be the TP, and the remaining would be classified as FP.

The tolerance was calculated considering the average latency between the real onsets and the obtained

detections, provided it does not exceed a maximum latency of 150 samples (150 ms), considered as the

acceptable for the purpose of its application. In the case of muscular activity not being detected by the

detector, they were considered as False Negatives (FN).

The detector was tested with detection threshold values varying between 0,1 and 4,0 (with incre-

ments of 0,1), and detection window sizes of 100 ms, 200 ms, 300 ms, 500 ms, 600 ms and 800 ms.

The performance of the detector, depending on the filter used on the input EMG signal, was analyzed

through the graphs of Precision and Recall presented in Figure 5.7. Although all the mentioned filters

were analyzed, it was decided to present only one filter of each filter type.
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(a) Precision - Raw Signal (b) Recall - Raw Signal

(c) Precision - Butterworth Filter (2nd order) (d) Recall - Butterworth Filter (2nd order)

(e) Precision - Simple Moving Average (W = 10) (f) Recall - Simple Moving Average (W = 10)

(g) Precision - LMS Adaptive Filter (L = 5, step-size = 1) (h) Recall - LMS Adaptive Filter (L = 5, step-size = 1)

Figure 5.7: Precision and Recall curves for Hodges and Bui EMG onset detector, with respect to the detection
threshold and detection window size, considering different filters applied to input EMG signal. (a, b) No
filtering (Raw signal), (c, d) Butterworth 2nd order filter with cut-off frequencies of 20Hz and 450Hz, (e, f)
Simple Moving Average filter with window size of 10 samples, and (g, h) Least Mean Squares Adaptive
filter with length of 5 and step-size of 1.
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Based on the Precision and Recall curves obtained for the different filters, the Moving Average filters

result in overall higher precision and recall values, across the range of detection thresholds and window

sizes. Looking at the SMA (with a 10 sample window) filter graphs, they are more stable with respect to

the threshold used, turning the detector more robust. For that reason, it was decided to use a Moving

Average filter to process the input EMG signal being acquired from the user.

5.1.3 Detector’s hyperparameters

Looking once more at the graphs on Figure 5.7, some conclusions can be drawn regarding the most

suitable hyperparameters (detection threshold and detection window size) values to use on the on-

set detector. Firstly, in terms of the detection threshold, the graphs generally show that using lower

thresholds result in decreased precision and recall values. This occurs because when using very low

thresholds, while the actual onsets (TP) are detected, there is also a significantly higher rate of false

positives (FP), leading to reduced Precision. Conversely, applying excessively high thresholds will result

in a higher FN rate, consequently reducing the Recall. In this particular context and with the analysed

signal processing, the ideal threshold value falls approximately within the range of 2.1 to 3.3.

Regarding the detection window, this parameter determines the minimum duration during which the

EMG signal needs to exceed the defined detection threshold. The graphs show that applying wider

windows on the detector - 500 ms (red curves), 600 ms (purple curves) and 800 ms (brown curves) -

decrease the maximum obtainable precision and recall values, regardless of the chosen threshold. This

is to be expected, because larger windows, while preventing false detections (FP), can also decrease the

number of real onsets (TP) detected, for weaker or shorter EMG signal onsets, consequently increasing

the FN rate and resulting in lower Recall values. Conversely, applying a very short window - 100 ms

(blue curves) - while it prevents missing shorter onsets, it also greatly increases the number of false

onsets detected (FP), resulting in a lower Precision, which is demonstrated by the blue curves presented

in the precision graphs. In this case, the window size that optimizes the Hodges and Bui detector’s

performance is 200 ms.

5.1.4 Onset detector implementation

The previous analysis was based on the detector that Hodges and Bui proposed, computed in the

BioSPPy toolbox. The detector implemented in the ARSurgery Mobile application was adapted from

this, but has slight differences due to the context constraints of this application, and being computed for

real-time usage.

Firstly, the EMG electrodes being used aren’t fixed to the skin, being instead fixed on the head-

mounted AR display itself. This increases the inter-subject and inter-trial variability between acquired

signals, since the EMG electrodes may coincide with slightly different points of the forehead, which influ-
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ences the amplitude of the signal recorded. As an attempt to overcome this, the implemented detector

uses a dynamic threshold instead of a fixed value, to enhance the detector’s adaptability to the input

signal. The threshold in the implemented detector is calculated during a test trial performed beforehand,

where the user performs 3 separate brief eyebrow raises (BER). The test trial is pre-processed, rectified,

and smoothed with a Weighted Moving Average of 100 samples. The baseline average and standard

deviation are calculated, and a test function is computed following Equation (5.6). The threshold is de-

fined as 1 σ above the test function average [52]. Figure 5.8 illustrates a segment of an EMG signal

capturing two instances of BER and two instances of EER movements, and its resulting test function, as

well as the corresponding computed threshold.

testfunction(x) =
1

σbaseline
∗ (x− µbaseline) (5.6)

Figure 5.8: Illustration of an EMG signal segment and its resulting test function, as well as the corresponding
computed threshold.

It is important to note that along these experimental tests, the Single-Eye Winking movement (W)

was eventually excluded as an input command for the AR head-mounted display, due to its highly vari-

able intensity, even among repetitions performed by the same subject. The input commands that were

implemented in the final prototype were the BER and EER movements. The EER movement controls

the navigation from / to the Calibration Page, allowing the user to exit it after pressing ”Start Acquisition”,

and directing them to the Camera Viewer. To switch between this latter, the Patient’s Biosignals Viewer,

and the Off-Mode / See-Through Screen, the user can perform a BER movement.

5.1.5 AR system prototype validation

As described in Section 4.2.4, two different tests were performed to validate both the onset detector

and the EMG-controlled AR headmounted display as a system. In both tests, the participants were

asked to use the ARSurgery app, following the sequence of forehead movements shown in Figure 5.9,

designed to guide the participants through the different pages of the app, ensuring the hands-free control
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mechanism behaves correctly.

Figure 5.9: Illustration of the movements’ sequence followed by participants in Test 1 and Test 2. Sequence in-
cludes alternating Brief Eyebrow Raises (BER) and Extended Eyebrow Raises (EER) lasting ≈ 3 s.

For each of the movements executed, the corresponding triggered action on the app was registered:

When the app was in accordance with the movement made, it was considered as a True Positive (TP).

The cases where the movement did not elicit any response from the app were considered as False

Negatives (FN). On the other hand, if the app perceived a trigger in the absence of any deliberate

movements from the participant, it was annotated as a False Positive (FP). Furthermore, because there

are two distinct events being analyzed in these trials, and their differentiating parameter is the duration

of the onset, if the app did not distinguish between the BER and the EER movements - perceiving the

BER as EER, or vice versa - that was also registered.

Since the goal of this project is to be applied in the surgical field, this experimental study was per-

formed on two distinct groups of participants: a control group, composed by regular subjects, and a

test group, composed by surgeon doctors, with different specializations. This study was conducted in

accordance with the Declaration of Helsinki and approved by the Ethics Committee of Instituto Superior

Técnico (Statement nº 19/2021). Written consent was obtained for the participants prior to their enroll-

ment, and all data were treated anonymously. The consent document is present in Appendix A. Table 5.6

summarizes the data about the participants. The trials, both inter and intra-subject, were all performed

independently – for each trial the app was reset to guarantee that all the steps were performed each

time, including the defining of the EMG signal statistics and threshold. Table 5.7 shows the total number

of trials that were performed, for both the first and second tests. The results of the experimental tests

are presented in Figure 5.10.

Table 5.6: Summary of participants data - number of participants, sex and age - discriminated for both study groups
- control group and test group

Trial group Nb of participants (#) Sex (Female or Male) Age (years)

Control 18 15F, 9M 30 ± 16

Test 2 1F, 1M 46 ± 21

Table 5.7: Total number of experimental trials performed by the participants, discriminated by the test type - Test 1
and Test 2

Test 1 Test 2 Total

Nb of trials 60 36 96
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(a) All trials (b) Threshold value

(c) Test type (d) Target Group

(e) Learning Curve

Figure 5.10: Performance metrics results of experimental tests including True Positive Rate (TP), False Positive
Rate (FP), False Negative Rate (FN), EER Movement mismatch Rate (EER -> BER), and BER Move-
ment mismatch Rate (BER -> EER). Emphasis on comparing test type (Test 1 vs Test 2), threshold
value (threshold = 1000 vs threshold = 1500), target group (Control Group vs Test Group), and learning
rate (first trial vs subsequent trials).

As depicted in Figure 5.10a, when considering the total amount of trials performed, for both tests,

without any type of discrimination, the results from the experimental tests are very satisfactory. Overall,

the percentage of onsets perceived correctly by the app (TP rate), of 94,1%, is very promising, consid-

ering the straightforwardness of the criteria used for the onset distinction and classification. The second

most important aspect to assess in this type of control mechanism is the absence of response from the
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app when it is not required by the participant, i.e., the FP rate. The FP rate determined, of 0,1%, was

also very satisfactory, meaning that almost no occurrences of this type happened. However, it is worth

mentioning that the optimistic results for this particular metric can be related, to a certain extent, with

the fact that the trials were performed in a controlled environment, where the participants were focused

on the solicited task, and therefore less prone to make spontaneous facial movements that lead to false

positives, as it can occur in real life scenarios.

In terms of the FN rate, meaning the percentage of times the participants performed one of the two

desired movements, without eliciting any response from the app, a percentage of 1,1% was obtained. In

this context, this value is sufficiently low, to not compromise the correct functioning of the application.

Now, regarding the capacity of the algorithm to distinguish correctly between the two eyebrow move-

ments being analyzed, which only differ in the duration of the stimulus: From Figure 5.10a, it is possible

to observe that the brief eyebrow raise (BER) is perceived as a extended eyebrow raise (EER) much

more frequently than the opposite – 4,1% and 0,6% respectively. However, these percentages are highly

related to the temporal parameter that was defined in the algorithm as the value that separates a brief

from a extended eyebrow raise. This value must be selected considering two aspects – on the one

hand, because this app is to be used by different subjects, and must be the most intuitive possible, the

value should be high enough to clearly separate the extended ER movements from the brief ER ones,

this way respecting the fact that different subjects may have slightly different notions and/or executions

of the brief eyebrow raise. On the other hand, the value should be low enough for the EER movement

to be feasible, and not uncomfortable to execute. Hence, during the experimental study, two different

thresholds were tested, to analyze how that affects the behavior of the algorithm, and to explore which

threshold would better compromise these two conditions. Looking at Figure 5.10b, it is noticeable that

varying this threshold does impact the distinction of the brief and extended eyebrow raises – with a

threshold of 1500 milliseconds, there is a higher percentage of EER being perceived as ER, and a null

percentage of the opposite case – 4,5% and 0,0% respectively; However, if the threshold is decreased

to 1000 milliseconds, the reverse occurs – the majority of the EER are well identified (0,4% of mismatch

cases), but some of the BER are mistaken by EER (4,4% of mismatch cases). It is worth mentioning

that only the first subject – one of the surgeon doctors – performed the trials with the threshold of 1500

milliseconds, and the subject reported that this value was too high for the LER movement to be comfort-

able to execute, especially during surgery, therefore the threshold was adjusted to 1000 milliseconds, for

all the subsequent subjects who performed the trials. Hence, the results discussed above regarding this

parameter, are partly reflected by the unbalanced number of participants in the two groups, which does

not compromise the conclusion that both thresholds provide acceptable results, and a value between

1000 and 1500 milliseconds would be the most adequate.

Another aspect of the results that is important to analyze is the difference between the two tests
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requested to be carried out by the participants. As can be seen in Figure 5.10c, the results obtained

for the Test 1, which only involved the sEMG sensors and the app, disregarding the AR headset, are

generally more optimistic than the ones obtained for the Test 2, which assessed the entire AR system

with integrated sEMG sensors – a 1,3% higher TP rate and a summed 1,6% lower rate of mismatches.

Additionally, during the experimental study, there were trials that were considered invalid, when one

of three cases occurred:

1. The statistics of the resting EMG signal, acquired by the app as a first step, necessary to its proper

functioning, were registered and taken into consideration. If the standard deviation of the resting

EMG signal was superior to 0,2, which indicates an inadequate positioning of the electrodes on

the forehead, as described in Section 4.2.1, the trial was considered invalid.

2. If the trial progressed without incidents, but after a certain moment, the app started to show an

abnormal behavior – for example a constant switching between the displayed pages – and the

EMG signal being acquired, which is shown on the app, is in accordance with that, i.e., the EMG

signal itself is very heterogeneous and does not have the typical shape, then the trial was also

considered invalid. The reason for this decision is that this change in behavior most probably

results from a displacement of the electrodes on the skin, due to movement from the subject, or a

sudden lack of contact with the skin.

3. If, during the trial, more than six out of the eleven movements required to perform by the partici-

pant, were incorrectly classified by the app, or not detected, the trial was also considered invalid,

because the reason for this occurrence is probably related with the step of acquiring the initial pa-

rameters, namely, the threshold necessary to distinguish between an onset and a resting period.

In that step, it is important that the three test onsets the subject performs to define the threshold

are similar in intensity. However, although rarely, it was observed that some participants tended to

execute the first test onset with a much higher intensity than the other two, which compromises the

calibration. This incorrect threshold defining jeopardizes the correct testing of the algorithm.

5.2 Study with the interest group (surgeon doctors)

Since the surgeon group represents the main interest group for this project, it was also asked for its

participants to answer a survey regarding the developed system’s usability. This survey comprised two

parts: a more generic one, adapted from the System Usability Scale (SUS) [53], which is commonly used

to assess the usability of new technology systems. This scale was chosen because it is very simple to

administer to participants, and can be used on small sample sizes with reliable results, which is the case

of the surgeons’ group. The SUS is composed by 10 different affirmations, and the subject must choose
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between 5 levels of agreement for each of those affirmations. The final score is attributed based on the

answers of the subject to the different items: for the odd affirmations, the score corresponding to the

chosen level of agreement is subtracted by 1; for the even affirmations, the level score is subtracted to 5.

Then, those results are added together, and multiplied by 2,5. The final score obtained must be superior

to 68 to be considered satisfactory/above average. Also, because the SUS is a somewhat generic

questionnaire, a second part with questions regarding this specific developed system, developed for the

surgery context, was added. This second set of questions followed a semi-structured interview format.

The two-part survey applied to the surgeons’ group is detailed below:

Table 5.8: Two-part survey applied to the test group

Survey

Part 1

System Usability Scale
1 I think I would like to use this tool frequently.

2 I found the tool unnecessarily complex.

3 I thought the tool was easy to use.

4 I think that I would need the support of a technical person to be able to use this system.

5 I found the various functions in this tool were well integrated.

6 I thought there was too much inconsistency in this tool.

7 I would imagine that most people would learn to use this tool very quickly.

8 I found the tool very cumbersome to use.

9 I felt very confident using the tool.

10 I needed to learn a lot of things before I could get going with this tool.

Part 2

Specific Questionnaire
1 Would the use of this system during surgery provide an effective improvement of the surgeon’s vision field?

2 Is this system comfortable to use during a surgery?

3
Are there any spatial constrains between the AR headset and the medical equipment necessary

to put on the surgeon’s head (e.g.: surgical magnifying glasses)?

The mean score obtained by the surgeons’ group on the first part of the survey - the SUS ques-

tionnaire - was 82,5 points. This scale does not correspond to percentages. Instead, to evaluate the

obtained result, the latter should be converted into a percentile rank, in order to assess how it compares

to others. The percentile values according to the SUS score obtained are presented in Figure 5.11.
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(a) SUS Percentile (b) Grading

Figure 5.11: SUS scores, respective percentiles and grades.

From Figure 5.11, the mean 82,5 points obtained on the questionnaires from the surgeon doctors’

group, is equivalent to the percentile 90% - 95%. This means the designed prototype had a very sat-

isfying reception in terms of usability, including its user-friendliness. Regarding the second part of the

questionnaire applied to the surgeon doctors, there was a very positive feedback on their behalf, and

constructive suggestions were made in terms of possible applications for the prototype, describing spe-

cific scenarios in the surgery context where the system would be useful: Preoperative imaging (e.g.,

CT-Scan) were considered very relevant to present in the AR display, on demand. Furthermore, screen

casting of the monitors displaying real-time intraoperative imaging were also considered very useful.

For example, the real-time imaging from fluorescence cholangiography for bile duct visualization during

laparoscopic cholecystectomy, is presented on a screen which is usually situated next to the surgeon.

In the interviews with the surgeons, feedback was received towards screen casting those monitors dis-

playing image intensifiers (to enhance blood vessels, guidewires), directly on the AR display, in order to

reduce the number of times the surgeon needs to look away, and enhance their focus on the primary

task. Another case study found useful was for the anesthesiologist. At times, during surgery, the latter

leaves the Operating Room, being only called if / when necessary, according to the patient’s vital signals

as well. Screen casting the monitor displaying the patient’s vital signals on the anesthesiologist’s AR

headset, would enable them to monitor the signals on demand, assisting them in that task. In terms

of the control mechanism, the feedback received was consistently positive, with both surgeon doctors

finding it intuitive and the two commands easy to execute.
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6.1 Conclusions

The increasing complexity of variables and information in the operating room has created challenges for

surgical teams, which at the worst level, may potentially impact intervention outcomes. When it comes

to the information flow in the OR during surgery, currently, the latter is still mostly static, with several

monitors and displays being scattered along the room, and with the surgeon and auxiliary team having

to actively seek the information. Improving the access, visualization, and integration of information in

the operating room is a crucial challenge to enhance the flow of surgery and minimize disruptions that

can impact patient safety.

Surgeon doctors and auxiliary team members using head-mounted displays to screen relevant pa-

tient information is a viable option, provided their control is user-friendly, and does not interfere with the

surgery flow. Furthermore, the head-mounted display should be ergonomic, and do not physically inter-

fere with the surgical apparatus the surgeon is required to use (e.g., surgical mask, magnifying glasses,

and surgical headlamp).

Considering these requirements and constraints, a hands-free Augmented Reality headset controlled

through forehead movements using electromyography (EMG) was successfully developed. Hardware

was chosen according to experimental tests carried out. The developed solution was utilized and eval-

uated by two groups of subjects, including two surgeon doctors. Overall, the results on the control

mechanism accuracy were very promising. Additionally, the surgeon doctors’ interviews, questionnaires

and usage feedback demonstrated a highly positive reception of the designed prototype in terms of us-

ability and user-friendliness. The feedback received from the surgeon doctors was not only positive but

also provided valuable insights into potential applications of the prototype in different surgical contexts.

6.2 Future Work

In terms of future developments for this system, there are several aspects that may be tackled to enhance

the solution. On the one hand, a wider range of input movements may be considered, in order to

increase the degrees of freedom in terms of app navigation and selection options. This would also

enable displaying different contents broadcasted on the headset screen.

On the other hand, connecting the monitors in the OR to ARSurgery via Wi-Fi instead of pointing the

smartphone’s camera to them, would enhance the screen casting quality and allow switching between

multiple monitors.

In terms of the onset detector, allowing ARSurgery to save the calibration parameters for each user,

would simplify and shorten the setup phase. However, for this to be an effective option, it is important to

either enhance the stability of electrode placement on the user’s forehead, or enhance the robustness of
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the algorithm for processing the acquired EMG signal. Furthermore, ARSurgery’s calibration phase still

involves using the smartphone’s touchscreen to select the appropriate options. A notable enhancement

would be the automation of these steps, eliminating the need for manual hand actions, thereby making

the interface fully hands-free.

Lastly, the solution would benefit from incorporating robust data protection measures, giving users

their own profile, secured with personalized passwords, ensuring the privacy and security of each user’s

information.
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Instituto de Telecomunicações (IT) - Instituto Superior Técnico, Torre Norte - Piso 10 Av. Rovisco Pais, Nº 
1, 1049-001 Lisboa, Portugal 

Título do Estudo 

Analysis of facial surface electromyography (sEMG) and Electroencephalography (EEG) signals for hands 

free control of augmented reality headsets 

Enquadramento 

Obrigado por se voluntariar para esta experiência para avaliação de comandos fisiológicos para 

interação homem-máquina, desenvolvida pelo IT – Instituto de Telecomunicações. Esta experiência vai 

ser realizada por Margarida Ramalho e Paulo Rodrigues, estudantes de Mestrado do Instituto Superior 

Técnico – Universidade de Lisboa. O investigador responsável será a Prof. Ana Fred (IT-IST, UL), com o 

apoio do Prof. Hugo Plácido da Silva (IT-IST, UL), do Prof. Paulo Correia (IT-IST, UL), da Dra. Carolina 

Rodrigues (Hospital de Santa Marta), e do Mestre Miguel Martins (Rotacional, Lda.).  

Propósito 

Avaliar a qualidade de diferentes comandos fisiológicos – gestos faciais – tendo em vista a sua aplicação 

no controlo hands-free de um headset de realidade aumentada (RA) em contexto ecológico, com 

recurso a sensores do tipo wearable.  

Procedimento 

Cada experiência envolve um participante disposto numa sala, respeitando as medidas sanitárias e 

recomendações da Direção Geral da Saúde (DGS). Prevê-se a utilização da sala de reuniões do Instituto 

de Telecomunicações (IST Torre Norte – Piso 11), ainda que possa ser necessário recorrer a outras 

localizações que reúnam condições adequadas. O participante terá um ou mais sensores wearable 

aplicados no seu corpo, requerendo a aplicação de elétrodos na região da testa, por forma a captar os 

seus sinais de Eletromiografia de Superfície (sEMG), Eletroencefalografia (EEG) e movimento (IMU). 

Após a aplicação do sensor, o nível de conforto será avaliado utilizando escalas qualitativas como a 

System Usability Scale (SUS). Durante a experiência, o participante realizará uma sequência de gestos 

faciais com amplitudes temporais diferentes, tendo simultaneamente os sinais captados e enviados em 

tempo real para o computador pessoal do investigador, onde são armazenados localmente. Após a 

experiência, ser-lhe-á pedido para preencher um questionário de auto-reporte do nível de interesse nos 

conteúdos exibidos. 

Registo de Dados 

Além dos elementos registados no presente formulário, durante a experiência serão registados os sinais 

dos sensores wearable e as respostas ao questionário de auto-reporte. Todos os dados registados (EMG, 

CONSENTIMENTO INFORMADO 
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Instituto de Telecomunicações (IT) - Instituto Superior Técnico, Torre Norte - Piso 10 Av. Rovisco Pais, Nº 
1, 1049-001 Lisboa, Portugal 

EEG, IMU e questionário de auto-reporte) estarão desassociados do seu nome. A associação é feita 

unicamente através do código.  

Privacidade 

Os dados são protegidos por palavra-passe e guardados para estudos futuros por um prazo de 5 anos 

(ou até solicitar a eliminação). Se autorizar será mantida uma versão anonimizada dos dados numa base 

de dados pública, para fins de investigação. Em qualquer momento poderá́ ter acesso aos dados, pedir a 

sua correção ou até a eliminação, enviando um email para os responsáveis pelo tratamento dos dados 

(Margarida Ramalho <margarida.v.b.l.ramalho@tecnico.ulisboa.pt> e Paulo Rodrigues 

<paulo.f.rodrigues@tecnico.ulisboa.pt>). Os dados poderão ser partilhados com terceiros se concordar.  

Riscos 

Os riscos de participação neste estudo não são superiores aos da vida quotidiana, havendo apenas 

recolha de dados. 

Participação 

A participação nesta experiência é voluntária, devendo ser feita de forma esclarecida e livre. Poderá 

questionar a sua participação e desistir em qualquer momento sem consequências, caso em que os seus 

dados serão destruídos. 

Esclarecimento de Dúvidas 

Poderá esclarecer as suas dúvidas em qualquer altura com o executante da experiência, ou por e-mail 

contactando a Prof. Ana Fred <afred@lx.it.pt>, o Prof. Hugo Plácido da Silva <hsilva@lx.it.pt>, ou o 

encarregado de proteção de dados do IT, Marcelino Pousa <mpousa@av.it.pt>. Em último caso tem o 

direito de apresentar reclamação à Comissão Nacional de Proteção de Dados (CNPD). 

Acordo de Participação 

Eu li e entendi os detalhes deste estudo, tendo esclarecido eventuais questões complementares com o 

executante. Ao assinar abaixo, concordo em participar nesta experiência. 

 

Código: ..........  Nome completo: ............................................................................. Data: ............................ 

Género (deixar em branco caso não pretenda indicar): .............. Idade: ............   

Email: ………………………………………………….............. Assinatura: ....................................................................... 
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Instituto de Telecomunicações (IT) - Instituto Superior Técnico, Torre Norte - Piso 10 Av. Rovisco Pais, Nº 
1, 1049-001 Lisboa, Portugal 

Título do Estudo 

Analysis of facial surface electromyography (sEMG) and Electroencephalography (EEG) signals for hands 

free control of augmented reality headsets 

Acordo para Utilização de Dados 

Obrigado por participar na nossa experiência. Com o propósito de estudar os diferentes modos de 

interação homem-máquina e, no futuro, implementar comandos fisiológicos no controlo hands-free de 

um headset de realidade aumentada (RA), os seus dados são muito importantes para o IT.  

Os dados que recolhemos (indicados no consentimento informado) não serão associados ao seu nome 

ou a outras informações que o identifiquem. Com este formulário, você pode consentir explicitamente a 

finalidade para a qual podemos utilizar os seus dados. Se, por algum motivo, desejar que os seus dados 

sejam excluídos imediatamente e não sejam utilizados para análise, por favor escreva a inicial do seu 

nome abaixo: 

Desejo que os meus dados sejam excluídos e não sejam usados em qualquer análise …... 

Se permitir que utilizemos os seus dados, assinale, com a sua inicial, os propósitos específicos: 

a. A equipa pode visualizar e analisar os meus dados …... 

b. A equipa pode mostrar os meus dados em reuniões confidenciais com parceiros …... 

c. A equipa pode partilhar os meus dados com parceiros para análise posterior …... 

d. A equipa pode mostrar os meus dados em publicações académicas …... 

e. A equipa pode mostrar os meus dados em conferências …... 

f. A equipa pode mostrar os meus dados em meios de comunicação (notícias, revistas, etc.) …... 

g. A equipa pode partilhar uma versão anonimizada dos meus dados para a criação de uma base de 
dados pública a disponibilizar à comunidade científica …….. 

 

Confirmo que li todas as declarações acima, e que a equipa só pode usar meus dados para as finalidades 
que eu assinalei. 

Nome completo: ............................................................................. Data: ............................ 

Email: ………………………………………………….............. Assinatura: .......................................................................  

AUTORIZAÇÃO PARA UTILIZAÇÃO DE DADOS 
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