
Exploring the Limits of Cross-Platform Sparse Tensor
Processing

Filipe dos Santos Borralho

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Aleksandar Ilic
Prof. Leonel Augusto Pires Seabra de Sousa

Examination Committee

Chairperson: Prof. Pedro Filipe Zeferino Aidos Tomás
Supervisor: Prof. Aleksandar Ilic

Member of the Committee: Prof. Luı́s Manuel Silveira Russo

June 2023



Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Declaro que o presente documento é um trabalho original da minha autoria e que cumpre todos os

requisitos do Código de Conduta e Boas Práticas da Universidade de Lisboa.





Abstract

Tensors are the natural way to store multi-dimensional data. Therefore the efficient computation of

tensor methods is an important challenge. Some tensor methods, like Matricised Tensor Times Khatri-

Rao Product (MTTKRP) and Tensor Times Matrix (TTM), pose as major performance bottlenecks for

algorithms commonly used in several areas of research. State of the art optimisations tend to focus on

single-device implementations, however modern systems are evolving to become more heterogeneous

by combining several acceleration devices, such as multi-core Central Processing Unit (CPU), Graphics

Processing Unit (GPU) and Field Programmable Gate Array (FPGA). In this Thesis, the most prominent

tensor methods are analysed as well as the characteristics of the most commonly used architectures

when it comes to sparse tensor methods optimisation and acceleration. Implementations for TTM and

MTTKRP are developed for all the aforementioned architectures, achieving up to 7× speed up against

the state of the art and with the advantage of not being device nor vendor specific. An heterogeneous

approach for a system with CPU and GPU is also developed to demonstrate the capabilities of SYCL as

a potential standard in heterogeneous computing.

Keywords

Sparse Tensors, TTM, MTTKRP, SYCL, Heterogeneous Systems, FPGA

iii





Resumo

Os tensores são a maneira natural de armazenar dados multidimensionais. Portanto, a computação

eficiente de métodos que envolvem tensores é um desafio importante. Alguns destes métodos, como

Matricised Tensor Times Khatri-Rao Product (MTTKRP) e Tensor Times Matrix (TTM), apresentam-se

como grandes obstáculos ao desempenho de algoritmos frequentemente usados em diversas áreas

de investigação. As mais recentes optimizações tendem a concentrar-se em implementações para

uma única arquitectura de computação, no entanto, os sistemas modernos estão a evoluir no sentido

de se tornarem mais heterogéneos, combinando vários aceleradores, como Central Processing Unit

(CPU) multi-core, Graphics Processing Unit (GPU) e Field Programmable Gate Array (FPGA). Nesta

Tese, são analisados os mais proeminentes métodos, bem como as caracterı́sticas das arquiteturas

mais utilizadas no que toca a otimização e aceleração de métodos que envolvem tensores esparsos.

Implementações para TTM e MTTKRP são desenvolvidas para todas as arquiteturas mencionadas,

alcançando uma melhoria de até 7× em relação às implementações atuais e com a vantagem de não

serem especı́ficas para uma arquitectura ou marca. Uma implementação heterogénea, para um sistema

com CPU e GPU, também é desenvolvida com o intuito de demonstrar as capacidades do SYCL como

uma potencial referência em computação heterogénea.

Palavras Chave

Tensores Esparsos, TTM, MTTKRP, SYCL, Sistemas Heterogéneos, FPGA

v





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Sparse Tensors: Background and State of the Art 5

2.1 Tensor Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Storage Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Tensor Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Tensor Element-Wise Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Tensor-Scalar Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Tensor Contraction Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 Sequence Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Heterogeneous Systems and Programmability . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.4 Heterogeneous Computing and Open Challenges . . . . . . . . . . . . . . . . . . 15

2.5 State of the Art on Sparse Tensor Storage and Processing . . . . . . . . . . . . . . . . . . 16

2.6 Roofline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Sparse Tensor Processing on Programmable Architectures 23

3.1 Data-Parallel Sparse Tensor Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Tensor Times Matrix (TTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1.A Kernel V1: Element-centric TTM approach . . . . . . . . . . . . . . . . . 24

3.1.1.B Kernel V2: Fiber-centric TTM approach . . . . . . . . . . . . . . . . . . . 26

3.1.2 Matricised Tensor Time Khatri-Rao Product (MTTKRP) . . . . . . . . . . . . . . . 28

3.1.2.A Kernel V1: Element-centric MTTKRP approach . . . . . . . . . . . . . . . 28

vii



3.1.2.B Kernel V2: Row-centric MTTKRP approach . . . . . . . . . . . . . . . . . 31

3.2 Exploring Performance Upper-Bounds with Synthetic Tensors . . . . . . . . . . . . . . . . 33

3.2.1 TTM Best-Case Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1.A CPU Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1.B GPU Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 TTM Worst Case Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2.A CPU Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2.B GPU Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 MTTKRP Best-Case Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3.A CPU Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3.B GPU Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 MTTKRP Worst Case Performance Analysis . . . . . . . . . . . . . . . . . . . . . 44

3.2.4.A CPU Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4.B GPU Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Heterogeneous Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Sparse Tensor Processing on Specialised Architectures 51

4.1 Tensor Times Matrix (TTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Matricised Tensor Time Khatri-Rao Product (MTTKRP) . . . . . . . . . . . . . . . . . . . . 56

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Experimental Results on Real-World Tensors 61

5.1 CPU Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 GPU Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 FPGA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Comparison with State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Conclusion 77

Bibliography 77

viii



List of Figures

2.1 Fibers of a third-order tensor [33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Slices of a third-order tensor [33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Fourth-order tensor example in COO and CSF [25] . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Example of a dense TTM with a third-order tensor . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Modern Quad-Core CPU example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 GPU example with 20 streaming multiprocessors . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 FPGA’s segment example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Example of conversion of a tensor from COO to HiCOO [54] . . . . . . . . . . . . . . . . . 16

2.9 Example of tensor in CISS format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 Example of encoding in a third-order tensor [55] . . . . . . . . . . . . . . . . . . . . . . . 17

2.11 Example of decoding in a third-order tensor [55] . . . . . . . . . . . . . . . . . . . . . . . 17

2.12 Example of the balancing of CSF [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.13 Comparison between original roofline model and CARM [60] . . . . . . . . . . . . . . . . 22

3.1 Semi-sparse tensor and CSF’s representation of its fibers . . . . . . . . . . . . . . . . . . 34

3.2 CPU best-case performance for different number of non-zero elements in the fiber . . . . 35

3.3 CPU best-case performance for different number of columns in the matrix . . . . . . . . . 35

3.4 Roofline model for CPU best-case scenario with both kernels . . . . . . . . . . . . . . . . 36

3.5 GPU best-case performance for different number of non-zero elements in the fiber . . . . 37

3.6 GPU best-case performance for different number of columns in the matrix . . . . . . . . . 37

3.7 GPU best-case performance for different number of fibers with non-zero elements . . . . 37

3.8 Roofline model for GPU best-case scenario with both kernels . . . . . . . . . . . . . . . . 38

3.9 Depiction of worst case tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Roofline model for CPU worst case scenario with both kernels . . . . . . . . . . . . . . . 40

3.11 GPU worst case performance for different number of rows in the matrix . . . . . . . . . . 41

3.12 Roofline model for GPU worst case scenario with both kernels . . . . . . . . . . . . . . . 42

3.13 CPU best-case performance for varying number of columns . . . . . . . . . . . . . . . . . 43

ix



3.14 Roofline model for CPU best-case scenario with both kernels . . . . . . . . . . . . . . . . 44

3.15 Roofline model for GPU best-case scenario with both kernels . . . . . . . . . . . . . . . . 45

3.16 CPU worst-case performance for different number of rows in the matrices . . . . . . . . . 46

3.17 Roofline model for CPU worst-case scenario with both kernels . . . . . . . . . . . . . . . 46

3.18 GPU worst-case performance for different number of rows in the matrices . . . . . . . . . 47

3.19 Roofline model for GPU worst-case scenario with both kernels . . . . . . . . . . . . . . . 48

3.20 Step-by-step example of Adaptive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Diagram of PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Diagram of PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 TTM performance on CPU for tensor nell-2 with varying number of matrix columns . . . . 62

5.2 TTM AI on CPU for tensor nell-2 with varying number of matrix columns . . . . . . . . . . 62

5.3 TTM performance on CPU for tensor vast-3D with varying number of matrix columns . . . 63

5.4 TTM AI on CPU for tensor vast-3D with varying number of matrix columns . . . . . . . . . 63

5.5 MTTKRP performance on CPU for tensor nell-2 with varying number of columns . . . . . 64

5.6 MTTKRP AI on CPU for tensor nell-2 with varying number of columns . . . . . . . . . . . 64

5.7 MTTKRP performance on CPU for tensor vast-3D with varying number of columns . . . . 65

5.8 MTTKRP AI on CPU for tensor vast-3D with varying number of columns . . . . . . . . . . 65

5.9 TTM performance on GPU for tensor nell-2 with varying number of matrix columns . . . . 66

5.10 TTM AI on GPU for tensor nell-2 with varying number of matrix columns . . . . . . . . . . 66

5.11 TTM performance on GPU for tensor vast-3D with varying number of matrix columns . . . 66

5.12 TTM AI on GPU for tensor vast-3D with varying number of matrix columns . . . . . . . . . 66

5.13 Roofline model for Kernel 3.2 with tensor nell-2 on the GPU . . . . . . . . . . . . . . . . . 67

5.14 Roofline model for Kernel 3.2 with tensor vast-3D on the GPU . . . . . . . . . . . . . . . . 68

5.15 MTTKRP performance on GPU for tensor nell-2 with varying number of columns . . . . . 68

5.16 MTTKRP AI on GPU for tensor nell-2 with varying number of columns . . . . . . . . . . . 68

5.17 MTTKRP performance on GPU for tensor vast-3D with varying number of columns . . . . 69

5.18 MTTKRP AI on GPU for tensor vast-3D with varying number of columns . . . . . . . . . . 69

5.19 TTM performance on FPGA for tensor nell-2 with varying number of columns . . . . . . . 70

5.20 TTM AI on FPGA for tensor nell-2 with varying number of columns . . . . . . . . . . . . . 70

5.21 TTM performance on FPGA for tensor vast-3D with varying number of columns . . . . . . 70

5.22 TTM AI on FPGA for tensor vast-3D with varying number of columns . . . . . . . . . . . . 70

5.23 MTTKRP performance on FPGA for tensor nell-2 with varying number of columns . . . . 71

5.24 MTTKRP AI on FPGA for tensor nell-2 with varying number of columns . . . . . . . . . . 71

5.25 MTTKRP performance onFPGA for tensor vast-3D with varying number of columns . . . . 72

x



5.26 MTTKRP AI on FPGA for tensor vast-3D with varying number of columns . . . . . . . . . 72

5.27 Speed up over State of the Art on Intel Core i9-11900KB . . . . . . . . . . . . . . . . . . . 73

5.28 Speed up over State of the Art on AMD EPYC 7B13 . . . . . . . . . . . . . . . . . . . . . 73

5.29 Speed up over State of the Art on Nvidia A100 - 40GB . . . . . . . . . . . . . . . . . . . . 74

xi



xii



List of Tables

3.1 Notation used throughout this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Hardware setup for study of general-purpose architectures . . . . . . . . . . . . . . . . . 34

4.1 Notation used throughout this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Hardware setup for study of specialised architectures . . . . . . . . . . . . . . . . . . . . 51

5.1 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Description of data-sets used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Description of data-sets used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



xiv



List of Algorithms

1 Pseudo-code for a Sparse TEW multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Pseudo-code for a Sparse TS multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Pseudo-code for a Sparse TTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Pseudo-code for a Sparse MTTKRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Sparse MTTKRP in CSF for GPU [46] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Sparse TTM in CSF for GPU [43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xv



xvi



Listings

3.1 TTM Kernel V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 TTM Kernel V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 MTTKRP Kernel V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 MTTKRP Kernel V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 TTM Kernel for FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 TTM add-on for matrix pre-load on FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 MTTKRP Kernel for FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xvii



xviii



Acronyms

AI Arithmetic Intensity

ALM Adaptive Logic Module

ALTO Adaptative Linearised Tensor Order

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BLCO Blocked Linearised Coordinate

CARM Cache Aware Roofline Model

CISS Compressed Interleaved Sparse Slice

COO Coordinate

CPD Canonical Polyadic Decomposition

CPU Central Processing Unit

CSF Compressed Sparse Fiber

DPC++ Data Parallel C++

DRAM Dynamic RAM

DSP Digital Signal Processing

FLOPs Floating-Point Operations

FPGA Field Programmable Gate Array

GEMM General Matrix Multiplication

GPU Graphics Processing Unit

HDL Hardware Description Language

HiCOO Hierarchical Coordinate

ILP Instruction-Level Parallelism

MTTKRP Matricised Tensor Times Khatri-Rao Product

xix



MAC Multiply-Accumulate

PE Processing Element

RTL Register-Transfer Level

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SPMD Single Program Multiple Data

TC Tensor Contraction

TEW Tensor Element-Wise

TS Tensor-Scalar

TTM Tensor Times Matrix

TTMc Tensor Times Matrix chain

TTV Tensor Times Vector

xx



Chapter 1

Introduction

With the exponential increase in data consumption worldwide, most major research areas are applying

complex algorithms to compute and extract information from this data. A diverse range of disciplines

such as healthcare [1,2], machine learning [3–7], quantum chemistry [8,9], social network analytics [10],

deep learning [11–16] and cybersecurity [17] show how spread the need is. However, attaining efficient

processing of this data is far from a trivial task, since it tends to be highly irregular and multi-dimensional.

For example, machine learning methods are often applied to images, represented by three dimensions,

and videos, represented by four dimensions. With the increase of depth of neural networks, arguably

the most prominent computation for this kind of input, the accuracy of the systems improved drastically,

however the amount of computation required also increased [18].

Originally proposed in the 19th century by G. Ricci, a tensor is a generalization of vectors and matri-

ces in higher orders [19] and are the de-facto representation of high-dimensional data. Since real-world

data is usually multi-dimensional, tensors are of major importance as they are used to represent it. With

the need for efficient and performant computation, optimisation of tensor operations has gained a lot of

attention over the years.

Tensors have huge storage requirements, some can take up to petabytes [20]. However, tensors that

represent real-world data have a considerably high sparsity, which lead to the development of a plethora

of data storage formats to reduce memory space. Due to this sparsity, data access patterns are highly

irregular, making it a performance bottleneck for computation but also opening a window for further

optimisation. A massive amount of software solutions have been developed with attempts to improve

the performance of such computations. From efficient storage formats to novel data-parallel approaches

aiming at exploiting the capabilities of modern massively parallel architectures and even data reordering

algorithms. Data reordering is important for improving spatial and temporal locality of memory accesses,

which in memory bound algorithms are the major bottleneck [21]. The design of specialized hardware

accelerators for tensor processing is also an active area of research, with new architectures for loading,

1



storing, reordering and computing tensors being developed [22,23].

1.1 Motivation

There are many tensor operations, from operations between two or more tensors to operations with

scalars [24]. However, Matricised Tensor Times Khatri-Rao Product (MTTKRP) and Tensor Times Ma-

trix (TTM) stand out as subject of intensive research, because they are the central kernels of the most

used tensor decomposition algorithms [25–31]. This Thesis will focus on these two operations. MTTKRP

consists of a matrix product between the matricized tensor and the Khatri-Rao product of dense matri-

ces, one for each of the flattened dimensions of the tensor. TTM consists of the product between a

tensor and a matrix, it works the same way as a matrix multiplication, except the tensor’s equivalent

to rows is spread along more than one dimension. The methods mentioned are not only difficult to

compute efficiently because of the sparsity and data irregularity but also because of their complexity.

Sparse MTTKRP is an example of a computation whose complexity is not to be dismissed, with it being

O(N ϵmR), where N is the number of dimensions of the tensor, R is the number of columns of the matri-

ces used in the Khatri-Rao product, m is the number of nonzero elements and ϵ varies from zero to one

depending on the level of optimisation of the implementation [26].

Storing and computing over zeros is highly inefficient and redundant. On the other hand, simply

storing and computing the nonzero elements makes data accesses irregular and non coalesced. Spar-

sity and data irregularity are tied together. Therefore, storage of sparse tensors is also a very active

area of research. As mentioned, storing zeros is not beneficial, however not storing nor computing them

causes irregularity which is undesired, so several implementations and optimisations exist for different

scenarios, for example the simple Coordinate (COO) storage format, which stores all nonzero elements

alongside their indexes across all the tensor’s dimensions, is superior for uniformly distributed sparse

tensors.

From the vast amount of available computational architectures, it is non-trivial to find the one that best

suites the specific needs of a certain method applied to a certain tensor. State-of-the-art approaches

typically focus on single device solutions. However none was found, at the time of this work, that tried to

exploit even further the heterogeneity of modern systems and with the emerging systems leaning more

and more towards heterogeneity, there is an opportunity to be explored.

In this Thesis, the exploitation of said systems will be tackled by developing optimised implementa-

tions of the most prominent tensor methods for each of the architectures available. Then, with resort to

SYCL, an heterogeneous framework, that distributes data and offloads computation between the archi-

tectures, is developed. Such framework allows for an efficient use of the system hence increasing the

performance when compared to single device implementations.

2



SYCL is attracting attention precisely for the simplicity offered when interacting with heterogeneous

systems. Modern systems have access to different kinds of accelerators, with SYCL offloading compu-

tation to these can be done independently of which accelerator is being targeted, enabling the possibility

of utilising a single source code in order to target multiple accelerators. Naturally, for better performance

and efficiency, each algorithm should have in mind the characteristics of its respective target device.

1.2 Objectives

To address the increase in heterogeneity and availability of solutions, an unified framework for tensor

computation is lacking. Therefore, this Thesis has the following objectives:

• Compare the most prominent tensor methods, namely TTM and MTTKRP, by exploring their ex-

isting and deriving novel approaches targeting efficient execution on different architectures, e.g.

Central Processing Unit (CPU), Graphics Processing Unit (GPU) and Field Programmable Gate

Array (FPGA).

• Development of a framework that exploits heterogeneous systems by developing specialised algo-

rithms for each architecture and distributing the workload between them.

1.3 Outline

This Thesis is structured as follows:

• Chapter 2 - Background and State of the Art: This chapter presents the fundamentals behind

tensors, their representations and their most relevant methods. The main hardware architectures

used as well as the fundamentals of heterogeneous computing are discussed. An introduction to

roofline models and their importance in the scope of this Thesis is also provided. State-of-the-art

implementations are thoroughly described.

• Chapter 3 - Analysis for General-Purpose Architectures: This chapter unveils our TTM and

MTTKRP implementations for general-purpose architectures, such as the CPU and GPU. A the-

oretical analysis of said implementations is presented, with derivations of the kernels’ Arithmetic

Intensity (AI) being included. The performance limits for each of the architectures are also tested.

• Chapter 4 - Analysis for Specialised Architectures: This chapter unveils our TTM and MTTKRP

designs for specialised architectures, such as the FPGA. A theoretical analysis of said designs is

provided, with an look over the resource utilisation and derivations of the kernels’ potential peak

performance as well as AI being included.

3



• Chapter 5 - Experimental Results: On this chapter, the results of our implementations are re-

vealed and analysed, as well as compared against some of the current state-of-the-art implemen-

tations.

• Chapter 6 - Conclusion: We conclude by analysing the work developed throughout this Thesis

and suggesting future improvements and points of research.

4



Chapter 2

Sparse Tensors: Background and

State of the Art

Tensors and their methods have a rather complex mathematical background behind them, even when

considering their traditional dense formulation. However the concept of sparsity and its integration in

the tensor domain brings additional challenges and optimisation opportunities. To better understand

the problem, this chapter provides a brief introduction to the fundamentals of tensor nomenclature,

followed by a formal definition of sparsity in tensor notation. The most relevant storage formats for

sparse tensors are examined, while an overview of the tensor methods and their application to sparse

tensors is also presented. The range modern device architectures available for these computations

and their particularities are thoroughly described, including multi-core CPU, GPU and FPGA devices.

Since modern systems typically combine all these devices, heterogeneous programming models and

open challenges within this research domain are also discussed. State-of-the-art storage formats and

algorithms for MTTKRP and TTM operations on GPUs are thoroughly analysed.

2.1 Tensor Nomenclature

Tensors are multidimensional arrays which represent high dimensional data. A tensor’s order is the

dimensionality of the array, e.g. a first-order tensor is a vector while a second-order tensor is a matrix.

Tensors of order greater or equal than three are typically referred to as high-order tensors. For simplicity,

it is common to apply the term tensor only to high-order tensors, while matrices and vectors are referred

to as low-order tensors [32].

Dimensions are typically referred to as modes, so a tensor has as many modes as its order, e.g.

a third-order tensor has mode-zero, mode-one and mode-two. A fiber is a vector formed by fixing all

5



modes of the tensor but one. As an example, the fibers of a matrix are either its rows or its columns

depending on the mode fixed. Similarly, a slice is a matrix formed by fixing all modes of the tensor but

two. Figure 2.1 provides a representation of the fibers of a third-order tensor, while Figure 2.2 provides

a representation of the slices of a third-order tensor.458 TAMARA G. KOLDA AND BRETT W. BADER

(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) fibers: xij:

Fig. 2.1 Fibers of a 3rd-order tensor.

(a) Horizontal slices: Xi:: (b) Lateral slices: X:j: (c) Frontal slices: X::k (or Xk)

Fig. 2.2 Slices of a 3rd-order tensor.

A. The inner product of two same-sized tensors X, Y ∈ RI1×I2×···×IN is the sum of
the products of their entries, i.e.,

〈X, Y 〉 =

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .

It follows immediately that 〈X, X 〉 = ‖X ‖2.
2.1. Rank-One Tensors. An N -way tensor X ∈ RI1×I2×···×IN is rank one if it

can be written as the outer product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The symbol “◦” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a
(1)
i1

a
(2)
i2

· · · a(N)
iN

for all 1 ≤ in ≤ In.

Figure 2.3 illustrates X = a ◦ b ◦ c, a third-order rank-one tensor.

2.2. Symmetry and Tensors. A tensor is called cubical if every mode is the same
size, i.e., X ∈ RI×I×I×···×I [49]. A cubical tensor is called supersymmetric (though

Figure 2.1: Fibers of a third-order tensor [33]

458 TAMARA G. KOLDA AND BRETT W. BADER

(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) fibers: xij:

Fig. 2.1 Fibers of a 3rd-order tensor.

(a) Horizontal slices: Xi:: (b) Lateral slices: X:j: (c) Frontal slices: X::k (or Xk)

Fig. 2.2 Slices of a 3rd-order tensor.

A. The inner product of two same-sized tensors X, Y ∈ RI1×I2×···×IN is the sum of
the products of their entries, i.e.,

〈X, Y 〉 =

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .

It follows immediately that 〈X, X 〉 = ‖X ‖2.
2.1. Rank-One Tensors. An N -way tensor X ∈ RI1×I2×···×IN is rank one if it

can be written as the outer product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The symbol “◦” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a
(1)
i1

a
(2)
i2

· · · a(N)
iN

for all 1 ≤ in ≤ In.

Figure 2.3 illustrates X = a ◦ b ◦ c, a third-order rank-one tensor.

2.2. Symmetry and Tensors. A tensor is called cubical if every mode is the same
size, i.e., X ∈ RI×I×I×···×I [49]. A cubical tensor is called supersymmetric (though

Figure 2.2: Slices of a third-order tensor [33]

High-order tensors have huge storage requirements, since they tend to have several millions of el-

ements. However, real-world tensors are sparse, meaning that most of the tensor’s elements are zero

and, therefore, need not be stored nor explicitly computed upon. Allowing for further optimisation but

raising additional challenges because of highly irregular data accesses.

2.2 Storage Formats

The storage of tensors is a research area of its own, in particular when it comes to sparse tensors [34].

Several formats for storing the relevant information from these datasets have been developed. The most

straight forward approach is only storing the nonzero elements and their mode indexes, it is called the

COO format. Although being a baseline format it is widely used due to its simplicity. Figure 2.3(a)

presents a COO representation for a fourth-order tensor.

6



The main disadvantage of this format is its inability to avoid storing redundant information for certain

sparse data. For example, all elements in the same slice will by definition have the same indexes for all

modes except two, the same applies to elements in same fiber where they all have the same indexes for

all modes but one. Therefore, storing the same index for several elements gives no additional information

while using extra storage.

Other formats try to solve this problem, with Compressed Sparse Fiber (CSF) [35] being the most

representative one. The CSF format takes into consideration implementing the idea of a tree like struc-

ture, where each mode is a level and paths from root to leaf encode a nonzero coordinate. In Figure 2.3,

it is possible to observe an example of a fourth-order tensor represented in CSF. Figure 2.3(b) brings the

conceptual idea of the tree structure, while the actual implementation are exemplified in Figure 2.3(c).

When relating Figures 2.3(b) and 2.3(c), it is possible to observe that the tree structure is implemented

with resort to pointer arrays. Each dimension adds two arrays – one to indicate what indices are present

in that dimension (fids), and one to show how to slice the next dimension (fptr).

(a) Coordinate format. (b) CSF: conceptual. (c) CSF: implementation.

Figure 2: Compressed Sparse Fiber. Each path from root to leaf in (b) encodes a non-zero found in (a).

eliminates l−1 Hadamard products and their corresponding
l−1 accesses to matrix rows. Furthermore, this algorithm is
recursive in that subtrees which have common ancestors can
share the overlapping subset of Hadamard products.

Figure 2 shows the tensor modes in the user-supplied
order. When storing a tensor in CSF, the ordering of the
modes is arbitrary and any one of the M ! permutations is a
valid option. However, the ordering can significantly affect
the amount of required storage. An effective heuristic for
achieving high levels of compression is to sort the modes
by length, with the shortest mode at the top of the tree [8].

The above discussion focused on performing an MTTKRP
operation with respect to the mode of X stored at the
root. A reformulation of the above algorithm permits one to
perform all MTTKRP operations with an arbitrarily-ordered
tensor representation [8]. Assume that we are operating with
respect to the mode stored at the mth level of the CSF. The
algorithm proceeds as a depth-first traversal on each tree
in the CSF structure. As the traversal moves downwards
toward the mth level, Hadamard products are computed and
stored for later use. Next, starting from the leaves, non-zero
contributions and their corresponding Hadamard products
are computed and brought up the tree to the (m+1)th level.
Finally, the contributions from above and below are joined
with a final Hadamard product and added to Y(im, :). The
only auxiliary memory required is an M×F matrix for
accumulating and propagating Hadamard products.

III. RELATED WORK

Heinecke et al. [9] explored optimizations in a seismic
simulation code on KNL. They show 3× improvement over
the previous generation Xeon Phi by tuning small matrix-
matrix multiplication kernels for AVX-512, managing MC-
DRAM by using an out-of-core computational kernel, and
decreasing memory traffic by selectively replicating and
scattering data. Sparse matrix-vector multiplication also has
a history of optimization on many-core processors [10]–[12].

Several works have optimized sparse MTTKRP
for shared- and distributed-memory systems.
Baskaran et al. [13] proposed a NUMA-aware balanced
work scheduler for sparse tensor operations. The scheduler

is designed for a fine-grained element-wise algorithm.
Ravindran et al. [14] presented an MTTKRP formulation
for three-mode tensors that accesses only non-zeros by
X (:, i2, i3) slabs, and thus relies on a single tensor
representation. Their formulation achieves the same
computational savings as the generalized algorithm for
CSF. Distributed-memory algorithms were developed by
Choi and Vishwanathan [15], Kaya and Uçar [16], and
Smith and Karypis [17].

IV. MANY-CORE SPARSE TENSOR FACTORIZATION

We now detail our method of obtaining high performance
on KNL. This is a challenge which spans both high-level
design and low-level implementation. The problem decom-
position must expose a sufficient amount of parallelism,
load balance hundreds of threads, and minimize fine-grained
synchronization. Additionally, the implementation must uti-
lize advanced hardware features such as vector instructions,
efficient synchronization primitives, and MCDRAM.

A. Problem Decomposition for Many-Core Processors

1) Partial Tensor Tiling: The existing CSF-based algo-
rithms use coarse-grained parallelism via distributing indi-
vidual trees to threads. Computing with respect to the root
mode has no race conditions to consider, as each root node
ID is unique. There are no uniqueness guarantees for levels
below the root, and thus we must consider the case of threads
overlapping additions to Y(im, :), where m is a level below
the root. Two solutions were proposed [8]: a mutex pool can
be indexed by node IDs to protect rows during updates; or
X can be tiled using a grid of dimension PM , where P is
the number of threads. Note that root nodes are no longer
unique if tiling is used, and thus it must be performed on
all M modes. Tiling for P=2 is illustrated in Figure 3.
Expensive synchronization is avoided by distributing the
mode-m layers of tiles to threads.

This approach of decomposing the computations is limited
in two major ways. First, coarse-grained parallelism is only
effective when the tensor modes are sufficiently long. Many
real-world tensors exhibit a combination of long, sparse

1060

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 23,2022 at 16:08:27 UTC from IEEE Xplore.  Restrictions apply. 

Figure 2.3: Fourth-order tensor example in COO and CSF [25]

The practical implementation diverges slightly from the conceptual idea, because of the need of extra

arrays for bookkeeping, leading to a solution that under certain circumstances requires more storage

then COO. Another disadvantage of this format is that it is mode agnostic, meaning that if an operation

is to be performed across a mode that is not the leaf mode, either there will be a performance loss or

there will be the need to reorder the tensor. Despite these drawbacks, CSF is still widely used due to its

performance, since the hierarchical way in which data is stored allows for better locality and less memory

accesses in general.

State-of-the-art approaches also propose many variations of these formats in order to improve them

for a certain framework and/or architecture [36]. Also, there is a completely different approach that

attempts to further reduce the storage requirements of the tensor by linearising the mode indexes, the

linearised formats. Both these variations and approach will be further discussed in Section 2.5.

7



2.3 Tensor Methods

Tensor methods can be classified in four categories according to their behaviour. These categories con-

sist in Tensor Element-Wise, Tensor-Scalar, Tensor Contraction and Sequence Methods. In this section,

a general description for each of the categories will be provided, also the several distinct methods/op-

erations that form each category will be described in the text following the general description of the

category itself.

2.3.1 Tensor Element-Wise Methods

Tensor Element-Wise (TEW) [24], as the name suggests, are methods where an operation is applied

to every corresponding pair of elements from two tensors. This type of operations can be addition,

subtraction, multiplication or division. Naturally, in order to be possible to perform this operation, both

tensors must have the same order and shape, meaning the same size across all modes. An addition

between two dense tensors, Z = X + Y , is expressed as follows:

Z(m0, . . . ,mK) = X(m0, . . . ,mK) + Y (m0, . . . ,mK), ∀elements (2.1)

Where X and Y are input tensors, Z the resulting tensor and m0 to mK are the tensor modes. For

sparse tensors the reasoning is the same but only applied to the nonzero elements. However, some

of the nonzero elements of one of the tensors may match a zero of the other tensor. Since the sparse

formats only store the nonzero elements, the only way to know whether an entry has a match in the

other data structure is to check all the entries. This leads to complexity O(N2), where N is the number

of entries in a data structure. As an optimisation, it is common to sort the entries of both tensors in

the same mode order, allowing the complexity to become O(N logN). Algorithm 1 implements TEW

multiplication by iterating over all nonzero elements and if it finds a corresponding pair of elements in

both tensors, it creates a new entry in the output tensor with the mode indexes of the corresponding the

pair and the product of both values.

Algorithm 1 Pseudo-code for a Sparse TEW multiplication
Input: Sorted sparse tensors X and Y ;
Output: Sorted sparse tensor Z;

1: while nonzeros left do
2: if mX

0 . . .mX
K == mY

0 . . .mY
K then

3: valZ = valX × valY ;
4: (mZ

0 . . .mZ
K) = (mX

0 . . .mX
K);

5: end if
6: end while
7: return Z

8



2.3.2 Tensor-Scalar Operations

Tensor-Scalar (TS) [24] bare several resemblances to the previous, TEW methods, with the major differ-

ence being the use of a scalar instead of a second tensor. Since the negative and the inverse of a scalar

are also scalars (assuming the scalar is not zero), only addition and multiplication require implementing.

Also, as before, for sparse tensors the operation is only applied to the nonzero elements, resulting in

a complexity of O(N) for the algorithm. Algorithm 2 implements TS multiplication by iterating over all

nonzero elements, creating a new entry in the output tensor with the mode indexes of the input tensor

and the value of the input tensor times the scalar.

Algorithm 2 Pseudo-code for a Sparse TS multiplication
Input: Sparse tensor X and scalar s;
Output: Sparse tensor Y ;

1: while nonzeros left do
2: valY = valX × s;
3: (mY

0 . . .mY
K) = (mX

0 . . .mX
K);

4: end while
5: return Y

2.3.3 Tensor Contraction Operations

A Tensor Contraction (TC) [37–41] is the analog to General Matrix Multiplication (GEMM) in the multidi-

mensional realm of tensors. Two tensors are multiplied across their matching modes resulting in a tensor

with the remaining modes. For example with two fourth-order tensors: C = A ·B with A ∈ RI0×I1×I2×I3

and B ∈ RI2×I3×I4×I5 , then C ∈ RI0×I1×I4×I5 . I0 to I3 are the dimensions of tensor A in modes zero to

three, while I2 to I5 are the dimensions of tensor B in modes zero to three.

There are a few TCs that are notable and are often even treated independently of regular contrac-

tions. One of these is GEMM, which is a contraction between two second-order tensors, though it is

outside of the scope of this work. Others are Tensor Times Vector (TTV), which is a contraction between

a Kth-order tensor and a first-order one, and TTM [42, 43], which is a contraction between a Kth-order

tensor and a second-order one.

For TTV, all fibers of the Kth-order tensor are multiplied with the vector resulting in a tensor of order

K-1. For TTM, all fibers are multiplied with each column of the matrix. Since a fiber is a vector, this

operation consists of several vector-matrix dot products, which generate new vectors with length equal

to the number of columns of the matrix. Therefore, the resulting fiber length becomes equal to the

number of columns in the matrix.

Figure 2.4 provides an example of a dense TTM with a third-order tensor. In the example, the tensor

has I × J fibers of length K. Each of these fibers multiplies with each of the F columns of the matrix,

resulting in a dense tensor with I × J fibers of length F . For sparse TTM the rationale is similar to the

9



,
-

.

.

)

;  -

,

)

Figure 2.4: Example of a dense TTM with a third-order tensor

one presented in Figure 2.4, however only the fibers with one or more nonzero elements are computed.

Also, the output of the operation is no longer a sparse tensor but instead a semi-sparse tensor meaning

that not all of the output tensor’s fibers are sparse. This happens because all fibers that have at least one

nonzero element after the dot product with a dense column of the matrix generate a nonzero element

for the output tensor. Since all columns of the matrix are dense, all fibers that have at least one nonzero

element generate a dense fiber for the output tensor [43].

Algorithm 3 Pseudo-code for a Sparse TTM
Input: Sparse tensor X and matrix U ;
Output: Semi-Sparse tensor Y ;

1: while fibers left do
2: for column : matrix do
3: Y .append(fiber · column);
4: end for
5: end while
6: return Y

Algorithm 3 implements sparse TTM by iterating over all fibers of the input tensor and for every fiber

iterating over all columns of the matrix. When iterating over the columns, for each fiber-column dot-

product a new element of the output tensor is computed and so after performing dot-products of a fiber

with all columns of the matrix a fiber of the output tensor is computed.

2.3.4 Sequence Methods

Sequence methods [24] are, as the name suggests, a sequence of smaller methods combined to form a

kernel. The most notable cases are Tensor Times Matrix chain (TTMc) and MTTKRP. Since the former

is a sequence of TTM methods (already elaborated in Section 2.3.3), this section focuses mostly on the

latter.

MTTKRP is widely used in tensor decomposition, as it is part of one of the most used algorithms

10



[25–28]. Tensor decomposition is used to approximate a high-order tensor with lower-order tensors.

Canonical Polyadic Decomposition (CPD) in particular approximates high-order tensors with matrices,

with MTTKRP being key to computing the matrices that better approximate the tensor.

MTTKRP uses a K-th order tensor and K-1 matrices as input and outputs a matrix. The tensor is ma-

tricized and the matrices are used to compute a Khatri-Rao product. Therefore, to properly understand

the MTTKRP, it is necessary to introduce the concept of tensor matricization, as well as Khatri-Rao

and Kronecker products. Both products are matrix products meaning they are applied to two matrices.

The Kronecker product is a generalization of a matrix outer-product. Given two matrices A ∈ RI×J and

B ∈ RK×R their Kronecker product is denoted by matrix C ∈ RIK×JR,

C = A⊗B =



a00B . . . a0JB

...
...

aI0B . . . aIJB


 (2.2)

The Khatri-Rao product is a column-wise Kronecker product. Given two matrices A ∈ RI×R and

B ∈ RJ×R their Khatri-Rao product is denoted by matrix C ∈ RIJ×R,

C = A⊙B =
[
a:0 ⊗ b:0 . . . a:R ⊗ b:R

]
(2.3)

Matricization is a kind of reshaping that flattens all tensor’s modes but one, hence changing the

tensor to a second-order one, in other words, a matrix. Given T ∈ RM0×...×MK−1 then matricizing the

tensor along mode zero outputs T̃ ∈ RM0...MK−2×MK−1 .

MTTKRP consists of a GEMM between the matricized tensor and the Khatri-Rao product of K − 1

matrices with same number of columns, where K is the order of the tensor before matricizing. Given

K − 1 matrices with R columns the Khatri-Rao product of these is a matrix U ∈ RM0...MK−2×R and the

output of the MTTKRP is a matrix V ∈ RMK−1×R.

Algorithm 4 Pseudo-code for a Sparse MTTKRP
Input: Third-order sparse tensor X ∈ RI×J×K and dense matrices B ∈ RJ×R, C ∈ RK×R;
Output: Dense matrix A ∈ RI×R;

1: while nonzeros left do
2: (i, j, k) = indexes of nonzero;
3: for r = 1 . . . R do
4: A(i, r) += valX ×B(j, r)× C(k, r);
5: end for
6: end while
7: return Y

For sparse MTTKRP, as can be observed in Algorithm 4, from each mode index of a nonzero ele-

ment it is possible to extract either which row of the output the element contributes to or which row of

one of the matrices the element multiplies with. Since it is possible to compute each element’s indi-

11



vidual contribution to the output matrix without having to compute the matricized tensor and Khatri-Rao

products, in order to avoid redundant computation and extra storage, these formulations tend to be not

implemented directly but rather integrated into tensor operations.

2.4 Heterogeneous Systems and Programmability

In order to improve the performance of the methods mentioned above, the state of the art approaches

focus on their optimisation across a range of hardware devices with Application Specific Integrated

Circuit (ASIC)s [22,23], FPGAs [44,45] and GPUs [37,38,43,46,47] being the most adopted. However,

those approaches only target single-device architectures. In contrast, this Thesis focuses on modern

heterogeneous platforms which may combine all these devices into a single execution environment. This

is not an easy task since all devices have their own characteristics and programming model. This Thesis

will focus on the GPU and the FPGA, as well as the CPU.

2.4.1 CPU

The CPU, with over a half-century of history, is the most well-known and ubiquitous architecture. It

is sometimes referred to as a scalar architecture because it is designed to process serial instructions

efficiently. It is optimized to exploit Instruction-Level Parallelism (ILP) so that serial programs can be

executed faster.

Modern CPU processors consist of several multi-thread superscalar cores with sophisticated mech-

anisms used to dynamically exploit ILP and execute multiple out-of-order instructions per clock cycle.

To deliver high performance, they fetch many instructions at once, detect dependencies, utilize sophisti-

cated branch prediction mechanisms, and execute them in parallel. To mitigate slow accesses to main

memory, Dynamic RAM (DRAM), the CPU comes with several cache levels, where the smaller and

faster caches are private to each core, while the larger and slower cache level is shared across them. In

order to make full use of the caches, the CPU is better suited for coarse-grained parallelism to increase

temporal and spacial locality of data [48].

Figure 2.5 presents an example of a modern CPU architecture with four cores. Each core has two

fetch/decode units making it superscalar and each fetch/decode unit has four Single Instruction Multiple

Data (SIMD) lanes. There are also four execution contexts which allow interleaved thread execution.

The out-of-order control logic, branch predictor and memory pre-fetcher are the mentioned sophisticated

mechanisms used to exploit ILP and deliver high performance.

Being the most widely used generic processors in computing, every application that leverages com-

pute acceleration still requires a CPU to handle task orchestration. In certain scenarios, using a CPU

12



Fetch/Decode

EU

Fetch/Decode

EU

EU

EU

EU EU EU

EU

Execution Context 0 Execution Context 1

Execution Context 2 Execution Context 3

Out-of-order control logic

Branch predictor

Memory pre-fetcher

Data Cache

Fetch/Decode

EU

Fetch/Decode

EU

EU

EU

EU EU EU

EU

Execution Context 0 Execution Context 1

Execution Context 2 Execution Context 3

Out-of-order control logic

Branch predictor

Memory pre-fetcher

Data Cache

Fetch/Decode

EU

Fetch/Decode

EU

EU

EU

EU EU EU

EU

Execution Context 0 Execution Context 1

Execution Context 2 Execution Context 3

Out-of-order control logic

Branch predictor

Memory pre-fetcher

Data Cache

Fetch/Decode

EU

Fetch/Decode

EU

EU

EU

EU EU EU

EU

Execution Context 0 Execution Context 1

Execution Context 2 Execution Context 3

Out-of-order control logic

Branch predictor

Memory pre-fetcher

Data Cache

Figure 2.5: Modern Quad-Core CPU example

for computing may be advantageous when compared to offloading to a GPU or a FPGA, e.g. algorithms

that are serial in nature.

There also are several programming frameworks and tools that exploit the available parallelism.

OpenMP [49] exploits the parallelism within a multi-core CPU and vector intrinsics exploit parallelism

in the explicit SIMD fashion.

2.4.2 GPU

The GPU is a processor comprised of massively parallel, smaller, and more specialized cores than

those generally found in the CPU. Its architecture efficiently processes vector data and is often referred

to as a vector architecture. They dedicate more silicon space to compute and less to cache and control.

As a result, its hardware explores less ILP and relies instead on software-given parallelism to achieve

performance and efficiency. High performance is achieved by exploiting fine-grained parallelism through

multi-threaded execution of large and independent data, which amortizes the cost of simpler control

and smaller caches. Employing a Single Instruction Multiple Threads (SIMT) execution model where

multi-threading and SIMD are leveraged together [50].

Figure 2.6 presents an example of a GPU architecture in small scale. There are twenty stream-

ing multiprocessors with each having four warp selectors. The warp selectors function similarly to the

fetch/decode units on the CPU and each of them as multiple SIMD lanes. There is also a shared memory

private to each streaming multiprocessor.

Due to their increased computational capabilities, data consumption also happens at a higher rate.

13



SM SM

SM

SM

SM

SM

SMSMSM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM    
  L

2 
C

ac
he

Warp Selector Warp Selector Warp Selector Warp Selector

Registers

Shared Memory

L1 Cache

Figure 2.6: GPU example with 20 streaming multiprocessors

Therefore, the GPU usually comes with state of the art memories with higher bandwidth when compared

with ones offered by the CPU.

The preferred Application Programming Interface (API) for computation on Nvidia GPUs is CUDA,

while OpenCL is the standard for the remaining vendors. Both allow thread-level control of the work

distribution, making the GPU ideal for fine-grained parallelism.

2.4.3 FPGA

Unlike the previously elaborated devices, which are software-programmable fixed architectures, the

FPGA is a re-configurable device and its compute engine is defined by the user. When targeting an

FPGA, the specific hardware components are designed for the problem at hand, which are laid out on

its fabric in space, and those components can all execute in parallel or in pipelined fashion. Because of

this, its architecture is sometimes referred to as an architecture for spatial computation.

The FPGA is a massive array of small processing units consisting of a massive amount of pro-

grammable 1-bit Adaptive Logic Module (ALM), configurable memory blocks and Digital Signal Process-

ing (DSP) blocks, that support variable precision floating-point and fixed-point operations. All these

resources are connected by a mesh of programmable wires that can be activated in a as needed ba-

sis [51].

DSP Block RAM Block

Adaptive Logic
Modules

Programmable
Routing Switch

Figure 2.7: FPGA’s segment example

14



Figure 2.7 presents a segment of an FPGA fabric as an example. The segment has multiple ALM,

digital signal processors and memory blocks. All connected by routing switches which compose the

mesh of programmable wires.

Software is not executed on the FPGA in the same sense that compiled and assembled instructions

are executed on fixed architectures. Instead, data flows through customized deep pipelines that match

the operations expressed in the software. Because the dataflow pipeline hardware matches the software,

control overhead is eliminated, which results in improved performance and efficiency. Operations are

pipelined, so new instruction streams operating on different data start executing every clock cycle. While

with the previous architectures, instruction stages are pipelined and new instruction start executing every

clock cycle. Although pipeline parallelism is the primary form of parallelism for the FPGA, it can be

combined with other types of parallelism. For example, SIMD, task parallelism and superscalar execution

can be utilized with pipeline parallelism to achieve maximum performance.

Programming an FPGA is done through a Hardware Description Language (HDL), as in software

programming languages there are several kinds of HDL. Some are more closely related to the Register-

Transfer Level (RTL) abstraction that focuses on describing the flow of signals between registers and

the logical operations performed on them. For example, Verilog and VHDL. These, however, create a

huge burden on the developer when designing larger projects, similar to Assembly in software. Other

languages describe the specialized hardware components through syntax very similar to that of the high-

level languages used in software. This high-level languages are then translated to RTL. One example

is Xillinx’s Vivado HLS. Naturally, these offer more simplicity when describing the circuits, however they

provide less freedom on how to implement the logic itself.

2.4.4 Heterogeneous Computing and Open Challenges

With the rising relevance of heterogeneous computing, the need for a programming model that would

facilitate the development of high performance applications for all this range of systems arose.

The Khronos SYCL defines an abstract Single Program Multiple Data (SPMD) programming model

that tackles the mentioned challenges [52]. It provides the desired unified model, developers program at

a higher level than the native acceleration API, for example CUDA or OpenCL, but always have access to

lower-level code that allows users to target any accelerator without having to change their source code.

However, in order for a developer to take the most performance out of an accelerator, the code must be

adapted to the characteristics of that accelerator’s architecture. As seen in the previous sections, vector

and spatial architectures, for instance, are different from the general-purpose processors. Therefore, it

is natural that a code optimized for one might not be optimized for the other, even though it still executes.

When comparing FPGAs and GPUs, the FPGA tends to deal better with single-task kernels whereas

the GPU tends to go along better with parallel kernels. This happens as the latter relies on large data

15



parallel workloads to achieve performance. On the other hand, the former, when using single-task

kernels, attempts to pipeline loop execution, making it more efficient, since every clock cycle, successive

iterations of the loop enter the first stage of the pipeline. Dependencies across loop iterations expressed

in the software can be resolved in the hardware by routing the output of one stage to the input of an

earlier dependent stage.

When compared with other APIs such as CUDA, SYCL has proven to provide comparable perfor-

mance [53]. With said performance and portability, it is a candidate to future standard in heterogeneous

computing. There are many SYCL implementations in development with Intel’s OneAPI DPC++ being

one of the most actively developed open-source implementations.

2.5 State of the Art on Sparse Tensor Storage and Processing

As mentioned in Section 2.2, the current state of the art approaches tend to rely proposing novel tensor

storage formats in order to derive high performance algorithms, by providing many optimizations over

COO and CSF. Some of those novel formats are Hierarchical Coordinate (HiCOO) [54] or Compressed

Interleaved Sparse Slice (CISS) [22].

HiCOO stores a sparse tensor in a sparse-blocked pattern with a pre-specified cubic block. Within

these blocks the regular COO format is used. Since the mode indexes are limited by the size of the

block, its possible to use less bits to represent them. This way HiCOO can still be mode generic like

COO while in average occupying less space in memory. An example of a conversion of a third-order

tensor from COO to HiCOO is shown on Figure 2.8. The tensor entries in COO format are sorted and

then partitioned in blocks. Then, from their original coordinates and from the block coordinates, their

in-block coordinates are computed. To revert the tensor back to COO format the block coordinates are

multiplied by the block size and added with the in-block coordinates of the elements.

bytes of data to and from memory. Therefore, its AI is about
1/4 when �int,�float = 32 bits.

From the above three observations and detailed analysis, we
propose a new sparse tensor format HICOO to overcome the
drawbacks of current formats, maintain mode-generic orien-
tation, meanwhile, pursue higher performance by optimizing
memory locality.

IV. HICOO FORMAT

HICOO stores a sparse tensor in a sparse-blocked pattern
with a pre-specified block size B, meaning in B ⇥ · · · ⇥ B
blocks (only cubical blocks are considered in this work). It
represents every block by compactly storing its nonzero triples
using fewer bits. A tensor is sorted and then partitioned and
compressed by every mode into sized-B chunks, resulting in at
most I1

B ⇥· · ·⇥ IN

B (assume all Ins are dividable by B) nonzero
tensor blocks. Figure 3 shows the same third-order tensor
example as Figure 2 given 2⇥2⇥2 blocks (B = 2). For a third-
order tensor, bi, bj, bk are block indices in �int bits, indexing
tensor blocks, and ei, ej, ek are element indices in �byte bits,
indexing nonzeros within a tensor block. A bptr array in �long
bits stores the pointers of every block’s beginning locations,
and val saves all the nonzero values, which is the same with
COO’s val array. HICOO treats every mode equally and does
not assume any mode order, these preserve the mode-generic
orientation of COO.

Fig. 3. The conversion between COO and HICOO formats for an example
third-order tensor. HICOO uses 2 ⇥ 2 ⇥ 2 blocks (B = 2) with word sizes
marked above.

A. Conversion

Sorting, partitioning, and compression are the three steps to
convert from a COO tensor to a HICOO tensor. We first sort
all nonzeros of a COO tensor in Z-Morton order [37] using
a variation of quick sort. A Morton key is computed from
nonzero indices and is used for the comparison of sorting.
In Figure 3, the sorted COO tensor switches two nonzero
entries (marked in red). We then partition the sorted tensor into
sparse tensor blocks according to the given block size B and
record the block pointers bptr simultaneously. Since we limit
the block size to a power-of-two constant, this partitioning
maintains the sorted Z-order between tensor blocks and among
the nonzeros within a block. Lastly, we compress COO indices
into block and element indices correspondingly. By having a
HICOO tensor, no need to explicitly convert it back to a COO
tensor. The COO indices of a nonzero entry can be calculated
from i = bi · B + ei, j = bj · B + ej, and k = bk · B + ek.

In the HICOO format, Z-Morton sorting contributes better
data locality for tensor algorithms, while compressed indices

save the storage space of a sparse tensor and also reduce the
memory bandwidth of tensor access.

B. Improvement of CSB

Our proposed Hierarchical COOrdinate (HICOO) format
may be viewed as an extension of the Compressed Sparse
Blocks (CSB) format for sparse matrices [33]. One distinction
between HICOO and CSB is that the latter uses relatively
larger matrix blocks. 4 By contrast, we find that smaller blocks
are more suitable for sparse tensors, both for reasons related
to better cache usage and better support for higher-order
tensor operations. However, small blocks pose two issues of
a straightforward extension of CSB, which will be explained
in Appendix B. To solve these challenges, HICOO improves
from the CSB idea in two aspects.

• First, HICOO further compacts block indices, thus re-
quiring even less storage space than CSB. We compact
block indices in coordinate pattern to control their storage
rise for small blocks and also uses fewer bits when
possible.

• Second, for efficient CPU multithreading, HICOO uses a
two-level blocking strategy and a small amount of extra
space to save scheduling information. We group a set
of small blocks into a large yet logical superblock. The
blocks within a superblock are always scheduled together
and assigned to a single thread. Within a superblock, we
physically store nonzeros in the same pattern as shown
in Figure 3. This two-level blocking strategy will be
better explained in Section V since it is more related to
algorithm parallelization.

C. Analysis

Our analysis of HICOO will be expressed in terms of
parameters listed in Table I. We first explain these parameters
and give the format analysis afterwards.

The Average Slice Size (c) is a tensor-dependent parameter.
It is an analogy of “row length” of a sparse matrix. c is the
average slice size in a particular mode n, c = M

In
. c could vary

considerably, from being a constant (c = O(1)) if there are
only a few nonzeros per slice, to being as large as c = O

�
I2
�

for a third-order tensor if its slices are dense. The value c
effectively measures nonzero density, especially for irregularly
shaped sparse tensors.

The Number of Tensor Blocks (nb) depends on the input
tensor and HICOO-specific block size B. The example in
Figure 3 has nb = 4 tensor blocks.

The Block Ratio (↵b) is the ratio of the number of tensor
blocks to the number of total nonzero elements, ↵b = nb

M .
Block ratio directly affects the storage size of HICOO, which
will be shown in Equation (13). For a given sparse tensor with
a fixed M , ↵b is not solely determined by the block size B,
but also related to nonzero distribution.

The Geometric Mean of Numbers of Nonzeros per Block
(Mb) depends on nonzero distribution and block size B.

4In CSB, block sizes are typically around
p

I ⇥
p

I for an I ⇥ I sparse
matrix [33].

Figure 2.8: Example of conversion of a tensor from COO to HiCOO [54]

CISS is very similar to COO, but introduces a novelty in order to help mitigating its inherent redun-

16



dancy regarding the storage of mode indexes. Since all values stored in COO are non-zero, by creating

an extra entry with value equal to zero, it is possible to create headers. For example, in a third-order

tensor the header defines the index of the slice. Then all entries until the next header will only contain

information about their fiber index and element index, as well as a nonzero value. This way it is possible

to avoid storing the same slice index multiple times. Figure 2.9 has the same tensor as Figure 2.8 but

represented in CISS format. Each header is in gray and as can be observed below each header are all

elements that share the slice with that index.

Figure 2.9: Example of tensor in CISS format

In an attempt to further reduce the data stored, linearized formats were created. These formats used

the mode indexes and combine them to make an unique identifier for each nonzero element. Some

examples of these formats are Adaptative Linearised Tensor Order (ALTO) [55] and Blocked Linearised

Coordinate (BLCO) [56].ALTO: Adaptive Linearized Storage of Sparse Tensors ICS ’21, June 14–17, 2021, Virtual Event, USA

𝟎 𝟎 𝟏 𝟎 𝟏 𝟎mode mask 

X X X X 𝒃𝒊,𝟏 𝒃𝒊,𝟎

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

mode index 

𝟏 𝟏 𝟎 𝟏 𝟎 𝟎

X X X 𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒋,𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟏

X X X X X 𝒃𝒌,𝟎

ALTO index

(a) ALTO generates its mode-agnostic linearized index using bit-level
gather operations.

𝟎 𝟎 𝟏 𝟎 𝟏 𝟎mode mask 

X X X X 𝒃𝒊,𝟏 𝒃𝒊,𝟎

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

mode index 

𝟏 𝟏 𝟎 𝟏 𝟎 𝟎

X X X 𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒋,𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟏

X X X X X 𝒃𝒌,𝟎

ALTO index

(b) To generate the multi-dimensional indices, ALTO decodes the lin-
earized indexing metadata using bit-level scatter operations.

Figure 4: The ALTO-based bit encoding and decoding mech-
anisms for the example in Figure 2.

To allow fast indexing of the linearized tensors during sparse
tensor operations, the ALTO encoding is implemented using a set
of simple # bit masks, where # is the number of modes, on top of
common data processing primitives. Figure 4 shows the lineariza-
tion and de-linearization mechanisms, which are used during the
ALTO format generation and the sparse tensor computations, re-
spectively. The linearization is implemented as a bit-level gather,
while the de-linearization is performed as a bit-level scatter. Thus,
while the compressed representation of the proposed ALTO format
comes at the cost of a de-linearization (decompression) overhead,
such a computational overhead is minimal and can be e�ectively
overlapped with the memory accesses of the memory-intensive
sparse tensor operations, as shown in §4.

3.2 Workload Partitioning and Scheduling
The prior compressed sparse tensor formats, such as block- and
CSF-based approaches, seek to reduce the size of the indexing
metadata by clustering the nonzero elements into coarse-grained
structures (e.g., tensor blocks, slices, and/or �bers) that divide the
multi-dimensional space of a given tensor into non-overlapping
regions. However, due to the irregular shapes and distributions of
higher-order data, such coarse-grained approaches can su�er from
severe workload imbalance, in terms of nonzero elements, which
in turn leads to limited parallel performance and scalability.

Thus, the proposed ALTO representation works at the �nest
granularity level (i.e., a single nonzero element), which exposes
the maximum �ne-grained parallelism and allows scalable parallel
execution. While a non-overlapping space partitioning of a tensor
can be obtained from the ALTO encoding scheme, using a subset
of the index bits, the workload balance of such a partitioning still
depends on the sparsity patterns of the tensor.

To decouple the performance of sparse tensor computations
from the distribution of nonzero elements, ALTO eliminates the
workload imbalance and generates perfectly balanced partitions.
Figure 5 depicts an example of ALTO’s workload decomposition
when applied to the sparse tensor in Figure 2. Moreover, ALTO
divides the line segment containing the nonzero elements of the

Value Position

𝒙𝟏,𝟎,𝟎 2 (000010)

𝒙𝟑,𝟏,𝟏 15 (001111)

𝒙𝟎,𝟑,𝟎 20 (010100)

𝒙𝟐,𝟐,𝟏 25 (011001)

𝒙𝟑,𝟒,𝟎 42 (101010)

𝒙𝟏,𝟔,𝟏 51 (110011)

ALTO Tensor 

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO Bit Mask 

3 bits2 bits1 bit

k = 0

k = 1

4X8X2 Tensor

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

00 01 10 11

00 01 10 11

i

j
k

630

(0, 0, 0)

(3, 3, 1)

(1, 2, 0)

(3, 6, 1)

Figure 5: ALTO partitioning of the example in Figure 2,
which generates balanced partitions in terms of workload
(nonzero elements) for e�cient parallel execution.

target tensor into smaller line segments, all of which have the
same number of nonzeros, thus perfectly splitting the workload.
Therefore, in Figure 5, ALTO partitions the linearized tensor into
two line segments: [2 � 20] and [25 � 51]. Although the resulting
line segments have di�erent lengths (i.e., 18 and 26), they have the
same number of nonzeros elements.

Once the linearized sparse tensor is divided into multiple line
segments, ALTO identi�es the basis mode intervals (coordinate
ranges) of the multi-dimensional subspaces that correspond to these
segments. For example, the line segments [2 � 20] and [25 � 51]
correspond to three-dimensional subspaces bounded by the mode
intervals {[0 � 3], [0 � 3], [0 � 1]} and {[1 � 3], [2 � 6], [0 � 1]},
respectively. While the derived multi-dimensional subspaces of
the line segments may overlap, as highlighted in yellow in Fig-
ure 5, each nonzero element is assigned to exactly one line segment.
That is, ALTO imposes a partitioning on a given linearized tensor
that generates a disjoint set of non-overlapping and balanced line
segments, yet it does not guarantee that such a partitioning will
decompose the multi-dimensional space of the tensor into non-
overlapping subspaces. In contrast, the prior sparse tensor formats
decompose the multi-dimensional space into non-overlapping (yet
highly imbalanced) regions, namely, tensor slices and �bers in CSF-
based formats and multi-dimensional spatial blocks in block-based
formats (e.g., HiCOO).

More formally, a set of ! line segments partitions a linearized
ALTO tensor X, which encodes a mode-# sparse tensor, such that
X = X1 [ X2 · · · [ X! and X8 \ X9 = q88 and 9 , where 8 < 9 . Each
line segment X8 is an ordered set of nonzero elements that are
bounded in an # -dimensional space by a set of # closed mode
intervals )8 = {[) B8,1,) 48,1], [) B8,2,) 48,2], · · · [) B8,# ,) 48,# ]}, where each
mode interval )8, 9 is delineated by a start ) B8, 9 and an end ) 48, 9 . The
intersection of two sets of mode intervals represents the subspace
overlap between their corresponding line segments (partitions).

Figure 2.10: Example of encoding in a third-order tensor [55]

ALTO: Adaptive Linearized Storage of Sparse Tensors ICS ’21, June 14–17, 2021, Virtual Event, USA

𝟎 𝟎 𝟏 𝟎 𝟏 𝟎mode mask 

X X X X 𝒃𝒊,𝟏 𝒃𝒊,𝟎

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

mode index 

𝟏 𝟏 𝟎 𝟏 𝟎 𝟎

X X X 𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒋,𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟏

X X X X X 𝒃𝒌,𝟎

ALTO index

(a) ALTO generates its mode-agnostic linearized index using bit-level
gather operations.

𝟎 𝟎 𝟏 𝟎 𝟏 𝟎mode mask 

X X X X 𝒃𝒊,𝟏 𝒃𝒊,𝟎

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

mode index 

𝟏 𝟏 𝟎 𝟏 𝟎 𝟎

X X X 𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒋,𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟏

X X X X X 𝒃𝒌,𝟎

ALTO index

(b) To generate the multi-dimensional indices, ALTO decodes the lin-
earized indexing metadata using bit-level scatter operations.

Figure 4: The ALTO-based bit encoding and decoding mech-
anisms for the example in Figure 2.

To allow fast indexing of the linearized tensors during sparse
tensor operations, the ALTO encoding is implemented using a set
of simple # bit masks, where # is the number of modes, on top of
common data processing primitives. Figure 4 shows the lineariza-
tion and de-linearization mechanisms, which are used during the
ALTO format generation and the sparse tensor computations, re-
spectively. The linearization is implemented as a bit-level gather,
while the de-linearization is performed as a bit-level scatter. Thus,
while the compressed representation of the proposed ALTO format
comes at the cost of a de-linearization (decompression) overhead,
such a computational overhead is minimal and can be e�ectively
overlapped with the memory accesses of the memory-intensive
sparse tensor operations, as shown in §4.

3.2 Workload Partitioning and Scheduling
The prior compressed sparse tensor formats, such as block- and
CSF-based approaches, seek to reduce the size of the indexing
metadata by clustering the nonzero elements into coarse-grained
structures (e.g., tensor blocks, slices, and/or �bers) that divide the
multi-dimensional space of a given tensor into non-overlapping
regions. However, due to the irregular shapes and distributions of
higher-order data, such coarse-grained approaches can su�er from
severe workload imbalance, in terms of nonzero elements, which
in turn leads to limited parallel performance and scalability.

Thus, the proposed ALTO representation works at the �nest
granularity level (i.e., a single nonzero element), which exposes
the maximum �ne-grained parallelism and allows scalable parallel
execution. While a non-overlapping space partitioning of a tensor
can be obtained from the ALTO encoding scheme, using a subset
of the index bits, the workload balance of such a partitioning still
depends on the sparsity patterns of the tensor.

To decouple the performance of sparse tensor computations
from the distribution of nonzero elements, ALTO eliminates the
workload imbalance and generates perfectly balanced partitions.
Figure 5 depicts an example of ALTO’s workload decomposition
when applied to the sparse tensor in Figure 2. Moreover, ALTO
divides the line segment containing the nonzero elements of the

Value Position

𝒙𝟏,𝟎,𝟎 2 (000010)

𝒙𝟑,𝟏,𝟏 15 (001111)

𝒙𝟎,𝟑,𝟎 20 (010100)

𝒙𝟐,𝟐,𝟏 25 (011001)

𝒙𝟑,𝟒,𝟎 42 (101010)

𝒙𝟏,𝟔,𝟏 51 (110011)

ALTO Tensor 

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO Bit Mask 

3 bits2 bits1 bit

k = 0

k = 1

4X8X2 Tensor

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

00 01 10 11

00 01 10 11

i

j
k

630

(0, 0, 0)

(3, 3, 1)

(1, 2, 0)

(3, 6, 1)

Figure 5: ALTO partitioning of the example in Figure 2,
which generates balanced partitions in terms of workload
(nonzero elements) for e�cient parallel execution.

target tensor into smaller line segments, all of which have the
same number of nonzeros, thus perfectly splitting the workload.
Therefore, in Figure 5, ALTO partitions the linearized tensor into
two line segments: [2 � 20] and [25 � 51]. Although the resulting
line segments have di�erent lengths (i.e., 18 and 26), they have the
same number of nonzeros elements.

Once the linearized sparse tensor is divided into multiple line
segments, ALTO identi�es the basis mode intervals (coordinate
ranges) of the multi-dimensional subspaces that correspond to these
segments. For example, the line segments [2 � 20] and [25 � 51]
correspond to three-dimensional subspaces bounded by the mode
intervals {[0 � 3], [0 � 3], [0 � 1]} and {[1 � 3], [2 � 6], [0 � 1]},
respectively. While the derived multi-dimensional subspaces of
the line segments may overlap, as highlighted in yellow in Fig-
ure 5, each nonzero element is assigned to exactly one line segment.
That is, ALTO imposes a partitioning on a given linearized tensor
that generates a disjoint set of non-overlapping and balanced line
segments, yet it does not guarantee that such a partitioning will
decompose the multi-dimensional space of the tensor into non-
overlapping subspaces. In contrast, the prior sparse tensor formats
decompose the multi-dimensional space into non-overlapping (yet
highly imbalanced) regions, namely, tensor slices and �bers in CSF-
based formats and multi-dimensional spatial blocks in block-based
formats (e.g., HiCOO).

More formally, a set of ! line segments partitions a linearized
ALTO tensor X, which encodes a mode-# sparse tensor, such that
X = X1 [ X2 · · · [ X! and X8 \ X9 = q88 and 9 , where 8 < 9 . Each
line segment X8 is an ordered set of nonzero elements that are
bounded in an # -dimensional space by a set of # closed mode
intervals )8 = {[) B8,1,) 48,1], [) B8,2,) 48,2], · · · [) B8,# ,) 48,# ]}, where each
mode interval )8, 9 is delineated by a start ) B8, 9 and an end ) 48, 9 . The
intersection of two sets of mode intervals represents the subspace
overlap between their corresponding line segments (partitions).

Figure 2.11: Example of decoding in a third-order tensor [55]

In Figures 2.10 and 2.11, it is possible to observe how the modes indexes are encoded to generate

an unique identifier and how the identifier is reverted back to the original indexes. Each mode has a

bit mask that is used to encode the corresponding mode index by shifting its bits as well as to decode

17



the ALTO index by shifting back the bits corresponding to that masks mode, while placing zeros on the

remaining bits.

Depending on many factors, such as the tensor, the method and the architecture, different storage

formats offer varying performances. However it is common for tensor libraries to adopt a format and

implement the methods in that format. Nowadays, the most widely adopted format is CSF.

The preferred architectures for tensor methods were discussed in Section 2.4. As mentioned, with the

ones further analysed being the GPU and the FPGA. The former is arguably the most widespread and

accessible accelerator making it very prolific in tensor method implementations, specially for the most

computationally challenging methods, MTTKRP and TTM. Also, these methods are major bottlenecks

in the most used tensor decomposition algorithms [25–31].

Current state-of-the-art GPU implementations for MTTKRP focus on achieving good load-balance

and efficient use of the shared memory of the GPU [46,47]. The use of shared memory is important for

the sparse version of the algorithm, since it involves highly irregular data accesses and is bandwidth-

bounded. Hence the use of shared memory allows for shorter access times improving the overall per-

formance. On the other hand, imbalance in the workload might not be obvious at first but is definitely a

demanding problem. For example, in the case of a third-order tensor, the naı̈ve approach would be to

assign to each slice a work-group since all slices are independent in the output’s computation. However

slices are likely to differ in the number of nonzero elements as well as in their distribution. Another solu-

tion could be for each thread to compute the same number of elements, but then there would be a need

for synchronization hindering the overall performance.

Algorithm 5 implements a sparse MTTKRP for a third-order tensor in a GPU as depicted in [46], its

inputs are the third-order tensor in CSF format and two dense matrices. In the algorithm, the GPU’s grid

of threads is assigned in the following way: the thread’s global index along the x-axis defines the column

of the input and output matrices. The block’s index along the y-axis, defines a slice to be computed and,

therefore, also the output row. The thread’s local index along the y-axis defines which fiber, within the

block’s slice, to be computed. With this distribution, each block computes their part of the output and

stores it in the shared memory (lines 7-15). Afterwards, a local reduction is performed in an interleaved

fashion, adding the intermediate results of each fiber under the same slice (lines 16-21). By the end

of this reduction, the first thread of each block will then store the final result to the output matrix (lines

22-24).

The load balance in this algorithm is not guaranteed, in fact depending on the nonzero element

distribution across the slices and fibers, different blocks and different threads within blocks may have

different execution times. With the required synchronization in the algorithm, the worst case would be

the dominant one. One possible solution to this problem is the preprocessing of the tensor and re-

adaptation of the format for better balance.

18



Algorithm 5 Sparse MTTKRP in CSF for GPU [46]
Input: Sparse tensor X ∈ RI×J×K and dense matrices B ∈ RJ×R, C ∈ RK×R;
Output: Dense matrix M ∈ RI×R;

1: bdx = blockDim.x, bdy = blockDim.y;
2: bix = blockIdx.x, biy = blockIdx.y;
3: thx = threadIdx.x, thy = threadIdx.y;
4: shr[bdy][bdx], shrid[bdy];
5: f = bix× bdx+ thx;
6: if f < R then
7: for i = thy + slcP tr[biy] . . . slcP tr[biy + 1] by i+ = bdy do
8: shrid[thy] = fbrIdx[i];
9: for j = fbrP tr[i] . . . fbrP tr[i+ 1] do

10: inC+ = vals[j]× C[inFbrIdx[j]][f ];
11: end for
12: inB+ = inC ×B[shid[thy]][f ];
13: end for
14: shr[thy][thx] = inB;
15: sync();
16: for stride = bdy/2 . . . 0 by stride ≫= 1 do
17: if thy < stride then
18: shr[thy][thx]+ = shr[thy + stride][thx];
19: sync();
20: end if
21: end for
22: if thy == 0 then
23: M [biy][f ] = shr[0][thx];
24: end if
25: end if

As depicted in Figure 2.12, the work proposed in [47] focuses on load balancing for CSF tensors, so

that all fibers have a approximately the same number of elements and all slices have approximately the

same number of fibers. This is achieved by introducing some redundancy in the CSF format. In Figure

2.12(a), a the tensor is represented in the regular CSF format. However, the slices and fibers are heavily

imbalanced. To solve this issue, new slices and fibers with the same indexes as the existing ones are

created. This goes against CSF’s principle that each node in one level of the tree represents one index.

Having more slices and fibers also requires more memory space, since more indexes need to be stored.

Therefore, there is a trade-off. In order to achieve better work balance some redundancy is introduced

the format.

The other method to be analysed is TTM. Since in it every fiber-column product is independent from

another, fine-grained parallelism is the natural approach. Implementations also focus on data spatial

and temporal locality as well as an efficient use of the shared memory available in the GPU.

Algorithm 6 implements a sparse TTM for a third-order tensor in a GPU as proposed in [43], its

inputs are the third-order tensor in CSF format and a dense matrix. In the algorithm, the fine-granularity

is evident. Each thread computes the dot product of a single fiber with one or more columns, depending

19



(a) Original Tensor causing inter-warp and inter-thread block load imbalance. Required cycle 4.

(b) After splitting fibers to address inter-warp load imbalance. Required cycle 3.

(c) After splitting slices along with fibers to address inter-thread block load imbalance. Required cycle 2.

Fig. 2: Construction phases of B-CSF (balanced CSF). Assume one cycle is required to process one nonzero.

into multiple sub-slices. We extend the binning idea proposed
by Ashari et al. [26] for SpMV to determine the number of
thread blocks that are assigned to a slice. For example, if
thread blocks contain 512 threads, a slice with 2048 nonzeros
(4×512) will be processed by 4 such thread blocks. Note that
this distribution may increase the number of atomic operations
across the thread blocks assigned to the same slice. However,
the cost of the extra atomic operations is well tolerated by the
increase in concurrency. We term this optimization technique
as slc-split.

B. Addressing inter-warp load imbalance

The warps within a thread block will process independent
fibers according to our initial work distribution strategy. How-
ever, a heavy fiber can take much longer processing time than
the other fibers, stalling idle warps in the thread block. In
Table II, we see the imbalance in work per fiber in the last
column. This motivates node-splitting: long fibers are split into
fiber-segments. This enables near-equal workload to all the
warps in the thread block. This preprocessing step can be done
while constructing the CSF data structure, thereby avoiding
any additional pre-processing time. We term this optimization
technique as fbr-split.

Figure 2 summarizes the key load imbalance issues that
arise with work distribution, and shows the construction phases
of the new balanced tensor. We start with Figure 2a, where
slice 2 and fiber 3 of the tensor has uneven work distribution
across warps and thread blocks. To address this issue at the
warp level, fiber 3 is split into two fibers (3a and 3b) as
shown in Figure 2b. Warp 1 and 2 from thread block 2
cyclically process the nonzeros. If a multiply-add requires one
cycle, cycle count is reduced from four to three. Figure 2c
demonstrates the slc-split technique to address load imbalance
at the thread block level by splitting slice 2 (2a, 2b, and 2c),
and reducing cycle count to two.

V. HB-CSF: A HYBRID B-CSF

The previously discussed splitting techniques addressed the
load-imbalance problem posed by heavily populated slices
and fibers in tensors. In this section, we address the opposite
problem: inefficiency due to ultra-light slices and fibers. In
many tensors, many fibers may have a single nonzero, and
even an entire slice may contain just a single nonzero element
in a single fiber.

127

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 07,2022 at 16:56:31 UTC from IEEE Xplore.  Restrictions apply. 

Figure 2.12: Example of the balancing of CSF [47]

Algorithm 6 Sparse TTM in CSF for GPU [43]
Input: Sparse tensor X ∈ RI×...×K and dense matrix U ∈ RK×F ;
Output: Semi-sparse tensor Y ∈ RI×...×F ;

1: yshr[blockDim.y][blockDim.x];
2: n = F

blockDim.x ;
3: tidy = threadIdx.y, tidx = threadIdx.x;
4: i = blockIdx.x× blockDim.y + tidy;
5: for l = 0 . . . n do
6: r = tidx+ l × blockDim.x;
7: yshr[tidy][tidx] = 0.0;
8: sync();
9: for j = fbrptr[i] . . . fbrptr[i+ 1] do

10: k = kidx[j];
11: yshr[tidy][tidx]+ = values[j]× u[k][r];
12: end for
13: sync();
14: output[i][r] = yshr[tidy][tidx];
15: sync();
16: end for
17: return Y ;

on the ratio between the size of a thread block along the x-axis and the number of columns. The global

index of a thread along the y-axis defines which fiber is assigned. This way, each block contributes to

the output with a portion of the fibers, the shared memory is used to keep the block’s contribution which

20



afterwards is stored in the global memory. Since each fiber may have more than one nonzero element,

storing constantly every intermediate result to the global memory would hinder severely performance

and cause contention problems. By iterating first over the columns and only afterwards over the fiber

elements, the chance for short rows staying in caches increases. There is also the use of rank blocking

on the outer for-loop, however its benefit depends on the nonzero distribution of the input tensor.

As a possible optimisation, the decision of whether to use rank blocking or not could be done after

loading the tensor and analysing its features. With two kernels available, one with rank blocking and the

other without it.

2.6 Roofline Model

In order to analyse and compare the performance of different algorithms on different devices, a tool that

ties a representation of the algorithm with the device capabilities is required. The roofline model does

precisely this [57–59]. It translates the device’s capabilities into two roofs: one representing the memory

bandwidth, commonly expressed in bytes per second, and the other representing the peak performance,

commonly expressed in operations per second.

The algorithm itself is represented by its performance, again in operations per second, and by its AI,

commonly in operations per byte transferred from the memory. While the first allows to measure how

close the algorithm’s performance is to the maximum performance it can achieve on that specific device,

the second offers insight on whether the algorithm is bound by the device’s memory or by the device’s

computational power.

Modern architectures possess specific hardware components for complex single-cycle operations,

e.g. Multiply-Accumulate (MAC), as well as complex memory hierarchies. As such the original roofline

model does not fully portray the device’s capabilities. For that reason, instead of the original roofline

model, a more insightful version, Cache Aware Roofline Model (CARM) [60–64], is commonly used.

Figure 2.13 illustrates the inclusiveness of CARM in a modern architecture when compared to the

original roofline model. The major difference between these models, when it comes to performance

analysis, is the number of regions defined. While on the original roofline, the kernel can be either

memory or compute bound, on CARM there is an undefined region between the memory and compute

bound regions. This happens because the kernel can be bound by the bandwidth of a certain memory

level, which would make it memory bound. However, by optimising and improving spatial and temporal

locality of data accesses, the kernel starts utilising a faster memory level. Hence, since the AI did not

change, the kernel becomes compute bound.

21



Figure 2.13: Comparison between original roofline model and CARM [60]

2.7 Summary

This chapter started with a introduction to the nomenclature used in tensor domain and the definition of

sparsity and sparse tensors. Further, the baseline storage formats for sparse tensors were discussed

as well as their main advantages and disadvantages. Four different categories of tensor methods were

addressed and discussed alongside with illustrative algorithms for each. The building blocks of the

framework to be implemented followed with the architectures to be explored being introduced. Their

preferred type computation was analysed and the SYCL programming model was presented. Roofline

models, an important tool for analysis on the wide variety of architectures used, were also addressed,

which special emphasis on CARM. Finally, the state-of-the-art storage formats, algorithms and imple-

mentations for the methods were thoroughly discussed.

22



Chapter 3

Sparse Tensor Processing on

Programmable Architectures

In this chapter, a solution for TTM and MTTKRP processing on general-purpose architectures, such as

the CPU and GPU, is presented and has its AI derived as well as its peak performance explored with

resort synthetic datasets. Before advancing to the kernels, let us establish Table 3.1 as the notation for

the remainder of the chapter.

SlcCnt total number of slices in the tensor
FbrCnt total number of fibers in the tensor
NnzCnt total number of non-zero elements in the tensor
ColCnt total number of columns in the matrices
FbrPSlc number of fibers in a slice
NnzPSlc number of non-zero elements in a slice
NnzPFbr number of non-zero elements in a fiber

Table 3.1: Notation used throughout this chapter

3.1 Data-Parallel Sparse Tensor Processing

The development of said solution was done in Intel’s OneAPI Data Parallel C++ (DPC++), which is one

of Khronos SYCL implementations. SYCL provides an unified model, where developers program at a

higher level than the native acceleration API, but always have access to lower-level code that allows

users to target any accelerator without having to change their source code. Besides its portability, when

compared with other API such as CUDA, SYCL has proven to provide comparable performance [52].

Therefore it can be considered for a future standard in heterogeneous programming and has been the

choice in this Thesis.

23



Also sparse tensors, even more than sparse matrices due to having higher order, are very prone

to variability both in their shape and non-zero element distribution. Therefore creating one kernel that

is fully optimized for all scenarios is not trivial and so, in order to minimize this problem, two different

versions were created, tested, and compared for each method.

3.1.1 Tensor Times Matrix (TTM)

The TTM method consists in dot-products between each fiber of a tensor and all columns of a matrix,

as was elaborated on Section 2.3.3. In this section, a solution for sparse TTM, with CSF as the storage

format for the tensor, is derived and analysed. The purpose of this analysis is to measure the AI and

performance of said solution against several datasets, real and synthetic, on both the CPU and the GPU.

With this analysis and with resort to roofline models, described in Section 2.6, it is expected to confirm

the bottlenecks and test the limits of utilisation of the architectures.

3.1.1.A Kernel V1: Element-centric TTM approach

For TTM with a sparse tensor stored in CSF format, the first approach is to make it so that each thread

computes one element of the output. Therefore each thread requires access to one fiber and to one

column of the matrix.

1 // FbrCnt * ColCnt threads -> one for each element of the output

2 range<2> globalSize(fbrCnt, colCnt);

3 range<2> localSize(1, colCnt);

4 nd range<2> numItems(globalSize, localSize);

5

6 event e { q.submit([&](handler &h) {

7 h.parallel for(numItems, [=](nd item<2> item) {

8 const auto fbr { item.get global id(0) };

9 const auto col { item.get local id(1) };

10 auto tmp { 0.0f };

11

12 // Load fiber boundaries: accFbrPtr[fbr] and accFbrPtr[fbr+1]

13 for (auto ele { accFbrPtr[fbr] }; ele < accFbrPtr[fbr+1]; ++ele) {

14 // Load in-fiber index and value

15 const auto k { (accKIdx[ele] - 1) * colCnt };

16 const auto val { accValues[ele] };

17

18 // Load element of the column

24



19 // Compute product and accumulate

20 tmp += val * accMatrix[k + col];

21 }

22

23 // Store fiber-column dot product to global memory

24 accOutput[fbr * colCnt + col] = tmp;

25 });

26 }) };

Listing 3.1: TTM Kernel V1

In Kernel 3.1, threads are created in the same number as output elements (line 2) with each of them

computing the dot-product between their assigned fiber and column. Therefore each thread starts by

loading its fiber boundaries (line 13) and then for all non-zero elements in that fiber loads both their in-

fiber index as well as their value (lines 15-16). Hence, from the tensor, there are two loads for boundaries

plus two more loads for each non-zero element in the fiber. From the matrix, for each non-zero element

in the fiber there is one more load, to fetch the corresponding element in the column (line 20). As such,

the total amount of loads from memory can be expressed as 2+2×NnzPFbr+NnzPFbr. Since each

thread computes the dot-product between a fiber and a column, the number of operations performed

is one multiply and one addition per non-zero element in the fiber (line 20), i.e., the total amount of

Floating-Point Operations (FLOPs) is equal to the 2×NnzPFbr. This operation generates one element

of the output, which is subsequently stored in the output fiber, thus contributing to the only one store

operation performed (line 24). Assuming all data types are 4-byte wide, the AI can be expressed as

follows:

AIv1 =
1

4
× 2×NnzPFbr

2 + 2×NnzPFbr +NnzPFbr + 1
=

1

2
× NnzPFbr

3 + 3×NnzPFbr
=

1

6
× NnzPFbr

NnzPFbr + 1
(3.1)

According to the expression derived in 3.1, the AI of each thread may be different depending on

the amount of non-zero elements in the fibers that are assigned to the thread for processing. However,

these always range between a minimum and maximum value. The minimum AI can be achieved when

the fiber has the least possible number of non-zero elements, which is one. Thus, the minimum AI can

be expressed as follows:

min(AIv1) = min

(
1

6
× NnzPFbr

NnzPFbr + 1

)
=

1

6
× 1

2
=

1

12
(3.2)

The maximum AI is achieved when the number of non-zero elements in the fiber is large enough so

that NnzPFbr
NnzPFbr+1 ≈ 1. As such, the maximum AI can be expressed as follows:

25



max(AIv1) = max

(
1

6
× NnzPFbr

NnzPFbr + 1

)
≈ 1

6
× 1 =

1

6
(3.3)

3.1.1.B Kernel V2: Fiber-centric TTM approach

Another approach to efficiently extract data-parallelism in TTM processing is to assign each thread to

compute an entire fiber of the output (instead of a single element). In this approach, each thread still

requires access to one fiber, but now it also requires access to the whole matrix instead of just a column

(as previously elaborated in Kernel V1 with element-centric TTM processing).

1 // FbrCnt threads -> one for each fiber of the output

2 range<1> globalSize(fbrCnt);

3 range<1> localSize(wgSize);

4 nd range<1> numItems(globalSize, localSize);

5

6 event e { q.submit([&](handler &h) {

7 h.parallel for(numItems, [=](nd item<1> item) {

8 const auto fbr { item.get global id(0) };

9 float tmp[colCnt];

10

11 for (auto col { 0 }; col < colCnt; ++col) {

12 tmp[col] = 0.0f;

13 }

14

15 // Load fiber boundaries: accFbrPtr[fbr] and accFbrPtr[fbr+1]

16 for (auto ele { accFbrPtr[fbr] }; ele < accFbrPtr[fbr + 1]; ++ele) {

17 // Load in-fiber index and value

18 const auto k { (accKIdx[ele] - 1) * colCnt };

19 const auto val { accValues[ele] };

20

21 // Load corresponding row of the matrix

22 // Compute product and accumulate

23 for (auto col { 0 }; col < colCnt; ++col) {

24 tmp[col] += val * accMatrix[k + col];

25 }

26 }

27

28 // Store output fiber to global memory

26



29 for (auto col { 0 }; col < colCnt; ++col) {

30 accOutput[fbr * colCnt + col] = tmp[col];

31 }

32 });

33 }) };

Listing 3.2: TTM Kernel V2

In Kernel 3.2, the number of threads created is the same as the number of output fibers (line 2), where

each thread is responsible for computing the dot-products of the assigned fiber against all columns of

the matrix. Therefore each thread also starts by loading its fiber boundaries (line 16) and then for

all non-zero elements in that fiber it also loads both their in-fiber index as well as their value (lines

18-19). As such, from the tensor, there are two loads (for boundaries) plus two more loads for each

non-zero element in the fiber. From the matrix, there are as many loads as columns in the matrix for

each non-zero element of the fiber (lines 23-25). As a result, the total amount of loads is equal to

2 + 2×NnzPFbr +NnzPFbr ×ColCnt. Since each thread computes the dot-product between a fiber

and all columns of the matrix (lines 23-25), the number of operations performed is one multiply and

one addition per column per non-zero element in the fiber, i.e., the total amount of FLOPs is equal to

2 × NnzPFbr × ColCnt. Since each thread in Kernel V2 generates one fiber of the output, and the

output fibers have as many elements as there are columns in matrix, then one store per column is

required (lines 29-31). This brings the total amount of stores to be equal to ColCnt. Assuming all data

types are 4-byte wide the AI can be expressed as follows:

AIv2 =
1

4
× 2×NnzPFbr × ColCnt

2 + 2×NnzPFbr +NnzPFbr × ColCnt+ ColCnt
=

=
1

2
× NnzPFbr × ColCnt

2× (NnzPFbr + 1) + ColCnt× (NnzPFbr + 1)
=

=
1

2
× NnzPFbr

NnzPFbr + 1
× ColCnt

ColCnt+ 2

(3.4)

According to the expression derived in 3.4, the AI varies depending on the number of non-zero

elements in the fiber as well as on the number of columns in the matrix. Again, these AIs will also

always range between a minimum and a maximum value, which can be calculated in a similar manner

to the one previously adopted when analyzing the AI ranges for Kernel 3.1. As before, the minimum AI

can be achieved when the fiber has the least non-zero elements (which is one), and the matrix has the

least number of columns (which occurs when it is a vector). As such, the minimum AI for the fiber-centric

TTM approach can be expressed as follows:

27



min(AIv2) = min

(
1

2
× NnzPFbr

NnzPFbr + 1
× ColCnt

ColCnt+ 2

)
=

1

2
× 1

2
× 1

3
=

1

12
(3.5)

The maximum AI, on the other hand, is achieved when both the number of non-zero elements in

the fiber and the number of columns in the matrix are large enough such that NnzPFbr
NnzPFbr+1 and ColCnt

ColCnt+2

are approximately one. Correspondingly, the maximum AI for the fiber-centric TTM approach can be

expressed as follows:

max(AIv2) = max

(
1

2
× NnzPFbr

NnzPFbr + 1
× ColCnt

ColCnt+ 2

)
≈ 1

2
× 1× 1 =

1

2
(3.6)

The comparison between the Element-centric (Kernel 3.1) and Fiber-centric (Kernel 3.2) TTM data-

parallel approaches can be done by analysing their ranges of attainable AI. Kernels 3.1 and 3.2 have

the same minimum AI (1/12), however kernel 3.2 has a 3× higher maximum (1/2 vs. 1/6). It is important

to reinforce that all calculations involving AI were done under the assumption that all fibers with no non-

zero elements are not considered in the computation. If such fibers were to be introduced, the maximum

AI would remain unchanged, but the minimum AI would drop down to zero.

3.1.2 Matricised Tensor Time Khatri-Rao Product (MTTKRP)

Next we present and analyse algorithms for sparse MTTKRP, with CSF as the storage format for the ten-

sor. Sparse computation of this method consists of multiplying each non-zero element of the tensor with

a row of a matrix for all dimensions but one, meaning a tree-dimensional tensor requires two matrices

as was elaborated on Section 2.3.4. This analysis consists of evaluating the AI and performance of said

solution against synthetic datasets on general-purpose architectures, namely the CPU and the GPU.

Resorting to roofline models, described in Section 2.6, this analysis aims to confirm the bottlenecks and

test the limits of utilization on the architectures.

3.1.2.A Kernel V1: Element-centric MTTKRP approach

For MTTKRP on sparse tensors stored in CSF format, the first approach is analogue to the one pre-

sented for TTM on Section 3.1.1.A. Each thread computes one element of the output, therefore each

thread is assigned with one slice of the tensor, one column of matrix1 and one column of matrix2. Note

that these columns must match, e.g. a thread gets column zero on both matrices. Similarly to the kernel

presented for TTM, all threads are completely independent and can be run in parallel without any need

for synchronisation.

1 // SlcCnt * ColCnt -> one for each element of the output

28



2 range<2> globalSize(slcCnt, colCnt);

3 range<2> localSize(1, colCnt);

4 nd range<2> num items(globalSize, localSize);

5

6 event e { q.submit([&](handler &h) {

7 h.parallel for(num items, [=](nd item<2> item) {

8 const auto slc { item.get global id(0) };

9 const auto col { item.get local id(1) };

10

11 auto inB { 0.0f };

12 auto inC { 0.0f };

13

14 // Load slice boundaries: accSlcPtr[slc] and accSlcPtr[slc+1]

15 for (auto fbr { accSlcPtr[slc] }; fbr < accSlcPtr[slc + 1]; ++fbr) {

16 // Load fiber index

17 const auto j { (accFbrIdx[fbr] - 1) * colCnt };

18

19 // Load fiber boundaries: accFbrPtr[fbr] and accFbrPtr[fbr+1]

20 for (auto ele { accFbrPtr[fbr] }; ele < accFbrPtr[fbr + 1]; ++ele) {

21 // Load in-fiber index and value

22 const auto k { (accKIdx[ele] - 1) * colCnt };

23 const auto val { accValues[ele] };

24

25 // Load element of the column of matrix2

26 // Compute product and accumulate

27 inC += val * accMatrix2[k + col];

28 }

29

30 // Load element of the column of matrix1

31 // Compute product and accumulate

32 inB += inC * accMatrix1[j + col];

33 inC = 0.0f;

34 }

35

36 // Store output element to global memory

37 accOutput[slc * colCnt + col] = inB;

38 });

29



39 }) };

Listing 3.3: MTTKRP Kernel V1

Kernel 3.3 creates as many threads as there are output elements (line 2). Each thread starts by

loading the slice boundaries (line 15). Then the fiber index (line 17) and the fiber boundaries (line 20),

this process is repeated once for each fiber within the slice. Since one fiber’s end is the start of a new

fiber, the number of loads for the fiber boundaries is equal to number of fibers present in the slice plus

one. Now for each non-zero element of the current fiber, both the element’s index and value are loaded

(lines 22-23). This is repeated for every fiber in the slice so it is done for every single non-zero element

in the slice. Therefore from the tensor it is necessary to load twice for the slice boundaries, twice for

each fiber in the slice for the fiber index and boundary, and twice for each non-zero in the slice for the

element index and value. From matrix2 there is a load for each element in the slice (line 27) and from

matrix1 there is one load for each fiber in the slice (line 32). As such, the total number of loads can

be expressed as 2 + (2 × FbrPSlc + 1) + 2 × NnzPSlc + FbrPSlc + NnzPSlc. Since each thread

computes one element of the output, there is only one store per thread (line 37). As for computations,

for each non-zero in the slice there is one MAC (line 27) and for each fiber there is one more MAC (line

32). Since one MAC corresponds to two operations, the total number of computations per thread can be

expressed as 2× FbrPSlc+ 2×NnzPSlc. Assuming all data types used are 4-byte wide, the AI of this

kernel can be expressed as follows:

AIv1 =
1

4
× 2× FbrPSlc+ 2×NnzPSlc

2 + (3× FbrPSlc+ 1) + (3×NnzPSlc) + 1
=

=
1

2
× FbrPSlc+NnzPSlc

3× (FbrPSlc+NnzPSlc) + 4

(3.7)

According to the expression derived in 3.7, the AI of each thread depends on the characteristics of

the slice it was assigned. Namely, on the number of fibers and non-zero elements of the slice. Like in

the previous method, it is possible to determine the upper and lower bounds of the AI for this kernel. The

lower bound can be achieved when the slice has the minimum amount of fibers and non-zero elements

possible, which is one in both cases. Thus, the minimum AI is as follows:

min(AIv1) = min

(
1

2
× FbrPSlc+NnzPSlc

3× (FbrPSlc+NnzPSlc) + 4

)
=

1

2
× 2

10
=

1

10
(3.8)

On the other hand, the upper bound can be achieved when both the number of fibers and the number

of non-zero elements in the slice are large enough so that the following equation is verified.

30



max(AIv1) = max

(
1

2
× FbrPSlc+NnzPSlc

3× (FbrPSlc+NnzPSlc) + 4

)
≈ 1

2
× 1

3
=

1

6
(3.9)

3.1.2.B Kernel V2: Row-centric MTTKRP approach

Data-parallelism can also efficiently extracted in MTTKRP processing by assigning to each thread the

entirety of both matrices, making it responsible for the computation of a whole output row, instead of

being responsible for the computation of only a single element as happened in Kernel 3.3.

1 // SlcCnt threads -> one for each row of the output

2 range<1> globalSize(slcCnt);

3 range<1> localSize(4);

4 nd range<1> num items(globalSize, localSize);

5

6 event e { q.submit([&](handler &h) {

7 h.parallel for(num items, [=](nd item<1> item) {

8 const auto slc { item.get global id(0) };

9

10 float inB[colCnt], inC[colCnt];

11

12 // Load slice boundaries: accSlcPtr[slc] and accSlcPtr[slc+1]

13 for (auto fbr { accSlcPtr[slc] }; fbr < accSlcPtr[slc + 1]; ++fbr) {

14 // Load fiber index

15 const auto j { (accFbrIdx[fbr] - 1) * colCnt };

16

17 // Load fiber boundaries: accFbrPtr[fbr] and accFbrPtr[fbr+1]

18 for (auto ele { accFbrPtr[fbr] }; ele < accFbrPtr[fbr + 1]; ++ele) {

19 // Load in-fiber index and value

20 const auto k { (accKIdx[ele] - 1) * colCnt };

21 const auto val { accValues[ele] };

22

23 // Load corresponding row of matrix2

24 // Compute product and accumulate

25 for (auto col { 0 }; col < colCnt; ++col) {

26 inC[col] += val * accMatrix2[k + col];

27 }

28 }

29

31



30 // Load corresponding row of matrix1

31 // Compute product and accumulate

32 for (auto col { 0 }; col < colCnt; ++col) {

33 inB[col] += inC[col] * accMatrix1[j + col];

34 inC[col] = 0.0f;

35 }

36 }

37

38 // Store output row to global memory

39 for (auto col { 0 }; col < colCnt; ++col) {

40 accOutput[slc * colCnt + col] = inB[col];

41 }

42 });

43 }) };

Listing 3.4: MTTKRP Kernel V2

Kernel 3.4, creates threads in the same number as slices in the tensor, which leaves each of the

threads responsible for computing one row of the output. As the tensor loads are the same as in the

previous kernel, the difference in loads comes from the matrices where Kernel 3.4 always loads one row

from whichever matrix (lines 25-27 and 32-35). As such, using the same notation as before, the total

number of loads can be expressed as 2 + (2 × FbrPSlc + 1) + 2 × NnzPSlc + ColCnt × (FbrPSlc +

NnzPSlc). The differences also extend to the the number of stores and to the computations. In the first,

instead of storing a single element, a row of elements is stored (lines 39-41). While on the latter, as each

fiber is now computed against the whole of the matrix (lines 25-27 and 32-35), instead of single column,

the total number of computations grows proportionally to the number of columns in the matrices, being

expressed as ColCnt× (2×FbrPSlc+2×NnzPSlc). Again assuming all data types used are 4-bytes

wide, the AI of this kernel can be expressed as follows:

AIv2 =
1

4
× 2× ColCnt× (FbrPSlc+NnzPSlc)

(2× FbrPSlc+ 2×NnzPSlc+ 3) + ColCnt× (FbrPSlc+NnzPSlc) + ColCnt
=

=
1

2
× ColCnt× (FbrPSlc+NnzPSlc)

2× (FbrPSlc+NnzPSlc+ 1) + ColCnt× (FbrPSlc+NnzPSlc+ 1) + 1
=

=
1

2
× ColCnt× (FbrPSlc+NnzPSlc)

(FbrPSlc+NnzPSlc+ 1)× (ColCnt+ 2) + 1
(3.10)

According to the expression derived in 3.10, the characteristics of the slice that was assigned to the

32



thread influences the AI of said thread, much like in Kernel 3.3. The AI for all threads is also influenced

by the number of columns in the matrices. Following the reasoning on the previous sections, the AI

lower bound for this kernel can be expressed as follows:

min(AIv2) = min

(
1

2
× ColCnt× (FbrPSlc+NnzPSlc)

(FbrPSlc+NnzPSlc+ 1)× (ColCnt+ 2) + 1

)
=

1

2
× 2

10
=

1

10
(3.11)

For the AI’s upper bound the reasoning is also similar, so the number of columns in the matrices, the

number of fibers and the number of non-zeros must all be large enough in order to verify the following

equation:

max(AIv2) = max

(
1

2
× ColCnt× (FbrPSlc+NnzPSlc)

(FbrPSlc+NnzPSlc+ 1)× (ColCnt+ 2) + 1

)
=

= max

(
1

2
× ColCnt

ColCnt+ 2
× FbrPSlc+NnzPSlc

FbrPSlc+NnzPSlc+ 1

)
≈ 1

2
× 1× 1 =

1

2

(3.12)

Similarly to the behaviour of the TTM kernels, both have the same minimum AI (1/10), however

Kernel 3.4 has a 3× higher maximum (1/2 vs. 1/6). It is once again important to reinforce that all

calculations involving AI were done under the assumption that both all slices and fibers with no non-zero

elements are not introduced in the computation. If such slices and/or fibers were to be introduced, the

maximum AI would remain unchanged, but the minimum AI would drop down to zero.

3.2 Exploring Performance Upper-Bounds with Synthetic Tensors

A direct performance comparison between the previously elaborated data-parallel approaches, for TTM

and MTTKRP, also depends on factors other than the kernels’ AI ranges, such as the processing ca-

pabilities of the device in which the computations are performed (e.g., multi-core CPU or GPU), as well

as on the characteristics of the sparse tensor dataset under evaluation. Therefore, the following study

aims at describing the behaviour of the aforementioned kernels as well as uncovering their performance

upper-bounds. For this purpose, we also construct a set of synthetic sparse tensors in such a way that

the worst-case and best-case performance can be attained. These synthetic best-case and worst-case

sparse tensors are constructed based on the AI, derived on 3.1 and 3.4 for TTM and on 3.7 and 3.10

for MTTKRP, as well as on the architectures of the CPU and GPU devices. All tests and measurements

for this study were collected under Intel’s Devcloud environment, the hardware setup used is depicted in

Table 3.2.

33



Device Model Frequency Cores
CPU Intel Core i9-11900KB 3,30 GHz 161

GPU Intel 11th Gen UHD Graphics 1,45 GHz 322

1 Physical Cores × Concurrent Threads per Core = 8× 2
2 Execution Units

Table 3.2: Hardware setup for study of general-purpose architectures

3.2.1 TTM Best-Case Performance Analysis

The challenges in most approaches to sparse TTM are load balancing and data locality. While the first

challenge can to some extent be mitigated, both are mostly dependent on the specific features of the

dataset used. For that reason, the prime candidate to achieve maximum performance with both Kernels

3.1 and 3.2 is to construct a semi-sparse tensor. The semi-sparse tensor is a tensor that is sparse in all

its dimensions except for one.

Figure 3.1: Semi-sparse tensor and CSF’s representation of its fibers

This specific disposition, depicted in Figure 3.1, consists of a tensor with its horizontal mode dense,

meaning all fibers of this mode are either empty or fully dense. In other words, there are several dense

fibers sparsely scattered across the tensor.

The distribution of the non-zero elements in the proposed best-case synthetic sparse tensor allows

for both load balancing, since all fibers have the same length, as well as data locality, since all fibers

access consecutively the rows of the matrix. To construct the best-case scenario, there are three pa-

rameters that must be modeled: i) FbrCnt – the number of fibers with non-zero elements, ii) NnzPFbr

– the number of non-zeros in each fiber and iii) ColCnt – the number of columns in the matrix. It is

important to notice that for this specific kind of tensor, since fibers are dense, the number of rows of the

matrix is the same as the number of non-zero elements in each fiber.

Two more parameters can be deduced from three aforementioned parameters, i.e., the number of

threads created and the matrix size, which may slightly differ depending on the kernel used. For Kernel

3.1, since every fiber-column dot product is assigned to a different thread, the number of threads created

34



is FbrCnt × ColCnt. On the other hand, for Kernel 3.2, each thread computes one fiber against the

whole matrix, therefore the number of threads created is FbrCnt. Finally, the size of the matrix is defined

by NnzPFbr × ColCnt.

3.2.1.A CPU Analysis

The CPU architecture under evaluation (Intel Core i9-11900KB) involves a memory hierarchy that in-

cludes a set of private (L1 and L2) and shared L3 caches. As such, there are different best-cases

depending on which of the cache levels is being addressed. Since the fastest cache is L1, the best-case

corresponds to the scenario when the matrix elements fit into L1. However, this requires the matrix to

be very small which, according to 3.1 and 3.4, causes the AI to be very low. It is non-trivial to find the

optimal trade-off between a cache fitting size and a high AI.

To find this optimal trade-off some empirical analysis is required, for which a starting point is required

and must be chosen bearing in mind three crucial aspects: i) FbrCnt should be large enough, such

that the workload is significant and, therefore, does not influence the measures taken; ii) NnzPFbr

is large enough, such that the AI of the kernel is close to its maximum; and iii) NnzPFbr × ColCnt

is small enough, such that the matrix fits in the desired cache level. Let the following parameters be

considered as a starting point: FbrCnt = 131072 for both kernels. NnzPFbr = 256 for Kernel 3.1 and

NnzPFbr = 512 for Kernel 3.2. ColCnt = 64 for Kernel 3.1 and ColCnt = 256 for Kernel 3.2.

Figure 3.2: CPU best-case performance for different
number of non-zero elements in the fiber

Figure 3.3: CPU best-case performance for different
number of columns in the matrix

Figure 3.2 shows the behaviour of kernels 3.1 and 3.2 when changing just one of the parameters at a

time. One can notice irregular spikes and drops of performance in the obtained experimental results for

Kernel 3.1, while for Kernel 3.2 the performance does not change drastically. The spikes are explained

by having a larger NnzPFbr, since it provides higher AI and therefore allows for better performance. On

the other hand, the drops are explained by the cache levels in the architecture, i.e., whenever the matrix

35



becomes too large to fit in a cache level, the kernel becomes bound by the next level, which has lower

bandwidth, thus making the TTM execution slower.

In Figure 3.3, Kernel 3.1 displays increasing performance until ColCnt = 64 and then the perfor-

mance starts to decrease, since the dataset no longer fits in L1 cache. A similar behaviour can be

observed for ColCnt = 1024, but for L2 cache. Kernel’s 3.2 AI also depends on ColCnt, but its be-

haviour is similar, performance increases until ColCnt = 256 and then slowly decreases as the number

of columns is growing.

Figure 3.4: Roofline model for CPU best-case scenario with both kernels

Figure 3.4 provides the CARM characterization of kernels 3.1 and 3.2 for this specific CPU architec-

ture. The gray zone represents the theoretical limits of AI calculated for Kernel 3.2. Kernel’s 3.1 limits are

also within these limits. It is possible to observe that due to compiler optimisations, namely vectorisation,

Kernel 3.1 achieves higher performance and AI than Kernel 3.2.

3.2.1.B GPU Analysis

For the GPU, given the memory-bound nature of TTM kernels, the best-case exploration strategy aims

at ensuring that the AI of kernels is as high as possible. In addition, the parallelism should be high in

order to fully exploit the massively parallel GPU architecture, while the matrix should fit in the GPU L3

cache, to avoid additional loads from the DRAM.

36



For Kernel 3.1, this means making NnzPFbr sufficiently large such that Equation 3.3 is verified,

while ensuring FbrCnt×ColCnt large enough to keep the GPU units occupied and keeping NnzPFbr×
ColCnt small enough to ensure that the dataset fits in the GPU L3 cache. A similar rationale is followed

for Kernel 3.2, where sufficiently large NnzPFbr and ColCnt should be provisioned to satisfy Equation

3.6, while large enough FbrCnt is required to maximize the occupancy of the GPU units, as well as

small enough NnzPFbr × ColCnt to guarantee that the dataset fits in the L3 cache. As in the CPU

case, a starting point is required to be chosen according to these restriction, which is in this case set

to: FbrCnt = 131072 which is enough to fully utilize the GPU’s compute units, NnzPFbr = 512 which

ensures AI very close to the theoretical maximum and ColCnt = 64.

Figure 3.5: GPU best-case performance for different
number of non-zero elements in the fiber

Figure 3.6: GPU best-case performance for different
number of columns in the matrix

Figure 3.7: GPU best-case performance for different number of fibers with non-zero elements

Figures 3.5, 3.6 and 3.7 depict the behaviour of Kernel 3.1 on the tested GPU devices for different

ranges of parameters on both kernels. In Figure 3.5, the performance increases as the length of the

fibers is increasing and starts stabilising around NnzPFbr = 256. However, when NnzPFbr is in-

37



creased even further performance starts to drop drastically for Kernel 3.1. The reason for this behaviour

lies in the fact that the matrix size is directly proportional to the NnzPFbr parameter, thus beyond the

NnzPFbr = 2048 the matrix does not fit in GPU L3 cache. Such phenomenon is not observed for

Kernel 3.2, since each thread has a fiber assigned and therefore it streams through the tensor fibers.

In Figure 3.6, the behaviour is very similar to the one observed in Figure 3.5. Performance increases

until ColCnt = 32 for Kernel 3.1 and ColCnt = 64 for Kernel 3.2. Where it maintains stable until

ColCnt = 256 for Kernel 3.1. After which any further increase in matrix size results in reduced perfor-

mance for both kernels. In Figure 3.7, one can observe that the performance increases as the number of

fibers is increasing and starts stabilising around FbrCnt ≥ 65536, signalling that the GPU units are fully

occupied. As previously exposed, the fiber-centric TTM approach in Kernel 3.2 creates less threads,

concentrating more workload in each thread, thus lading to having more factors affecting its AI and

making its behaviour more irregular.

Figure 3.8: Roofline model for GPU best-case scenario with both kernels

Finally, in Figure 3.8, the roofline model for the architecture is presented and it is possible to observe

that the performance is very close to the maximum achievable by the device for the corresponding AI in

both kernels.

38



3.2.2 TTM Worst Case Performance Analysis

Following a similar reasoning as for the best-case, it is also possible to determine the worst-case TTM

processing scenario, in order the uncover the lower bounds on the performance attainable with the pro-

posed TTM kernels on both CPU and GPU architectures. The strategy followed herein aims at analysing

the worst-case scenario under the condition that the full utilization of processing resources is attained

with a data distribution in the specifically created synthetic sparse tensor that hinders performance.

For this purpose, the data distribution can be modeled with four parameters: i) FbrCnt – the number

of fibers with non-zero elements; ii) NnzPFbr – the number of non-zeros in each fiber; iii) ColCnt – the

number of columns in the matrix, and iv) RowCnt – the number of rows in the matrix. It is important to

notice that, unlike what happens in the semi-sparse tensor, the number of non-zero elements in the fiber

do not match the number of rows in the matrix. Instead, RowCnt is now used to denote the effective

size of the fiber, which is always greater than NnzPFbr.

Two more parameters can be deduced from these four parameters, which slightly differ depending on

the kernel used. For Kernel 3.1, since every fiber-column dot product is assigned to a different thread,

the number of threads created is equal to FbrCnt × ColCnt. On the other hand, for Kernel 3.2, each

thread computes one fiber against the whole matrix, therefore the number of threads created is equal to

FbrCnt. Finally, the size of the matrix is defined by RowCnt× ColCnt.

To facilitate the comparison of the results obtained with this scenario to the previously presented

ones, both FbrCnt and ColCnt were kept the same, while only RowCnt was varied. This way, the

workload is always kept at about the same size, with the only difference being the distribution of the

non-zero elements across the fibers.

3.2.2.A CPU Analysis

For the CPU, instead targeting specific cache levels, the idea behind the worst-case scenarios is to pre-

vent any data reuse in the cache hierarchy, thus limiting the kernel performance to the lowest bandwidth

available in the CPU memory hierarchy, i.e., DRAM.

To further accentuate the worst-case performance scenario, a lower AI is also desirable. For Kernel

3.1, this means making NnzPFbr = 1 such that Equation 3.2 is verified, while keeping RowCnt×ColCnt

large enough to ensure that the tensor data does not fit in any cache level. For Kernel 3.2, both NnzPFbr

and ColCnt should be equal to one in order to satisfy Equation 3.5, while keeping RowCnt × ColCnt

large enough, such that the dataset does not fit in any cache level.

Figure 3.9 provides one possible representation of a synthetic worst-case sparse tensor with long

fibers, each with a single non-zero element. It is worth noting that the non-zero elements are displaced

across fibers in such a way that they do not allow for any reuse of the matrix elements. For the CPU

used to test and model the parameters of the proposed approach setting RowCnt = 524288 proved to

39



Figure 3.9: Depiction of worst case tensor

be large enough to display a minimal performance.

Figure 3.10: Roofline model for CPU worst case scenario with both kernels

Figure 3.10 represents the roofline model for kernels 3.1 and 3.2 for Intel Core i9-11900KB CPU

under the worst-case performance scenarios. In both cases, it is possible to observe that the objective

of being outside of the cache levels is achieved, since both kernels are positioned below the respective

DRAM roof. It is possible to observe that due to compiler optimisations, namely vectorisation, Kernel 3.1

achieves higher AI than kernel 3.2.

40



3.2.2.B GPU Analysis

In order to exercise the worst-case performance scenario on the GPU architecture, it is necessary to

construct the synthetic sparse tensors that allow for the kernels’ AI to be as low as possible, as TTM is

memory bound on the GPU, while also ensuring that the matrix does not fit in the GPU L3 cache, thus

enforcing constant loads from the DRAM.

To create the worst-case synthetic sparse tensor for Kernel 3.1, it is needed to ensure NnzPFbr = 1

such that Equation 3.2 is verified, while keeping RowCnt × ColCnt large enough such that the matrix

does not fit in GPU L3 cache. For Kernel 3.2, both NnzPFbr and ColCnt should be equal to one such

that Equation 3.5 is satisfied, while keeping RowCnt× ColCnt large enough to prevent reuse of matrix

elements in GPU L3 cache.

Figure 3.11: GPU worst case performance for different number of rows in the matrix

Figure 3.11 presents the performance variation of both kernels with respect to the different RowCnt

values. As it can be observed in Figure 3.11, the performance is increasing with the increase of RowCnt.

This happens because the size of the matrix is increasing, thus forcing the GPU to load data from outside

the GPU L3 cache.

Figure 3.12 represents the roofline model for kernels 3.1 and 3.2 for this specific architecture under

the worst-case evaluation scenario. In both cases, it is possible to observe that the objective of being

outside of the GPU L3 cache is achieved. However, it is important to notice that, since ColCnt was kept

at 64 columns (necessary to achieve a fair comparison), the AI of Kernel 3.2 is higher than the minimum.

3.2.3 MTTKRP Best-Case Performance Analysis

Load balancing and data locality are, arguably, the greatest challenges in most approaches to sparse

MTTKRP. While there are attempts to mitigate these issues, they mostly depend on specific features

of the datasets used. Therefore a synthetic tensor that allows a MTTKRP kernel to achieve its best

41



Figure 3.12: Roofline model for GPU worst case scenario with both kernels

performance is a tensor whose characteristics facilitate the achievement of load balancing and data

locality. For that reason the prime candidate to achieve maximum performance with both kernels 3.3 and

3.4 is a tensor which consists of a set of dense slices sparsely spread out. Similar to the semi-sparse

tensor presented for the best-case performance in TTM processing but now with dense slices instead of

fibers. Naturally, it is arguable to which extent such tensor can be considered sparse, however, since the

purpose of this section is to determine the upper bounds of our MTTKRP kernels, such considerations

are not relevant.

3.2.3.A CPU Analysis

Modern CPUs architecture possess a memory hierarchy that includes a set of private (L1 and L2) and

shared L3 caches. As such, depending on which of the cache levels is being targeted the best-case

performance varies. L1 is the smallest and fastest memory in the hierarchy, therefore it is the one that

can provide the best performance, namely when the matrices fit in it. However, this requires the matrices

to be very small which, according to 3.7 and 3.10, causes the AI to be very low.

In order to help finding an optimal solution between a cache fitting size and a high AI an empirical

analysis is required, as it is non-trivial to solve such trade-off. After some experimentation, we settled

on SlcCnt = 32768 for both kernels. We also decide on FbrCnt = 524288 and NnzCnt = 8388608 for

Kernel 3.3 and FbrCnt = 2097152 and NnzCnt = 134217728 for Kernel 3.4. The only parameter that

42



still needs to be set is ColCnt.

Figure 3.13: CPU best-case performance for varying number of columns

Figure 3.13 shows the behaviour of kernels 3.3 and 3.4 when changing just that one parameter. For

Kernel 3.3, performance increases with the increase in number of columns, specially from ColCnt = 16

as the compiler starts vectorising the kernel loops. As of ColCnt = 256, the performance drops as the

size of matrices is large enough to start being affected by the cache size and the loads from the tensor,

which pollute the cache. For Kernel 3.4, performance also increases with the increase in number of

columns, however, due to the compiler never vectorising its loops, it ends up never reaching as high

performance as Kernel 1.

Figure 3.14 provides the CARM characterisation of Kernels 3.3 and 3.4 for this specific CPU archi-

tecture. The gray zone represents the theoretical delimits the attainable AI by Kernel 3.2, as the range

of Kernel’s 3.3 is a subset of it. From the Figure, it is possible to observe that, even though both kernels

are reusing their matrices from L1 cache, their performance is close to the L2 cache roof. The reason

behind this relates with the loads from the tensor, namely the fiber and element indexes as well as the

values. These are never reused as each element is only computed once, therefore they are bounded by

DRAM bandwidth which impacts the overall performance.

3.2.3.B GPU Analysis

For the GPU analysis, given a memory-bound nature of both our MTTKRP kernels, ensuring that the AI

of kernels is as high as possible is crucial to achieve the best-case performance. Besides achieving a

high AI, in order to fully exploit the massively parallel architecture of the GPU, parallelism must be high,

while the matrices still fit in the GPU L3 cache, to avoid additional loads from the DRAM.

For Kernel 3.3, this means making FbrPSlc + NnzPSlc sufficiently large such that Equation 3.9 is

verified, while ensuring that the SlcCnt×ColCnt threads are in quantity enough to keep the GPU units

occupied. Also for this specific tensor FbrPSlc and NnzPFbr are the number of rows for matrix1 and

43



Figure 3.14: Roofline model for CPU best-case scenario with both kernels

matrix2 respectively, therefore ensuring that their product with the number of columns is small enough

to fit in the GPU’s L3 cache is also fundamental. For Kernel 3.4, a similar rationale is followed. However,

to satisfy Equation 3.12, ColCnt must also be as high as possible and the parallelism is only dependent

on the number of slices. Having these thoughts in mind and after some empirical experimentation, we

arrived at SlcCnt = 32768, FbrCnt = 2097152, NnzCnt = 134217728 and ColCnt = 32 which proved to

be the combination that provided the best performance for both kernels.

In Figure 3.15, the roofline model for the architecture is presented and it is possible to observe that

the performance is very close to the maximum achievable by the device for the corresponding AI in both

kernels.

3.2.4 MTTKRP Worst Case Performance Analysis

In order the uncover the lower bounds on the performance attainable with the proposed MTTKRP kernels

on both CPU and GPU, it is also possible to determine the worst-case MTTKRP processing scenario by

following a similar reasoning as for the best-case. To achieve meaningful results, we aim at analysing

the worst case scenario under the condition that the full utilization of processing resources is attained

with a data distribution in the specifically created synthetic sparse tensor that hinders performance.

Besides ensuring full device occupation to facilitate the comparison of the results obtained with this

44



Figure 3.15: Roofline model for GPU best-case scenario with both kernels

scenario to the previously presented ones, we also kept both SlcCnt and ColCnt the same. So the

differences are that now each slide has only one fiber with non-zero elements and each fiber has only

one non-zero element, meaning SlcCnt = FbrCnt = NnzCnt. It is important to notice that, unlike in

the best-case, for this tensor the number of rows is not the same as FbrPSlc for matrix1 and NnzPSlc

for matrix2. This way, the workload is always kept at about the same size, with the only difference being

the distribution of the non-zero elements across the fibers.

3.2.4.A CPU Analysis

To achieve the worst possible performance on the CPU, one should prevent data reuse in any cache

level, hence limiting the kernel performance to the bandwidth of the slowest memory available on the

CPU, i.e., DRAM.

To further accentuate the impact of being bound by such memory, a lower AI is also desirable. For

both kernels, this means making SlcCnt = FbrCnt = NnzCnt, which in term leads to FbrPSlc =

NnzPFbr = 1. For Kernel 3.4, to ensure minimum AI, it is also necessary to have ColCnt as low as

possible. Other important considerations are ensuring that both matrices are large enough to ensure

that the tensor data does not fit in any cache level. For simplicity, we set the number of rows in both

matrices to RowCnt.

Increasing number of rows in the matrices has the effect displayed on Figure 3.16. As can be

45



Figure 3.16: CPU worst-case performance for different number of rows in the matrices

observed, performance gradually drops, especially from RowCnt = 16384 as it is from that moment that

the size of the matrices becomes to great for any cache level to fit, therefore making the kernels bounded

by the bandwidth of the DRAM.

Figure 3.17: Roofline model for CPU worst-case scenario with both kernels

Figure 3.17 represents the roofline model for kernels 3.3 and 3.4 under the worst-case performance

scenarios. For this method, performance is above the DRAM roof due to the limitations imposed when

defining the parameters, namely the number of slices as well as the number of columns in the matrices.

However, it is still possible to observe that the performance achieved is closer to the DRAM roof than it

46



is to the L3 roof and that the AI is at its minimum for both kernels.

3.2.4.B GPU Analysis

Since MTTKRP is memory bound on the GPU, in order to exercise the worst-case performance scenario

on the GPU, it is necessary to construct a synthetic sparse tensor that allows for the kernels’ AI to be as

low as possible, while also ensuring that the matrices are large enough in order to force constant loads

from the DRAM.

To create the worst-case synthetic sparse tensor for both kernels, it is necessary to experimented

with several combinations of number of rows for the matrices, in order to reduce the search options, we

decided that both matrices would have the same number of rows.

Figure 3.18: GPU worst-case performance for different number of rows in the matrices

Figure 3.18 portrays the performance of both kernels for an increasing number of rows in the matri-

ces. As can be observed, performance gradually drops as would be expected, since the lack of reuse

causes most of the data to be streamed from the DRAM, the increasing size of the matrices forces the

GPU to load data from outside the GPU L3 cache.

Figure 3.19 displays the roofline model for the both kernels in the GPU architecture, where it is

possible to observe that the performance is very close to bandwidth of the slowest memory on the

device. It is also important to notice that due to the limitations imposed when generating the worst-case

synthetic tensor, the performance of Kernel 3.3 is slightly above the DRAM bandwidth and the AI of

Kernel 3.4 is higher than the minimum the kernel can achieve.

3.3 Heterogeneous Approach

In order to take full advantage of the system available and described in Table 3.2, we also developed

and tested an heterogeneous solution for TTM and MTTKRP. Since we already have two kernels for

47



Figure 3.19: Roofline model for GPU worst-case scenario with both kernels

each method, the greatest challenge remaining in developing an heterogeneous kernel is to decide on

how to split the workload across the targeted architectures.

Our first approach was to do a pure static workload distribution of the fibers and slices for TTM and

MTTKRP respectively. This can be achieved by creating multiple SYCL queues, one for each device,

and then submitting the corresponding fibers or slices to each one. Naturally, this approach comes with

flaws, such as lack load balance which can be due to the lack of prior knowledge over the architectures

present in the system, as well as the dataset’s characteristics in general.

For TTM, the number of fibers assigned to each architecture must be in the proportion of its process-

ing capabilities when compared to processing capabilities of the remaining. Also since the number of

elements to process in each fiber may be different, it is also important to ensure that the number of non-

zero elements assigned to each architecture follow a similar proportion as the fibers they are present

in. For MTTKRP, the reasoning is the same but with an added layer of depth, as now besides the slice

distribution, the number of fibers and non-zero elements in the slice must be considered.

Bearing these flaws in mind, we developed a different static approach. This approached aimed

at probing the system to estimate the optimal proportions for the workload distribution and only then

actually distributes the workload, hence herein called adaptive approach. To achieve such behaviour,

we start by separating the initial dataset into two parts, one consisting of around 10% of the data and

the other with the remaining. The smaller portion is divided equally between CPU and GPU, with the

48



execution time on each device being used to define said proportion. The other part, consisting of around

90% of the data, is then separated into two different sized parts based on the computed proportion.

Figure 3.20: Step-by-step example of Adaptive Approach

Figure 3.20 displays a step-by-step example of the distribution procedure executed by our adaptive

approach. Relating the the previous explanation with the Figure, one can see that from step 0 to step

one the data is separated in two parts. In TTM the data is the fibers, therefore in a tensor with one

hundred thousand fibers, the two parts would consist of approximately ten thousand fibers and ninety

thousand fibers respectively. For MTTKRP, the reasoning is the same but with slices.

The main disadvantage in this approach is that requires the first 10% to be processed serially in

relation to the remaining 90%. When compared to the purely static approach, this tends to be better

when the proportion of the previous is far from the actual computational capabilities of the architectures

in the system, and tends to be worst when these match. Also for both versions there can be still some

issues with the workload distribution.

For TTM, even if the number of fibers is well distributed, the number of non-zeros in the each fiber can

differ, therefore it may happen that the workloads do not completely follow the proportion. For MTTKRP,

the same can happen but even worse, because now not only the number of non-zero elements on the

slice matters, but also the number of fibers on the slice. This could be avoided with resort to dynamic

assignment.

3.4 Summary

This chapter started by introducing our TTM and MTTKRP implementation for general-purpose archi-

tectures. For each of the methods, two kernels were presented and for each of the kernels, the AI was

derived. From the derived AI expressions, the upper and lower-bounds of the kernels’ AI were also

presented. With resort to synthetic datasets that exacerbate the characteristics of both the kernels and

the architectures, the performance limits were explored and discussed. Finally, we thoroughly explaining

our heterogeneous approaches.

49



50



Chapter 4

Sparse Tensor Processing on

Specialised Architectures

Unlike the CPU and GPU, the FPGA’s architecture is not fixed, it is instead defined depending on

the algorithm that is targeting it. Therefore, the approach must be different for these architectures.

This analysis consists of theoretically measuring the AI and peak performance on the FPGA. With

this analysis and the concepts of roofline models, described in section 2.6, it is expected to confirm

the bottlenecks and test the limits of utilization on the architecture. Repeating the notation defined in

Chapter 3, let us resort to Table 4.1:

SlcCnt total number of slices in the tensor
FbrCnt total number of fibers in the tensor
NnzCnt total number of non-zero elements in the tensor
ColCnt total number of columns in the matrices
FbrPSlc number of fibers in a slice
NnzPSlc number of non-zero elements in a slice
NnzPFbr number of non-zero elements in a given fiber

Table 4.1: Notation used throughout this chapter

It is important to notice that the FPGA does not create threads for processing, therefore the AI does

not depend on the data distribution, but instead on the characteristics of the whole tensor. Furthermore,

the FPGA’s peak performance can be derived from the number of DSPs present in the device.

Device Model Frequency ALMs Registers DSPs
FPGA Intel Arria 10 GX 1150 450 MHz 427 200 1 708 800 1518

Table 4.2: Hardware setup for study of specialised architectures

Table 4.2 refers to the FPGA used for this analysis. From the Table, it is possible to infer the FPGA’s

51



peak performance. With 1518 DSPs available, each capable of a MAC every cycle, meaning two oper-

ations, the FPGA is capable of 3036 single-precison floating-point operations every cycle. Considering

a frequency of 450 MHz, the theorectical peak performance is of 1.366 TFLOPS. Note that for the peak

performance the remaining resources of the FPGA, specially the soft-logic, were left out. Depending on

the design and on the operation being executed, the operating frequency and percentage of available

resources for the actual design may change, hence, in order to achieve a fair comparison they are not

considered. Naturally, each design uses different number of DSPs for one Processing Element (PE) and

therefore the peak performance of the design itself may not be the same as the peak performance of the

FPGA. For each developed design, we analyse the attainable peak performance of that design.

4.1 Tensor Times Matrix (TTM)

The first approach taken, in order to create a design that would efficiently process TTM on the FPGA,

was to create as many PEs as columns in the matrix. Then each PE would compute all fibers against

their respective column. This approach lead to poor spatial and temporal locality in data accesses which

hindered the performance. However such design provided a much needed insight on the fundamentals

of FPGA design and optimisation with SYCL. After completely revamping the original design, we arrived

at the core component in TTM processing on the FPGA.

1 event e { q.submit([&](handler &h) {

2 h.single task([=]() [[intel::kernel args restrict]] {

3 float tmp[colCnt];

4

5 // Iterate over all fibers with non-zero elements

6 for (auto fbr { 0 }; fbr < fbrCnt; ++fbr) {

7

8 #pragma unroll

9 for (auto col { 0 }; col < colCnt; ++col) {

10 tmp[col] = 0.0f;

11 }

12

13 // Load fiber boundaries: accFbrPtr[fbr] and accFbrPtr[fbr+1]

14 for (auto ele { accFbrPtr[fbr] }; ele < accFbrPtr[fbr+1]; ++ele) {

15 // Load in-fiber index and value

16 const auto k { (accKIdx[ele] - 1) * colCnt };

17 const auto val { accValues[ele] };

52



18

19 // Load corresponding row of matrix

20 // Compute product and accumulate

21 #pragma unroll

22 for (auto col { 0 }; col < colCnt; ++col) {

23 tmp[col] += val * accMatrix[k + col];

24 }

25 }

26

27 // Store output fiber to global memory

28 #pragma unroll

29 for (auto col { 0 }; col < colCnt; ++col) {

30 accOutput[fbr * colCnt + col] = tmp[col];

31 }

32 }

33 });

34 }) };

Listing 4.1: TTM Kernel for FPGA

Kernel 4.1 generates a design that processes TTM similarly to how the kernels for general-purpose

architectures did. For each fiber in the tensor there are two loads for the fiber boundaries (line 14), then

for each element in the fiber there are two more loads for the non-zero element’s index and value (lines

16-17). Finally, a row of the matrix is loaded and computed against the element (lines 21-24). When

all elements of the tensor’s fiber have been computed the output fiber is stored to global memory (lines

28-31).

In Figure 4.1, a general diagram of the design created on the FPGA is depicted. By analysing it

along side Kernel 4.1, it is possible to confirm the accuracy of the diagram and to have a more visual

perspective of the design. The start block refers to the initialization of the variable fbr on line 6. Then

the condition to check whether there are more fibers on the same line, followed by the load of the fiber’s

boundaries and the condition to check whether there are more non-zero elements on line 14. If so the

non-zero element is processed, the processing of the element is shown in further detail and consists of

loading both the in-fiber index and value for the element. These can be done in parallel since they are

independent and correspond to lines 16-17. Then a row of the matrix is loaded, this has to be sequential

in relation to the in-fiber index as it is the index that refers which row must be loaded. Both the value

and the row are fed to an array of DSPs that perform a MAC. This corresponds to lines 21-24 and it

is important to notice that, due to the pragmas used in the kernel, it is possible to load all elements of

the row simultaneously as well as performing the MAC of the non-zero element against the entire row

53



Load Boundaries Load k Load val

Load matrix
row

DSPs

ColCnt

Start

More fibers? End

More elements?

No

Yes

No

Yes

Process Element

Store output

ColCnt

Figure 4.1: Diagram of PE

simultaneously. Finally, when there are no more non-zeros to process in the fiber, the output is stored to

global memory, this part of the diagram corresponds to lines 28-31.

The main bottlenecks in this Kernel are the loads, specifically the ones done from the matrix. This

happens because for each non-zero element a full row is loaded, however the FPGA does not have

a cache hierarchy like the previous architectures and so, even if the same row is requested by one

of the following elements, the FPGA will always have to load that same row again. In order to face

this challenge, we resorted to the FPGA’s on-chip memory. By loading the whole matrix to this faster

memory first, it is possible to reduce the average access time to data on the matrix.

1 float localMatrix[colCnt];

2

3 #pragma unroll 16

4 for (auto ele { 0 }; ele < dim2 * colCnt; ++ele) {

5 localMatrix[ele] = accMatrix[ele];

6 }

Listing 4.2: TTM add-on for matrix pre-load on FPGA

This approach is achieved by introducing the code depicted in 4.2 before line 6 on Kernel 4.1. How-

ever it comes with a trade-off, as matrices tend to be very large, the amount of resources used is greater

which causes the design to either not fit in some FPGAs or to be constrained in the maximum amount of

columns the matrix have. It is also important to notice that the unroll factor may be adjusted depending

on the resources available.

54



Now to analyse the AI of this design for a generic tensor. Assuming all data types are 4-byte wide, it

can be expressed as follows:

AIsp =
1

4
× 2×NnzCnt× ColCnt

FbrCnt+ 1 + (2×NnzCnt) + (NnzCnt× ColCnt) + (FbrCnt× ColCnt)
=

=
1

2
× NnzCnt× ColCnt

FbrCnt× (ColCnt+ 1) +NnzCnt× (ColCnt+ 2) + 1

(4.1)

It is still possible to determine a minimum and maximum AI, but from the tensor’s characteristics.

The minimum AI can be obtained when NnzCnt and ColCnt are at their minimum and FbrCnt is at

its maximum. For the first two, the minimum is one, meaning one non-zero element in the tensor and

a matrix with one column, therefore a vector. As for the latter, since only fibers with at least non-zero

element are stored, the maximum is as many fibers as non-zero elements, which in this case is also

one. Thus, the design’s minimum AI can be expressed as follows:

min(AIsp) = min

(
1

2
× NnzCnt× ColCnt

FbrCnt× (ColCnt+ 1) +NnzCnt× (ColCnt+ 2) + 1

)
=

1

12
(4.2)

Consequently, the maximum AI can be computed in a similar manner. In this case both NnzCnt

and ColCnt must be as large as possible in order to have the design perform the most computations

possible, while FbrCnt must be as little as possible in order to decrease the number of loads, meaning

one fiber with all non-zero elements in it. The following equation derives the design’s AI upper bound:

max(AIsp) = max

(
1

2
× NnzCnt× ColCnt

FbrCnt× (ColCnt+ 1) +NnzCnt× (ColCnt+ 2) + 1

)
=

= max

(
1

2
× ColCnt

ColCnt+ 2
× NnzCnt

NnzCnt+ 1

)
≈ 1

2

(4.3)

Finally, we analyse the maximum attainable performance by this PE and and how it compares to the

total FPGA peak performance. This design uses one DSP for every column on the matrix, therefore one

PE performs 2 × ColCnt operations per cycle. From Table 4.2, we also know the maximum frequency

at which the DSPs can operate, therefore the peak performance of one PE is 0.9 × ColCnt GFLOPS.

Considering the FPGA has 1518 DSPs and assuming that the number of DSPs is the bottleneck in terms

of area available, the maximum number of PEs the FPGA can accommodate is ⌊1518÷ColCnt⌋. As an

example, considering ColCnt = 16, the peak performance of one PE is 14.4 GFLOPS and the number

of PEs that fit in the FPGA are 94, thus the total peak performance is 1353.6 GFLOPS.

55



4.2 Matricised Tensor Time Khatri-Rao Product (MTTKRP)

The first approach for MTTKRP processing on this device was to parallelize the processing of the ma-

trices’ columns similar to the approach for TTM in Kernel 4.1. While this approach proved to be an

interesting starting point, a few adjustments in regards to the operation order were performed in order to

achieve maximum performance.

1 event e { q.submit([&](handler &h) {

2 h.single task([=]() [[intel::kernel args restrict]] {

3 float inTmp[colCnt], outTmp[colCnt];

4

5 // Iterate over all slices with non-zero elements

6 for (auto slc { 0 }; slc < slcCnt; ++slc) {

7

8 #pragma unroll

9 for (auto col { 0 }; col < colCnt; ++col) {

10 outTmp[col] = 0.0f;

11 }

12

13 // Load slice boundaries and within that slice,

14 // iterate over all fibers with non-zero elements

15 for (auto fbr { accSlcPtr[slc] }; fbr < accSlcPtr[slc+1]; ++fbr) {

16 // Load fiber index

17 const auto j { (accFbrIdx[fbr] - 1) * colCnt };

18

19 #pragma unroll

20 for (auto col { 0 }; col < colCnt; ++col) {

21 inTmp[col] = 0.0f;

22 }

23

24 // Within each fiber, iterate over all non-zero elements

25 for(auto ele { accFbrPtr[fbr] }; ele < accFbrPtr[fbr+1]; ++ele){

26 // Load element's index and value

27 const auto k { (accKIdx[ele] - 1) * MATRIX DIM };

28 const auto val { accValues[ele] };

29

30 // Load corresponding row from matrix2

31 // Compute product and accumulate

56



32 #pragma unroll

33 for (auto col { 0 }; col < colCnt; ++col) {

34 inTmp[col] += val * accMatrix2[k + col];

35 }

36 }

37

38 // Load corresponding row from matrix1

39 // Compute product and accumulate

40 #pragma unroll

41 for (auto col { 0 }; col < colCnt; ++col) {

42 outTmp[col] += inTmp[col] * accMatrix1[j + col];

43 }

44 }

45

46 // Store output row to global memory

47 #pragma unroll

48 for (auto col { 0 }; col < colCnt; ++col) {

49 accOutput[slc * colCnt + col] = outTmp[col];

50 }

51 }

52 });

53 }) };

Listing 4.3: MTTKRP Kernel for FPGA

Kernel 4.3 starts by iterating over all slices with non-zero elements (line 6). Within each of those

slices, it iterates over all fibers with non-zero elements (line 15) and within each of those fibers, it iterates

over every last non-zero element (line 25). Then for every non-zero element, its values is multiplied

against the corresponding row of matrix1 and accumulates the result (lines 32-35). When all non-

zero elements within the fiber are done processing, the accumulated results of all those elements are

multiplied against a row of matrix2 (lines 40-43). The original Kernel did not include the lines 40-43,

instead it multiplied the element’s value by the two matrices on line 34. However, since the indexed row

of matrix1 is the same for all elements in the same fiber, it is inefficient to constantly load and multiply

the same row. Hence, the mentioned adjustments in order to increase performance.

By correlating Kernel 4.3 with Figure 4.2, which depicts a general diagram of the design created

on the FPGA, it is possible to better visualise and understand the design. The start block refers to

the initialization of the variable slc on line 6. The following block is represented by the condition to

check whether there are more slices on the same line, followed by the load of the slice’s boundaries

and the condition to check whether there are more fibers within the current slice (line 15). Continuing

57



Load Slice
Boundaries

Start

More slices? End

More fibers?

No

Yes

No

Yes

Process Element

Store output

Load Fiber
Boundaries

More elements? No

Yes

Process Fiber

Load j
Process
Element
Output

Load matrix1
row

DSPs

ColCnt

ColCnt

Load k Load val

Load matrix2
row

DSPs

ColCnt

ColCnt

Figure 4.2: Diagram of PE

down the same path, the fiber’s boundaries are loaded and the existence of more non-zero elements is

verified (line 25). If the current fiber still has unprocessed non-zero elements, the Process Element block

does the computations required on the next element (lines 26-35). Otherwise, the results accumulated

throughout the several executions of the Process Element block are fed to the Process Fiber block. This

block multiplies all elements of the Process Element output against the corresponding row of matrix1

(lines 40-43). Finally, when all fibers in the current slice are done processing, the accumulated results

from block Process Fiber are stored to the global memory (lines 47-50). It is important to notice that,

due to the pragmas used, like in the design for TTM, it is possible to load, compute and store entire rows

in one go.

Moving to the AI derivations of this design, the number of loads the tensor requires are SlcCnt + 1

for the slice boundaries, 2 × FbrCnt + 1 for the fiber index and its boundaries and 2 × NnzCnt for the

index and value of the non-zero element. From the matrices, since we always load a row, all loads are

of length ColCnt. For matrix2 a row is requested NnzCnt times and for matrix1 a row is requested

FbrCnt times. Therefore the total amount of loads from the matrices is ColCnt× (FbrCnt+NnzCnt).

For each slice, there is one store for each column, which makes the total amount of stores equal to

SlcCnt × ColCnt. The computations required are ColCnt MACs for each NnzCnt as well as ColCnt

more MACs for each fiber and since each MAC is composed of two operations, the total amount of

operations is 2 × ColCnt × (FbrCnt + NnzCnt). Let all data types be 4-byte wide and the AI for a

generic tensor can be expressed as follows:

58



AIsp =
1

4
× 2× ColCnt× (FbrCnt+NnzCnt)

SlcCnt× (ColCnt+ 1) + FbrCnt× (ColCnt+ 2) +NnzCnt× (ColCnt+ 2) + 2
=

=
1

2
× ColCnt× (FbrCnt+NnzCnt)

SlcCnt× (ColCnt+ 1) + (FbrCnt+NnzCnt)× (ColCnt+ 2) + 2

(4.4)

The AI, once again, is determined by the tensor’s characteristics and is bounded between a maximum

and a minimum. The minimum AI can be obtained when NnzCnt and ColCnt are at their minimum,

meaning one. Since there is only one non-zero element in the tensor, this causes SlcCnt and FbrCnt to

also be one, as only slices and fibers with at least one non-zero element are stored. Thus, the design’s

minimum AI can be expressed as follows:

min(AIsp) = min

(
1

2
× ColCnt× (FbrCnt+NnzCnt)

SlcCnt× (ColCnt+ 1) + (FbrCnt+NnzCnt)(ColCnt+ 2) + 2

)
=

1

10
(4.5)

As for the maximum AI, the rationale is the same, however, in this case, ColCnt must be as large as

possible in order to have the design perform the most computations possible, on the other hand, SlcCnt

must be as little as possible in order to decrease the number of loads, meaning all non-zero elements

are in the same slice. The following equation derives the design’s AI upper bound:

max(AIsp) = max

(
1

2
× ColCnt× (FbrCnt+NnzCnt)

SlcCnt× (ColCnt+ 1) + (FbrCnt+NnzCnt)× (ColCnt+ 2) + 2

)
=

= max

(
1

2
× FbrCnt+NnzCnt

1 + (FbrCnt+NnzCnt)

)
≈ 1

2

(4.6)

As denoted in Equation 4.6, in order to achieve maximum AI, either FbrCnt, NnzCnt or both must

be large enough to verify the condition FbrCnt+NnzCnt
1+(FbrCnt+NnzCnt) ≈ 1. However, since the CSF format does not

store slice nor fibers without non-zero elements, then SlcCnt ≤ FbrCnt ≤ NnzCnt. Therefore ensuring

NnzCnt is large enough is both sufficient and necessary.

At last to analyse the peak performance of the design and and how it compares to the one of the

FPGA. Per PE, the design uses two DSP for every column on the matrices, therefore each PE performs

4 × ColCnt operations per cycle. Resorting to Table 4.2 the maximum frequency at which the DSPs

operate is 450 MHz, therefore the peak performance of each PE is 1.8× ColCnt GFLOPS. Considering

the number of DSPs as the bottleneck in terms of area available, the maximum number of PEs the

FPGA can accommodate is ⌊1518÷ (2×ColCnt)⌋. As an example, considering ColCnt = 16, the peak

59



performance for a single PE is 28.8 GFLOPS and the number of PEs that fit in the FPGA are 47, thus

the total peak performance is 1353.6 GFLOPS.

4.3 Summary

This chapter thoroughly describes our designs for TTM and MTTKRP on specialised architectures. An

in-depth analysis of these designs is provided alongside the derivation of the AI expressions. The AI

limits and the kinds of data-set that can originate such corner cases are presented followed by a peak

performance analysis based on the designs resource utilisation and on the total available resources on

the FPGA.

60



Chapter 5

Experimental Results on Real-World

Tensors

After having both the worst and best-case scenarios discussed, as well as theoretically and experi-

mentally verified, we focus on analysing the two proposed approaches for data-parallel processing with

real-world execution scenarios for each of the methods. For this analysis, like in previous sections, all

tests and measurements were collected under Intel’s Devcloud environment and the hardware setup

used is described in Table 5.1.

Device Model Frequency Cores
CPU Intel Core i9-11900KB 3,30 GHz 161

GPU Intel 11th Gen UHD Graphics 1,45 GHz 322

1 Physical Cores × Concurrent Threads per Core = 8× 2
2 Execution Units

Device Model Frequency ALMs Registers DSPs
FPGA Intel Arria 10 GX 1150 450 MHz 427 200 1 708 800 1518

Table 5.1: Hardware setup

Tensors nell-2 and vast-3D from the FROSTT data-set [65] were used, as described in Table 5.2.

Since all parameters of these tensors are already predetermined, the only parameter that can be modi-

fied for TTM and MTTKRP computation is the number of columns in the matrices, i.e., ColCnt.

SlcCnt FbrCnt NnzCnt Mode 0 Mode 1 Mode 2
nell-2 [66] 12 092 337 365 76 879 419 12 092 9 184 28 818

vast-3D [67] 165 427 26 021 945 26 021 945 165 427 11 374 2

Table 5.2: Description of data-sets used

Given the characteristics of these tensors, we can determine the expected AI for each kernel. Tensor

61



nell-2 has, in average, 228 non-zero elements per fiber, 28 fibers per slice and 6358 non-zero elements

per slice. While tensor vast-3D has always NnzPFbr = 1 and therefore FbrPSlc = NnzPSlc, with the

number of fiber per slice being, in average, 157.

According to Equation 3.1, the expected AI for Kernel 3.1 is 0.166 for tensor nell-2, which is the

theoretical maximum, and 0.083 for tensor vast-3D, which is the theoretical minimum. For Kernel 3.2,

the AIs are the same but multiplied by a factor dependent on the number of columns in the matrix. For

that reason, further considerations are made below alongside the empirical values. We resort now to

Equation 3.7 for Kernel 3.3, attaining 0.167 and 0.166 as the expected AIs for tensors nell-2 and vast-3D

respectively. These are both very close to the theoretical maximum. For Kernel 3.4, the AI also depends

on ColCnt, however it still possible to determine the expected range of AI. For tensor nell-2 the expected

AI ranges from 0.167 to 0.500 with the increase of ColCnt, while for tensor vast-3D ranges from 0.166 to

0.500.

5.1 CPU Results

We start with TTM on the CPU, for this method the most relevant parameters are the total number of

fibers in the tensor, to ensure enough parallel work, as well as the number of non-zero elements per

fiber on average, to determine the AI.

The first tensor to be analysed is tensor nell-2. This tensor’s mode-2 dimension imposes 28818 rows

on the matrix, thus it never fits in L1 cache.

Figure 5.1: TTM performance on CPU for tensor nell-2
with varying number of matrix columns

Figure 5.2: TTM AI on CPU for tensor nell-2 with vary-
ing number of matrix columns

Figures 5.1 and 5.2 represent the performance and AI for both kernels for tensor nell-2 with the

increase of number of columns in the matrix. For Kernel 3.1, the AI should be fixed, since it only

depends on NnzPFbr and not on ColCnt, however from ColCnt = 16, the compiler is capable of

62



vectorising kernel loops and therefore provoking an increase in both the AI and the performance. On the

other hand, for Kernel 3.2, as expected, since the AI depends on the number of columns, it starts with the

same value as in the previous Kernel and, with the increase in number of columns, increases until very

close to the maximum calculated in Equation 3.6. However, since the kernel loops are never vectorised

by the compiler, the AI ends up dropping for larger workloads. From ColCnt = 128, the performance

starts reducing for Kernel 3.1, while the AI is maintained, since the matrix does not fit anymore in any

of the caches of the CPU. On Kernel 3.2, performance increases with the AI as the problem is always

memory bound for all cache levels but L1, where the matrix would never fit anyway. It is also important

to notice that the performance drops mostly match with the sizes of the cache levels.

When compared with the performance of Kernel 3.1 for this same tensor, the Kernel 3.2 attains the

lower performance. The main reason behind this behavior lies in the irregularity of data accesses and

workload imbalance that were not present in the best case evaluation.

For the vast-3D tensor, which has all fibers with a single non-zero element, the AI should be very

close to the theoretical minimum. Due to its mode-2 dimension, the matrix only has 2 rows, thus for all

numbers of columns tested, it always fits in L1 cache.

Figure 5.3: TTM performance on CPU for tensor vast-
3D with varying number of matrix columns

Figure 5.4: TTM AI on CPU for tensor vast-3D with
varying number of matrix columns

Figures 5.3 and 5.4 represent the performance and AI of both kernels for tensor vast-3D with the

increase of number of columns in the matrix. As in the nell-2 tensor case, the expected constant AI

for Kernel 3.1 was not observed due to the compiler optimisations, which provokes an increase in both

AI and kernel performance for a larger number of columns. This behaviour can be observed around

ColCnt = 16, where a notable AI increase occurs due to the compiler’s ability to vectorise the kernel

loops. Since the matrix always fits in L1 cache the performance drop that happened in the nell-2 tensor

for the same Kernel does not happen with the vast-3D tensor. For Kernel 3.2, although the AI was

expected to be lower, it is not due to compiler optimization, it still behaves as expected. It starts with

the same value as in the previous Kernel and, with the increase in number of columns, increases until

63



very close to the maximum calculated in 3.6. However, since the kernel loops are never vectorised by

the compiler, the AI ends up dropping for larger workloads. The performance also increases with the AI,

which can be explained by most of the workload coming from the number of columns, since each fiber

only has one element to compute.

Now to analyse MTTKRP also on the CPU. The parameters most relevant for the analysis of this

method are the total number of slices in the tensor, to ensure parallelism, and the number of non-zero

elements per slice and per fiber, both for the expected AI.

Figure 5.5: MTTKRP performance on CPU for tensor
nell-2 with varying number of columns

Figure 5.6: MTTKRP AI on CPU for tensor nell-2 with
varying number of columns

Figures 5.5 and 5.6 represent Kernels’ 3.3 and 3.4 performance and AI for tensor nell-2 with the

increase of number of columns in the matrices. The first kernel’s AI should be stable as does not depend

on ColCnt, however, similarly to what happened with the CPU processing of TTM, from ColCnt = 16,

the compiler starts being capable of vectorising kernel loops, leading to an increase in both the AI and

the performance. The second kernel’s AI also behaves differently to what was expected. Despite the

AI depending on the number of columns, therefore, with the increase in number of columns, increasing

until very close to the maximum calculated in Equation 3.12, it drops for larger workloads. The reason

is the fact that the kernel loops are never vectorised by the compiler. The performance for Kernel 3.3

starts reducing from ColCnt = 128, while the AI is maintained. Such phenomenon is explained by the

matrices does not fitting anymore in any of the cache levels of the CPU. On Kernel 3.4, performance

drops mostly match with the sizes of the cache levels. While performance increases as the AI increases,

due to the problem always being memory bound for all cache levels but L1, where the matrices would

never fit anyway, there are still performance drops that mostly coincide with the cache level transitions.

Tensor vast-3D, for MTTKRP, imposes 11374 and 2 rows on matrix1 and matrix2, respectively. Due to

matrix2’s more frequent accesses and smaller dimension, it can be reused from L1 cache, while matrix1

is mostly bounded to either L2 or L3 cache depending on the number of columns. Contrary to what

happened in tensor nell-2 where matrix2, which never fits in L1 cache, polluted all cache levels, forcing

64



all access of both matrices to come from either L3 or even DRAM. Therefore performace is higher for

this data-set.

Figure 5.7: MTTKRP performance on CPU for tensor
vast-3D with varying number of columns

Figure 5.8: MTTKRP AI on CPU for tensor vast-3D with
varying number of columns

Figures 5.7 and 5.8 denote the performance and AI attained by both MTTKRP kernels on the CPU

when processing tensor vast-3D. The AIs follow a similar pattern to the previous kernels, with Kernel 3.3

achieving vectorisation around ColCnt = 16 and with Kernel 3.4 starting to drop in AI due to the lack

of said vectorisation. In regards to performance, performance raises moderately for both kernels until

ColCnt = 8, which can be explained with the increase in AI. From there Kernel’s 1 performance spikes

with vectorisation. Kernel’s 2 performance, on the other hand, starts to stabilise as most of the workload

comes from the number of columns and increasing the number of columns also provokes more loads

(each thread loads full rows from the matrices).

5.2 GPU Results

Starting again with tensor nell-2. This tensor has an average of NnzPFbr = 228 so the AI is very

close to the theoretical maximum. Also the tensor has 337365 fibers so GPU occupation is not an issue.

Kernels 3.1 and 3.2 behave as follows:

Figures 5.9 and 5.10 represent the performance and AI for both kernels for tensor nell-2 with the

increase of number of columns in the matrix. For Kernel 3.1, the AI is fixed as it only depends on the

NnzPFbr and not on ColCnt. The main difference between this situation and the best case scenario,

described in Section 3.2.1.B, is the irregularity and unbalance in the distribution of the non-zero elements

over the fibers as well as the size of the matrix. For such reasons, the peak performance is achieved

for ColCnt = 32, instead of ColCnt = 64, and is slightly less than the best case. For Kernel 3.2, as

expected, the AI starts with the same value as in the previous Kernel but increases until very close to

65



Figure 5.9: TTM performance on GPU for tensor nell-2
with varying number of matrix columns

Figure 5.10: TTM AI on GPU for tensor nell-2 with
varying number of matrix columns

the theoretical maximum calculated in 3.6. The performance also increases with the AI as the problem

is memory bound on the GPU.

When compared with the performance of Kernel 3.1 for the same tensor, this Kernel performs worst

even though it performed better for the best case tensor. The main reason is the irregularity in data

accesses and workload imbalance that were not present in the best case, when Kernel 3.2 was the

better option.

Tensor vast-3D, which has all fibers with a single non-zero element, should force the Kernel to have

an AI very close to the theoretical minimum. Also the tensor has 26021945 fibers therefore GPU occu-

pation is not an issue.

Figure 5.11: TTM performance on GPU for tensor vast-
3D with varying number of matrix columns

Figure 5.12: TTM AI on GPU for tensor vast-3D with
varying number of matrix columns

Figures 5.11 and 5.12 represent the performance and AI for both kernels for tensor vast-3D with the

increase of number of columns in the matrix. For Kernel 3.1, the AI is fixed, as expected, since it only

66



depends on NnzPFbr and not ColCnt. The main difference between this situation and the worst case

scenario, described in Section 3.2.2.B, is RowCnt which causes the matrix to be much smaller in this

tensor. For Kernel 3.2, again as expected, the AI starts with the same value as in the previous Kernel

but increases with the increasing number of columns. The performance also increases with the AI as

TTM is by nature memory bound on the GPU.

When compared, Kernel 3.2 performs better than Kernel 3.1 for tensor vast-3D. The main reason is

the matrix size, since it is so small, it is efficient to compute whole rows as it is likely that the row is

already cached.

Finally, it is possible to create a roofline model sweeping the AI by changing the number of columns.

This analysis, however, only makes sense for Kernel 3.2, since in Kernel 3.1 the AI is fixed, and for

the GPU, since in the CPU the compiler tends to perform optimizations which make the AI’s behaviour

unpredictable. These can be found in Figures 5.13 and 5.14.

Figure 5.13: Roofline model for Kernel 3.2 with tensor nell-2 on the GPU

Now to analyse MTTKRP on the GPU. The parameters most relevant for the analysis of this method

are the total number of slices in the tensor, to ensure parallelism, and the number of non-zero elements

per slice and per fiber, both for the expected AI. In regard to tensor nell-2, it has enough slices to ensure

full occupation on the GPU and its characteristics, namely FbrPSlc and NnzPSlc, ensure that the AI of

the kernels for this specific data-set will be close to the theoretical maximum.

Figures 5.15 and 5.16 represent the performance and AI for both kernels for tensor nell-2 with the

67



Figure 5.14: Roofline model for Kernel 3.2 with tensor vast-3D on the GPU

Figure 5.15: MTTKRP performance on GPU for tensor
nell-2 with varying number of columns

Figure 5.16: MTTKRP AI on GPU for tensor nell-2 with
varying number of columns

increase of number of columns in the matrices. Both performance and AI behave as expected for both

kernels. The AI, for Kernel 3.3, is fixed, since it does not depend on ColCnt, whereas for Kernel 3.4

it steadily approximates the maximum this data-set allows. For Kernel 3.3, performance increases until

ColCnt = 256 and then drops, the increase can be explained with the increase reuse of data between

threads. Each thread either shares the same slice with ColCnt other or the same column with SlcCnt

others. For Kernel 3.4, performance increases with the AI as MTTKRP is memory bound on the targeted

device. From ColCnt = 32, performance drops, this happens due to size of the matrices compared to

68



L3 capacity, meaning these no longer fit in L3 forcing occasional loads from the DRAM.

Tensor vast-3D has 165427 fibers therefore GPU occupation is not an issue. Since, unlike the CPU,

the GPU does not possess a complex cache structure, the performance differences between this data-

set and tensor nell-2 are much reduced and justifiable by the better locality present in vast-3D.

Figure 5.17: MTTKRP performance on GPU for tensor
vast-3D with varying number of columns

Figure 5.18: MTTKRP AI on GPU for tensor vast-3D
with varying number of columns

Figures 5.17 and 5.18 represent the performance and AI for both kernels for tensor vast-3D with the

increase of number of columns in the matrices. For Kernel 3.3, the AI, most like in the prior data-set,

does not depend on ColCnt therefore being fixed. The performance, on the other hand, increases and

stabilises until ColCnt = 128, where, due to not fitting in L3 cache anymore, it starts dropping. For

Kernel 3.4, the AI starts with the same value as in the previous Kernel and increases with the increasing

number of columns, however due to the lack of reuse and increase in size of the matrices it drops from

ColCnt = 64 onward. The performance follows the AI’s trend as MTTKRP is memory bound on the GPU

by nature.

5.3 FPGA Results

We start by exploring the performance and AI of our TTM design on the FPGA. For this method the

most relevant parameters are the total number of fibers and non-zero elements in the tensor as well as

the total amount of columns in the matrix, all fundamental in order to determine the AI.

By resorting to Equation 4.1 and Table 5.2, it is possible to make the design’s AI only dependent

on ColCnt. Tensor nell-2 is the first to be analysed and for this tensor we have FbrCnt = 337365 and

NnzCnt = 76879419, therefore the AI starts at 0.166 when ColCnt = 1 and tends to 0.500 as ColCnt

grows larger.

Figures 5.19 and 5.20 portray the performance as well as the AI’s behaviour for a varying number

69



Figure 5.19: TTM performance on FPGA for tensor
nell-2 with varying number of columns

Figure 5.20: TTM AI on FPGA for tensor nell-2 with
varying number of columns

of columns in the matrix. Performance increases exponentially with the increase of columns for both

kernels. The reason behind this behaviour is the fact that, in order to permit parallel processing of a full

row at a time, a new DSP is added to the design for each column in the matrix. There is, however, a

limitation for this trait: due to a maximum data-width for each load, for ColCnt ≥ 64, the design requires

more than one load to retrieve the full row from the memory, causing the increase in performance to

decelerate. Through the difference in performance between both kernels, it is also clear the impact of

having the matrix transferred to local memory before the computation starts. As for the AI, it is, naturally,

the same for both kernels as the only difference between them is where they load the rows from, namely

the DRAM for the first Kernel and the on-chip memory for the second kernel.

For tensor vast-3D, it is also possible to resort to Equation 4.1 and Table 5.2 to get the design’s AI

in function of ColCnt. The tensor has FbrCnt = NnzCnt = 26021945, therefore the AI starts at the

theoretical minimum, meaning 0.100, when ColCnt = 1 and tends to 0.250 as ColCnt grows larger.

Figure 5.21: TTM performance on FPGA for tensor
vast-3D with varying number of columns

Figure 5.22: TTM AI on FPGA for tensor vast-3D with
varying number of columns

70



Figures 5.21 and 5.22 depict the performance and AI with increase in number of columns in the

matrix. Like for the previous data-set, performance increases exponentially with the increase of columns

for both kernels. The explanation for this behaviour is the same as before, in order to permit parallel pro-

cessing of a full row at a time, a new DSP is added to the design for each column in the matrix. One can

also notice the same limitation for ColCnt ≥ 64 as the performance growth decelerates due to the need

of multiple loads to retrieve a single a row. For vast-3D, there is no noticeable difference in performance

for both versions, this happens due to the small size of the matrix, only two rows. The compiler when

generating the design, stores the values loaded from memory in registers therefore loading to on-chip

memory has minimum impact on the performance. The only difference between both kernels is, once

again, where they load the rows from, namely the DRAM for the first Kernel and the on-chip memory for

the second kernel, therefore the AI is, naturally, the same for both.

Now to explore the performance and AI of our MTTKRP design on the FPGA. This method’s most

relevant parameters are the total number of slices, fibers and non-zero elements in the tensor as well as

the total amount of columns in the matrices, all fundamental in order to determine the AI.

By resorting to Equation 4.4 and Table 5.2, it is possible to make the design’s AI only dependent

on ColCnt. Tensor nell-2 is the first to be analysed and for this tensor we have SlcCnt = 12092,

FbrCnt = 337365 and NnzCnt = 76879419, therefore the AI starts at 0.167 when ColCnt = 1 and tends

to 0.500 as ColCnt grows larger.

Figure 5.23: MTTKRP performance on FPGA for ten-
sor nell-2 with varying number of columns

Figure 5.24: MTTKRP AI on FPGA for tensor nell-2
with varying number of columns

In Figures 5.23 and 5.24, a depiction of the performance and AI of our MTTKRP design for differ-

ent number of columns in the matrices is presented. For comparison sake, measures for the design

before and after the optimisations described in Section 4.2 are provided. Performance-wise both grow

exponentially as expected, the reason being, once again, the addition of extra DSPs every time the

number of columns increases. This allows for the execution time to be the same while processing more

71



columns simultaneously, hence increasing the performance. Since FPGAs have variable architectures,

it is possible for an optimised design to perform less operations while still arriving at the same results,

therefore, in order to achieve a fair comparison, it is important to not consider any unnecessary opera-

tions in the performance calculations. Thus for both kernels the effective number of operations, meaning

the number of operations after optimisation, was used. For the AI calculations, however, the real number

of operations and loads for both kernels were used. For ColCnt ≤ 2, Kernel 1 has higher AI because

the higher number of operations manages to outweigh the extra loads necessary, however as ColCnt

increases the extra number of loads becomes dominant leading to a higher AI for the second kernel.

For tensor vast-3D, it is also possible to resort to Equation 4.4 and Table 5.2 to get the design’s AI in

function of ColCnt. The tensor has SlcCnt = 165427 and FbrCnt = NnzCnt = 26021945, therefore the

AI starts at 0.166, when ColCnt = 1 and tends to the theoretical maximum, meaning 0.500, as ColCnt

grows larger.

Figure 5.25: MTTKRP performance onFPGA for tensor
vast-3D with varying number of columns

Figure 5.26: MTTKRP AI on FPGA for tensor vast-3D
with varying number of columns

In Figures 5.25 and 5.26, the performance and AI of our MTTKRP design for different number of

columns in the matrices are portrayed. Like before, for comparison sake, measures for the design

before and after the optimisations described in Section 4.2 are provided. Due to the nature of vast-3D

(FbrCnt = NnzCnt), not only does the Kernel before the optimisations (Kernel 1) have lower AI for all

numbers of columns, but also does it have drastically less performance. The optimised design performs

as expected, with the performance increasing exponentially with the increase in number of columns.

When compared the performance of this same design for both data-sets, one can notice that for tensor

vast-3D is higher, the reason being that locality in data accesses, which is much higher.

72



5.4 Comparison with State of the Art

We focus herein in comparing our implementations to some of the state-of-the-art implementations for

sparse tensor processing. Said implementations are SPLATT [68], which implements MTTKRP on the

CPU, and ParTI [69], which implements TTM and MTTKRP on CPU and GPU architectures. From our

implementations, we chose the Element-Centric approaches, Kernels 3.1 and 3.3, since they perform

better on real-world datasets.

Table 5.3: Hardware setup

Device Model Frequency Cores Environment
CPU Intel Core i9-11900KB 3.30 GHz 161 Intel Devcloud
CPU AMD EPYC 7B13 3.5 GHz 1122 Google Cloud
GPU Nvidia A100 - 40GB 1.41 GHz 1083 Google Cloud

1 Physical Cores × Concurrent Threads per Core = 8× 2
2 vCPUs 3 Streaming Multiprocessors

For this set of results, we resorted to Google Cloud with Ubuntu 22.04 LTS in addition to Intel’s Dev-

cloud. Since GPU state-of-the-art implementations were developed in CUDA, which is vendor-specific,

we did not use Intel’s GPU for the measures taken on those implementations. The Hardware setup is

described in Table 5.3.

Table 5.4: Description of data-sets used

SlcCnt FbrCnt NnzCnt Mode 0 Mode 1 Mode 2
vast-3D [67] 165 427 26 021 945 26 021 945 165 427 11 374 2
nell-2 [66] 12 092 337 365 76 879 419 12 092 9 184 28 818
nell-1 [66] 2 902 330 17 372 417 143 599 552 2 902 330 2 143 368 25 495 389

amazon [70] 4 821 207 29 865 499 1 741 809 018 4 821 207 1 774 269 1 805 187

Also, in addition to the tensors described in Table 5.2, we analysed two more tensors. All tensors still

belong to the FROSTT dataset and their characteristics are described in Table 5.4.

Figure 5.27: Speed up over State of the Art on Intel
Core i9-11900KB

Figure 5.28: Speed up over State of the Art on AMD
EPYC 7B13

73



Figures 5.27 and 5.28 portray the speed ups of our implementations over the state-of-the-art ones

for CPU platforms. For MTTKRP, we outperform ParTI for all tested datasets (up to 6× speed up),

justified by the choice in storage formats. In average, CSF requires less memory accesses per element

processed when compared to COO, hence delivering higher performance. A similar behaviour can be

observed for the speed ups of our TTM implementation over ParTI’s (up to 5× speed up), except for

tensor Vast-3D. The reason being it only having one element per fiber, therefore the advantage of CSF

is not present. When comparing with SPLATT, the speed ups are always close to one since the major

difference in approaches is the framework. While we resort to SYCL for our implementations, SPLATT

uses OpenMP. It is also important to notice that the speed ups for the Intel CPU are, in average, higher

since we use Intel’s SYCL implementation and compilers, which, naturally, are more optimised for their

own architectures.

Figure 5.29: Speed up over State of the Art on Nvidia A100 - 40GB

Figure 5.29 depicts the achieved speed ups for the GPU platform. For MTTKRP, we always outper-

form ParTI with the justification, once again, lying mostly on the storage format. Unlike ParTI, which

distributes the workload element-wise to ensure load balance, we distribute the workload slice-wise

to avoid synchronisation. Therefore, the main source of parallelism of our MTTKRP implementations

comes from the number of slices in the tensor. Thus, the lower speed up for tensor Nell-2, which has a

reduced number of slices when compared with the other datasets. For TTM, we never achieve speed

up, except for tensor Nell-2, which contrasts with the previous method. Nvidia GPUs impose extra limi-

tations when compared to Intel GPUs, namely in the number of work-groups that can be launched per

kernel submission. This forces our TTM implementation to launch multiple kernels, each processing a

portion of the tensor, therefore hindering the performance. The exception is tensor Nell-2, since it has

74



less fibers, as can be observed in Table 5.4, and for that tensor we achieve approximately 4× speed up.

5.5 Summary

In this chapter, we test our algorithms against real-world datasets on one Intel multi-core CPU and on its

integrated GPU. Our designs are evaluated against the same tensors on an Intel FPGA. We also analyse

the performance and AI behaviour by varying the number of columns on the matrices, ColCnt. Finally,

we compare state-of-the-art implementations against our own, where we achieve up to 7× speed-up.

75



76



Chapter 6

Conclusion

The main goal of this Thesis was to delve into sparse tensor computations, specifically TTM and

MTTKRP , on heterogeneous systems. To achieve that, an extensive study of the most common

computational architectures was made along with a detailed analysis of the algorithms’ behaviour on

the architectures. For the programmable devices, we exploited the available parallelism and data locality

in memory accesses. Then to provide a better insight on the algorithms’ implementation, we predicted

and validated the AI and performance of our kernels with resort to a set of synthetic tensors, built from

the theoretical analysis. This Thesis, also featured designs for specialised architectures that, by utilising

their programmable hardware, allowed the development of the most scalable of our implementations.

Developing implementations in SYCL presented a gentle learning curve in comparison to the wide

range of frameworks that otherwise would have been necessary. It also allowed us to create an im-

plementation that leverages both CPU and GPU, hence a heterogeneous solution for sparse tensor

computations. While there is still potential for more optimisation, this Thesis takes the first steps towards

sparse tensor computations on heterogeneous systems.

For the duration of this dissertation, potential future studies were identified:

• Explore other optimisation possibilities on general-purpose architectures, e.g. cache blocking on

the CPU and use of shared memory on the GPU.

• Develop an heterogeneous approach with dynamic assignment.

• Memory distributions and attributes for FPGA, e.g. memory banks.

• Scale FPGA implementations to multiple PEs.

These suggestions allow a deeper analysis within the context of this dissertation, as well as help face

the surging needs for sparse tensor computations, especially on modern heterogeneous architectures.

77



78



Bibliography

[1] Y. Wang, R. Chen, J. Ghosh, J. C. Denny, A. Kho, Y. Chen, B. A. Malin, and J. Sun, “Rubik:

Knowledge guided tensor factorization and completion for health data analytics,” in Proceedings of

the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015,

p. 1265–1274.

[2] J. C. Ho, J. Ghosh, and J. Sun, “Marble: High-throughput phenotyping from electronic health

records via sparse nonnegative tensor factorization,” in Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2014, p. 115–124.

[3] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L. Morency, “Tensor fusion network for multimodal

sentiment analysis,” CoRR, vol. abs/1707.07250, 2017.

[4] M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,”

2015.

[5] A. Anandkumar, R. Ge, D. J. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor decompositions for

learning latent variable models,” CoRR, vol. abs/1210.7559, 2012.

[6] Y. Kwon, Y. Lee, and M. Rhu, “Tensor casting: Co-designing algorithm-architecture for personalized

recommendation training,” in 2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), 2021, pp. 235–248.

[7] S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava, and B. Li, “Hardware acceleration

of sparse and irregular tensor computations of ml models: A survey and insights,” Proceedings of

the IEEE, vol. 109, no. 10, pp. 1706–1752, 2021.

[8] E. G. Hohenstein, R. M. Parrish, and T. J. Martı́nez, “Tensor hypercontraction density fitting. I.

Quartic scaling second- and third-order Møller-Plesset perturbation theory,” jcp, vol. 137, no. 4, pp.

044 103–044 103, jul 2012.

79



[9] F. Hummel, T. Tsatsoulis, and A. Grüneis, “Low rank factorization of the coulomb integrals for

periodic coupled cluster theory,” The Journal of Chemical Physics, vol. 146, no. 12, p. 124105,

mar 2017.

[10] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube: Sparse parallelizable

candecomp-parafac tensor decomposition,” ACM Trans. Knowl. Discov. Data, vol. 10, no. 1, jul

2015.

[11] F. Yu, H. Cui, and X. Feng, “Vtensor: Using virtual tensors to build a layout-oblivious ai programming

framework,” in 2019 IEEE International Conference on Signal, Information and Data Processing

(ICSIDP), 2019, pp. 1–6.

[12] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, “Tie: Energy-efficient tensor train-based

inference engine for deep neural network,” in 2019 ACM/IEEE 46th Annual International Symposium

on Computer Architecture (ISCA), 2019, pp. 264–277.

[13] D. Abts, J. Ross et al., “Think fast: A tensor streaming processor (tsp) for accelerating deep learning

workloads,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture

(ISCA), 2020, pp. 145–158.

[14] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel: Efficient tensor migration and alloca-

tion on heterogeneous memory systems for deep learning,” in 2021 IEEE International Symposium

on High-Performance Computer Architecture (HPCA), 2021, pp. 598–611.

[15] M. Zhang, Z. Hu, and M. Li, “Duet: A compiler-runtime subgraph scheduling approach for tensor

programs on a coupled cpu-gpu architecture,” in 2021 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 2021, pp. 151–161.

[16] L. Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Accpar: Tensor partitioning for heteroge-

neous deep learning accelerators,” in 2020 IEEE International Symposium on High Performance

Computer Architecture (HPCA), 2020, pp. 342–355.

[17] H. Fanaee-T and J. Gama, “Tensor-based anomaly detection: An interdisciplinary survey,”

Knowledge-Based Systems, vol. 98, pp. 130–147, 2016.

[18] N. C. Thompson, K. H. Greenewald, K. Lee, and G. F. Manso, “The computational limits of deep

learning,” CoRR, vol. abs/2007.05558, 2020.

[19] Ricci and Levi-Civita, “Méthodes de calcul différentiel absolu et leurs applications,” Mathematische

Annalen, vol. 54, pp. 125–201, 1900.

80



[20] H. Farias, C. Nuñez, and M. Solar, “Tensorfit a tool to analyse spectral cubes in a tensor mode,”

Astronomy and Computing, vol. 25, pp. 195–202, 2018.

[21] J. Li, B. Uçar, U. V. Çatalyürek, J. Sun, K. Barker, and R. Vuduc, “Efficient and effective sparse

tensor reordering,” in Proceedings of the ACM International Conference on Supercomputing, 2019,

p. 227–237.

[22] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang, “Tensaurus: A versatile ac-

celerator for mixed sparse-dense tensor computations,” in 2020 IEEE International Symposium on

High Performance Computer Architecture (HPCA), 2020, pp. 689–702.

[23] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel, E. Solomonik, J. Emer, and

C. W. Fletcher, “Extensor: An accelerator for sparse tensor algebra,” in Proceedings of the 52nd

Annual IEEE/ACM International Symposium on Microarchitecture, 2019, p. 319–333.

[24] J. Li, Y. Ma, X. Wu, A. Li, and K. Barker, “Pasta: A parallel sparse tensor algorithm benchmark

suite,” 2019.

[25] S. Smith, J. Park, and G. Karypis, “Sparse tensor factorization on many-core processors with high-

bandwidth memory,” in 2017 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), 2017, pp. 1058–1067.

[26] J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc, “Model-driven sparse CP decomposition for higher-

order tensors,” in 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS),

2017, pp. 1048–1057.

[27] Y. Soh, P. Flick, X. Liu, S. Smith, F. Checconi, F. Petrini, and J. Choi, “High performance streaming

tensor decomposition,” in 2021 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), 2021, pp. 683–692.

[28] L. Ma and E. Solomonik, “Efficient parallel CP decomposition with pairwise perturbation and multi-

sweep dimension tree,” CoRR, vol. abs/2010.12056, 2020.

[29] V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, X. Liu, P. Murali, Y. Sabharwal, and D. Sreedhar, “On

optimizing distributed tucker decomposition for dense tensors,” in 2017 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), 2017, pp. 1038–1047.

[30] V. T. Chakaravarthy, S. S. Pandian, S. Raje, and Y. Sabharwal, “On optimizing distributed non-

negative tucker decomposition,” in Proceedings of the ACM International Conference on Super-

computing, ser. ICS ’19. Association for Computing Machinery, 2019, p. 238–249.

81



[31] V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, P. Murali, S. S. Pandian, Y. Sabharwal, and D. Sreed-

har, “On optimizing distributed tucker decomposition for sparse tensors,” in Proceedings of the 2018

International Conference on Supercomputing, ser. ICS ’18. Association for Computing Machinery,

2018, p. 374–384.

[32] B. Madathil, S. V. M. Sagheer, A. Rahiman, A. J. Tom, B. P. S, J. Francis, and S. N. George, “Tensor

low rank modeling and its applications in signal processing,” 2019.

[33] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review, vol. 51,

no. 3, pp. 455–500, September 2009.

[34] M. Safayet Hossain, K. M. Azharul Hasan, and T. Tsuji, “Performance analysis of higher order

tensor storages for highly sparse multidimensional data,” in 2021 5th International Conference on

Electrical Information and Communication Technology (EICT), 2021, pp. 1–6.

[35] S. Smith and G. Karypis, “Tensor-matrix products with a compressed sparse tensor,” in Proceedings

of the 5th Workshop on Irregular Applications: Architectures and Algorithms, 2015.

[36] Q. Sun, Y. Liu, H. Yang, M. Dun, Z. Luan, L. Gan, G. Yang, and D. Qian, “Input-aware sparse tensor

storage format selection for optimizing mttkrp,” IEEE Transactions on Computers, pp. 1–1, 2021.

[37] T. Herault, Y. Robert, G. Bosilca, R. J. Harrison, C. A. Lewis, E. F. Valeev, and J. J. Dongarra,

“Distributed-memory multi-gpu block-sparse tensor contraction for electronic structure,” in 2021

IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2021, pp. 537–546.

[38] J. Kim, A. Sukumaran-Rajam, C. Hong, A. Panyala, R. K. Srivastava, S. Krishnamoorthy, and P. Sa-

dayappan, “Optimizing tensor contractions in ccsd(t) for efficient execution on gpus,” in Proceedings

of the 2018 International Conference on Supercomputing, 2018, p. 96–106.

[39] J. Liu, D. Li, R. Gioiosa, and J. Li, “Athena: High-performance sparse tensor contraction sequence

on heterogeneous memory,” in Proceedings of the ACM International Conference on Supercomput-

ing, 2021, p. 190–202.

[40] J. Liu, J. Ren, R. Gioiosa, D. Li, and J. Li, “Sparta: High-performance, element-wise sparse tensor

contraction on heterogeneous memory,” in Proceedings of the 26th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2021, p. 318–333.

[41] R. Levy, E. Solomonik, and B. K. Clark, “Distributed-memory DMRG via sparse and dense parallel

tensor contractions,” CoRR, vol. abs/2007.05540, 2020.

[42] J. Li, Y. Ma, C. Yan, and R. Vuduc, “Optimizing sparse tensor times matrix on multi-core and many-

core architectures,” in 2016 6th Workshop on Irregular Applications: Architecture and Algorithms

(IA3), 2016, pp. 26–33.

82



[43] Y. Ma, J. Li, X. Wu, C. Yan, J. Sun, and R. Vuduc, “Optimizing sparse tensor times matrix on gpus,”

J. Parallel Distrib. Comput., vol. 129, no. C, p. 99–109, jul 2019.

[44] L. Jia, Z. Luo, L. Lu, and Y. Liang, “Analyzing the design space of spatial tensor accelerators on

fpgas,” in 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2021, pp. 230–235.

[45] S. Wijeratne, R. Kannan, and V. Prasanna, “Reconfigurable low-latency memory system for sparse

matricized tensor times khatri-rao product on fpga,” 2021.

[46] R. Hu, W. Yang, X. Zhou, K. Li, and K. Li, “Performance analysis and optimization for mttkrp of

sparse tensor on cpu and gpu,” in 2020 IEEE 22nd International Conference on High Performance

Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th

International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2020, pp. 545–

550.

[47] I. Nisa, J. Li, A. Sukumaran-Rajam, R. Vuduc, and P. Sadayappan, “Load-balanced sparse mt-

tkrp on gpus,” in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),

2019, pp. 123–133.

[48] A. Gonzalez, “Trends in processor architecture,” 2018.

[49] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald, Parallel programming in

OpenMP. Morgan kaufmann, 2001.

[50] M. Arora, “The architecture and evolution of cpu-gpu systems for general purpose computing,” By

University of California, San Diago, vol. 27, 2012.

[51] A. Boutros and V. Betz, “Fpga architecture: Principles and progression,” IEEE Circuits and Systems

Magazine, vol. 21, no. 2, pp. 4–29, 2021.

[52] R. Reyes, G. Brown, R. Burns, and M. Wong, “Sycl 2020: More than meets the eye,” in Proceedings

of the International Workshop on OpenCL, 2020.

[53] G. K. Reddy Kuncham, R. Vaidya, and M. Barve, “Performance study of gpu applications using

sycl and cuda on tesla v100 gpu,” in 2021 IEEE High Performance Extreme Computing Conference

(HPEC), 2021, pp. 1–7.

[54] J. Li, J. Sun, and R. Vuduc, “Hicoo: Hierarchical storage of sparse tensors,” in SC18: International

Conference for High Performance Computing, Networking, Storage and Analysis, 2018, pp. 238–

252.

[55] A. E. Helal, J. Laukemann, F. Checconi, J. J. Tithi, T. Ranadive, F. Petrini, and J. Choi, “Alto,” in

Proceedings of the ACM International Conference on Supercomputing, 2021.

83



[56] A. Nguyen, A. E. Helal, F. Checconi, J. Laukemann, J. J. Tithi, Y. Soh, T. Ranadive, F. Petrini, and

J. W. Choi, “Efficient, out-of-memory sparse mttkrp on massively parallel architectures,” 2022.

[57] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual performance model for

multicore architectures,” Commun. ACM, vol. 52, no. 4, p. 65–76, apr 2009.

[58] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and M. Püschel, “Applying the roofline

model,” in 2014 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), 2014, pp. 76–85.

[59] J. Czaja, M. Gallus, J. Wozna, A. Grygielski, and L. Tao, “Applying the roofline model for deep

learning performance optimizations,” 2020.

[60] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrading the loft,” IEEE Computer

Architecture Letters, vol. 13, no. 1, pp. 21–24, 2014.

[61] A. Lopes, F. Pratas, L. Sousa, and A. Ilic, “Exploring gpu performance, power and energy-efficiency

bounds with cache-aware roofline modeling,” in 2017 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), 2017, pp. 259–268.

[62] D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry, and Z. A. Matveev, “Performance

analysis with cache-aware roofline model in intel advisor,” in 2017 International Conference on High

Performance Computing and Simulation (HPCS), 2017, pp. 898–907.

[63] A. Ilic, F. Pratas, and L. Sousa, “Beyond the roofline: Cache-aware power and energy-efficiency

modeling for multi-cores,” IEEE Transactions on Computers, vol. 66, no. 1, pp. 52–58, 2017.

[64] D. Marques, A. Ilic, Z. A. Matveev, and L. Sousa, “Application-driven cache-aware roofline model,”

Future Generation Computer Systems, vol. 107, pp. 257–273, 2020.

[65] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. (2017) FROSTT: The

formidable repository of open sparse tensors and tools. [Online]. Available: http://frostt.io/

[66] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., and T. M. Mitchell, “Toward an

architecture for never-ending language learning.” in AAAI, vol. 5, 2010, p. 3.

[67] M. Whiting, K. Cook, G. Grinstein, J. Fallon, K. Liggett, D. Staheli, and J. Crouser, “Vast challenge

2015: Mayhem at dinofun world,” in Visual Analytics Science and Technology (VAST), 2015 IEEE

Conference on. IEEE, 2015, pp. 113–118.

[68] S. Smith and G. Karypis, “SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit,” http://cs.umn.

edu/∼splatt/, 2016.

84

http://frostt.io/
http://cs.umn.edu/~splatt/
http://cs.umn.edu/~splatt/


[69] J. Li, Y. Ma, and R. Vuduc, “ParTI! : A parallel tensor infrastructure for multicore cpus and gpus,”

Oct 2018, last updated: Jan 2020. [Online]. Available: http://parti-project.org

[70] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: understanding rating dimensions

with review text,” in Proceedings of the 7th ACM conference on Recommender systems. ACM,

2013, pp. 165–172.

85

http://parti-project.org


86


	Titlepage
	Declaration
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline

	2 Sparse Tensors: Background and State of the Art
	2.1 Tensor Nomenclature
	2.2 Storage Formats
	2.3 Tensor Methods
	2.3.1 Tensor Element-Wise Methods
	2.3.2 Tensor-Scalar Operations
	2.3.3 Tensor Contraction Operations
	2.3.4 Sequence Methods

	2.4 Heterogeneous Systems and Programmability
	2.4.1 CPU
	2.4.2 GPU
	2.4.3 FPGA
	2.4.4 Heterogeneous Computing and Open Challenges

	2.5 State of the Art on Sparse Tensor Storage and Processing
	2.6 Roofline Model
	2.7 Summary

	3 Sparse Tensor Processing on Programmable Architectures
	3.1 Data-Parallel Sparse Tensor Processing
	3.1.1 Tensor Times Matrix (TTM)
	3.1.1.A Kernel V1: Element-centric TTM approach
	3.1.1.B Kernel V2: Fiber-centric TTM approach

	3.1.2 Matricised Tensor Time Khatri-Rao Product (MTTKRP)
	3.1.2.A Kernel V1: Element-centric MTTKRP approach
	3.1.2.B Kernel V2: Row-centric MTTKRP approach


	3.2 Exploring Performance Upper-Bounds with Synthetic Tensors
	3.2.1 TTM Best-Case Performance Analysis
	3.2.1.A CPU Analysis
	3.2.1.B GPU Analysis

	3.2.2 TTM Worst Case Performance Analysis
	3.2.2.A CPU Analysis
	3.2.2.B GPU Analysis

	3.2.3 MTTKRP Best-Case Performance Analysis
	3.2.3.A CPU Analysis
	3.2.3.B GPU Analysis

	3.2.4 MTTKRP Worst Case Performance Analysis
	3.2.4.A CPU Analysis
	3.2.4.B GPU Analysis


	3.3 Heterogeneous Approach
	3.4 Summary

	4 Sparse Tensor Processing on Specialised Architectures
	4.1 Tensor Times Matrix (TTM)
	4.2 Matricised Tensor Time Khatri-Rao Product (MTTKRP)
	4.3 Summary

	5 Experimental Results on Real-World Tensors
	5.1 CPU Results
	5.2 GPU Results
	5.3 FPGA Results
	5.4 Comparison with State of the Art
	5.5 Summary

	6 Conclusion
	Bibliography
	Bibliography

