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Resumo

Plasmas eletrão-positrão existem na vizinhança de objetos astrof́ısicos, como estrelas de neutrões. Este é

um dos motivos que contribui para o interesse geral em estudar os comportamentos destes plasmas, que

contrastam fortemente com plasmas de laboratório convencionais ião-eletrão devido à simetria das massas

entres as espécies positivas e negativas. A produção de pares eletrão-positrão em quantidade suficiente para

observar efeitos coletivos é um desafio em f́ısica moderna. Uma maneira de gerar estes pares consiste em

colidir um impulso de laser de alta intensidade com um feixe de eletrões relativista. Este esquema permite

a produção de fotões de alta energia através da dispersão de Compton não linear, que posteriormente

decaem num par eletrão-positrão através da criação de pares de Breit-Wheeler não linear. Uma desvantagem

destas experiências atualmente reside no número baixo de positrões produzidos e na interferência com

outros processos (como pares produzidos por fotões de bremsstrahlung). Nesta tese, um esquema usando

um impulso de laser com duas cores é usado para alcançar a separação espacial dos pares produzidos na

interação, e dos eletrões do feixe inicial. Um modelo teórico é introduzido para prever quando ocorre

separação de momento das cargas em função dos parâmetros do impulso de duas cores (especialmente,

da fase) e simulações Part́ıcula-na-Célula mostram que este efeito dá origem a observáveis mensuráveis

em experiências futuras. Simulações com largura de feixe finito mostram a separação f́ısica dos pares e a

corrente produzida pelo movimento destas, que pode ser controlado variando a fase relativa entre as duas

componentes do laser.

Palavras-chave: F́ısica de Plasmas; Criação de pares; Eletrodinâmica Quântica;

Códigos Part́ıcula-na-Célula; Lasers de Alta Intensidade; Impulsos de

Duas Cores
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Abstract

Electron-positron plasmas are present in the vicinity of astrophysical objects, e.g. neutron stars. This is one

of the reasons that contribute to general interest to investigate the behavior of these plasmas, which highly

contrast regular laboratory ion-electron plasmas due to the symmetry of the species’ mass. The laboratory

production of electron-positron plasmas in enough amount to observe collective phenomena is a challenge

in modern physics. One way to generate electron-positron pairs is to collide an intense laser pulse with a

relativistic electron beam. This setup allows for the production of high-energy photons via nonlinear Compton

scattering, which afterward decay into electron-positron pairs via nonlinear Breit-Wheeler pair creation. A

setback in these experiments currently is that the number of generated positrons is very low, and background

signals can interfere with the data collection (e.g. from bremsstrahlung photons decaying into pairs). In this

work, a scheme utilizing a two-colored laser pulse is presented to achieve spatial separation of the produced

pairs during the laser-beam interaction, and separate them from the original electron beam. A theoretical

model is introduced to predict when charge momentum separation occurs in a plane wave as a function of

the parameters of the two-colored pulse (most importantly, the laser phase) and Particle-in-Cell simulations

demonstrate the effect leads to measurable observables for future experiments. Simulations with a finite

spot size laser show the physical separation of the charges and the current produced by their motion, which

can be controlled by varying the relative phase of the two laser modes.

Keywords: Plasma Physics; Pair Creation; Quantum Electrodynamics;

Particle-in-Cell Codes; High-Intensity Lasers; Two-Colored Pulses
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Chapter 1

Introduction

1.1 Overview

With the recent developments in high-intensity laser facilities, it is possible to reach regimes where Quantum

Electrodynamics (QED) effects become relevant in the interaction of a laser with a relativistic electron

beam. These facilities, which can reach multi PW powers, are able to deliver intensities on the order of

1023 − 1024 W/cm2 [1–3]. Plasmas composed of electrons and positrons created by QED processes are

theorized to occur in the vicinity of very massive and compact objects, such as neutron stars. [4, 5] This

turns our attention to trying to replicate at least some of the physics of these plasmas in a laboratory setup,

using intense electric fields to replicate the regime where QED processes allow for the creation of a large

number of positrons. Some of the schemes proposed for production of these plasmas include production

in electron-laser scattering experiments [6, 7], where the high intensity electromagnetic field is provided

by a focused laser, and which I focus on during this study; and the Bethe-Heitler process [8, 9], which is

similar to electron-laser scattering, but uses the electric field of a nucleus of an atom with high atomic

number. Trapping and accumulating positrons emitted from β+ decay [10] is also a possibility, but with an

added concern due to the annihilation of the positrons with electrons from normal matter. The predominant

QED processes when using electron-laser scattering are: radiation reaction, which, given the very high

accelerations felt by electrons and positrons in the oscillatory laser fields, results in a significant decrease

of particle energy due to the radiated electromagnetic energy; nonlinear Compton scattering [11], where

an electron or positron emits a high energy photon in the presence of an intense laser field, losing some of

its own energy in the process; and nonlinear Breit-Wheeler pair creation [12], where an energetic photon,

also in the presence of the strong laser fields, decays into an electron-positron pair. The sequential and

repeated occurrence of these processes can result in a QED cascade. One of the current experimental goals

in strong-field plasma QED is to cascade a sufficient number of particles to produce a pair plasma where

collective phenomena are observable. Using an electron-laser collision for pair production has the setbacks

that the peak intensity of a high intensity laser pulse is quite difficult to determine with precision [13], and

that detecting the produced pairs is also a challenge, since the initial beam has electrons which can mix
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with the signal, which should (and sometimes can) be avoided [14]. There may also be some other QED

processes producing leptons which turn the distinction of pairs produced via nonlinear Breit-Wheeler process

more difficult, like pairs produced via Bethe-Heitler process occurring in the background, or by the direct

trident process, where an electron immediately releases an electron-positron pair. [15]

In this thesis, I introduce a new scheme using a two-colored laser pulse for generating a bulk electric

current during pair creation, which provides a macroscopic signature without the need for a high-density

plasma. An analogous setup has been used to show that this current exists in the case of a two-colored laser

ionizing atoms [16]. The reason why this system shows this behavior is because the probability of ionizing

an atom grows as the intensity of the electric field grows, which favors particle birth in some phases of the

pulse. For the pair creation case, the system also has a higher probability of generating pairs if the electric

field is stronger, therefore, a net current should be possible to observe, similarly to the ionization case.

However, unlike the ionization case, in a pair plasma, both species have the same mass, therefore, a drift

can easily be imparted to both electrons and positrons in opposite directions. This separation of charges

would allow us to see a macroscopic signature of pair plasma-laser interaction, without needing to generate

a high-density plasma, as in other studies of pair plasma group behavior [17]. It may also allow for easier

detection of the pairs, since species propagate dominantly in opposite transverse directions.

Here I propose a scheme that utilizes a laser pulse and its second harmonic with an offset in phase,

to obtain phase control over the direction of the emitted pairs. In Chapter 2 of this thesis, a theoretical

approach is deduced to predict when charge separation occurs in pairs born via nonlinear Breit-Wheeler

process in a two-colored laser pulse. In section 2.1 I show that particles born in the middle of the pulse

acquire a transverse drift depending on the sign of their charge and in section 2.2 it is shown that the

net separation of the charges is dependent on the phase difference between the pulses, just like the case

for ionization in electron-ion plasmas [16], not only obtaining a macroscopic effect of the dynamics of an

electron-positron plasma without the need to generate a dense plasma, but also creating an electron and

positron beam with opposite asymptotic angles. The setup used to demonstrate this effect is sketched in

figure 1.1. A relativistic electron beam (in blue) is sent to collide head-on against a laser pulse with two

frequencies (represented by the red ellipsoid with another blue one inside it, however, this happens only for

representation purposes, and not actually to represent that one pulse has a larger spot size than the other).

In gray is represented the path the gaussian laser pulses follow as time evolves. First, when the electrons

reach the vicinity of the laser pulse, some hard photons are emitted toward the center of the pulse due

to nonlinear Compton scattering. Then, these photons decay into pairs according to the nonlinear Breit-

Wheeler pair creation. The pairs then proceed to either drift in opposite directions or not according to the

phase offset between the two laser waves.

The predictions made in Chapter 2 are supported by Particle-in-Cell (PIC) simulations run in the frame-

work of OSIRIS [18] with an added Monte Carlo module for the QED processes [19, 20] shown in Chapter 3.

Section 3.1 benchmarks the analytical predictions with plane wave simulation against a photon bunch, and

in section 3.2 a finite laser both in size and duration collides against an electron beam in order to observe
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the effect of phase control in the movement of the leptons, and the overall charge separation and symmetric

transverse motion of the electrons and positrons after the interaction.

θ = 0

e- beam

ω1

ω2

t

γ

e-

e+

θ = π/2

a)

b)

c) d)

Figure 1.1: Schematic for a charge separation setup. a) an electron beam and two-colored laser

pulse are sent in a head-on collision, b) the electrons emit photons due to nonlinear Compton

scattering, c) for a phase offset θ of π/2 between the two colors of the pulse, the electrons and

positrons tend to drift in opposite directions, d) for θ = 0, this isn’t observed, and each particle is

equally likely to drift in any direction.

1.2 Relevant Particle Interactions

1.2.1 Radiation Reaction

All electrically charged particles that undergo changes in their velocity emit electromagnetic radiation. The

energy emitted in this radiation comes at the cost of a loss of the particle’s kinetic energy. It is, therefore,

necessary to account for this loss of energy with a friction-like force when describing the movement of

a charged particle. In setups where this radiated energy is small compared to the particle’s energy, the

movement of charged particles is correctly predicted by applying the Lorentz force F⃗L alone, which is given

by

F⃗L = q
(
E⃗ + v⃗ × B⃗

)
, (1.1)

where q is the charge of the particle, v⃗ = dr⃗/dt is the velocity of the particle, with r⃗ its position, and E⃗

and B⃗ are the electric and magnetic fields acting on the particle, respectively. The electric and magnetic

fields are given for any spatial arrangement of charges by solving Maxwell’s equations
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∇⃗ · E⃗ =
ρ

ε0
(1.2a)

∇⃗ · B⃗ = 0 (1.2b)

∇⃗ × E⃗ = −
∂B⃗

∂t
(1.2c)

∇⃗ × B⃗ = µ0J⃗ + µ0ε0
∂E⃗

∂t
. (1.2d)

where ρ is the charge density, J⃗ is the current density and ε0 and µ0 are the permittivity and permeability of

vacuum, respectively. Equation 1.1, dictates how the motion of all charged particles evolves in time, allowing

for the calculation of ρ and J⃗. Meanwhile, with these quantities and equations 1.2, the time evolution of

the fields is determined. This is at the heart of all of classical electrodynamics.

However, for cases where the energy losses caused by radiation emission become relevant, the Lorentz

force becomes insufficient to correctly predict the motion of charged particles. The electric and magnetic

fields of a charged particle with arbitrary motion are given by

E⃗rad =
q

4πε0

[
n⃗ − β⃗

γ2(1− β⃗ · n⃗)3R2

]
ret

+
q

4πε0c

[
n⃗ × ((n⃗ − β⃗)× dβ⃗dt
(1− β⃗ · n⃗)3R

]
ret

, (1.3a)

B⃗rad =

[
n⃗ × E⃗rad
c

]
ret

, (1.3b)

where β⃗ = v⃗ /c , γ is the Lorentz factor of the particle, R = |r⃗ − r⃗ ′| − (r⃗ − r⃗ ′) · v⃗ /c with r⃗ ′ representing the

position of the emitting particle, n⃗ is a unit vector pointing in the direction of observation and the subscript

ret means that all the quantities inside the brackets should be calculated at the retarded time t−|r⃗ − r⃗ ′|/c .

The second term in equation 1.3a corresponds to a radiation field decaying as 1/R and only exists when the

particles have an acceleration dβ⃗/dt.

A damping force can be calculated by equating the total energy radiated by the fields in equations 1.3 to

the work that it performs[21]. The first calculation, for non-relativistic velocities, is the Abraham-Lorentz

force F⃗AL given by

F⃗AL =
q2

6πε0c3m

d2v⃗

dt2
(1.4)

which is dependent on the second derivative of the velocity of the particle. The fact that the equation of

motion now has a third derivative in time (d2v⃗ /dt2 = d3r⃗ /dt3) results in nonphysical ”runaway solutions”

with arbitrary energy gain. Some solutions were proposed for this problem, but this remains an active field

of research [22–25]. The relativistic correction of equation 1.4 is the Dirac-Abraham-Lorentz force F µDAL

given in covariant representation by

F µDAL =
q2

6πε0c3m

(
d2uµ

ds2
− uµuν

d2uν
ds2

)
. (1.5)

where uµ is the velocity 4-vector given by uµ = (γc, γv⃗) and s represents the space-time interval, related

to τ , the proper time of the particle, by ds = cdτ . One then obtains the equation of motion (also written

in covariant form)
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mc
duµ

ds
= qF µνuν + F

µ
DAL , (1.6)

where Fµν is the electromagnetic tensor (the metric diag(+,-,-,-) is used) given by

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 , (1.7)

with the subscripts x, y and z representing the component of each field in each direction. The first term

in equation 1.6 is the Lorentz force, while the second is the radiation reaction. Despite being corrected

to relativistic speeds, this equations still has the problem of runaway solutions. One solution proposed by

Landau and Lifshitz to get rid of these nonphysical solutions is to use a perturbative expansion to rewrite

the second derivative in velocity in terms of velocities contracted with the electromagnetic field. This results

in the Landau-Lifshitz radiation reaction F µLL given by [26]

F µLL =
q3

16πε0mc2

(
∂F µν

∂xα
uνu

α −
q

mc
F µνFανu

α +
q

mc
Fαβu

βFαδuδu
µ

)
. (1.8)

This radiation reaction correctly eliminates runaway solutions, however, only with the high intensities of

upcoming laser facilities will it be possible to understand how accurately it models the actual radiation

damping felt by electric charges. One final approximation made in the present discussion is to neglect the

first term in 1.8, which depends explicitly on the derivatives of the electromagnetic field. This approximation

is justified since the period of oscillation of the laser pulses used is much greater than the period associated

with the frequency of the emitted radiation [24]. Thus, this reduced Landau-Lifshitz radiation reaction F µLLR,

is written as

F µLLR =
q4

16πε0m2c4

(
−
q

mc
F µνFανu

α +
q

mc
Fαβu

βFαδuδu
µ
)
. (1.9)

1.2.2 Nonlinear Compton Scattering

The production of pairs in laser-electron scattering happens in essentially two steps. First, electrons radiate

high-energy photons with help of the laser fields, through nonlinear Compton scattering. Those photons

then, still in the presence of the intense fields decay into an electron-positron pair via nonlinear Breit-Wheeler

pair creation. The sequential and repeated occurrence of these processes results in a QED cascade, which

can drastically increase the population of particles in the system.

Nonlinear Compton Scattering is a QED process that results in a charged particle emitting a photon in

the presence of a high-intensity electromagnetic field. Only the case where the charged particle is either an

electron or a positron is relevant for the present study. Also, the strong fields are considered to be achieved

by a high-intensity laser pulse. This process is illustrated in the Feynman diagram shown in figure 1.2 on

the right and compared with the regular Compton scattering on the left. Before introducing the rate of this
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Figure 1.2: Feynman diagrams for a) Compton scattering of an electron and b) nonlinear Compton

scattering of an electron. Time evolves from left to right. In image b), fermionic lines have a double

stroke to indicate that they are in the presence of a strong background field, according to the Furry

picture for QED [27]

process, it is convenient to introduce some Lorentz invariant quantities. One of them is the reduced vector

potential a0 given by

a0 =
eE

mecω0
(1.10)

where e is the elementary charge, me is the mass of the electron, c is the speed of light in vacuum, ω0 is the

angular frequency of the laser producing the high-intensity field and E is the field’s amplitude. The other

two important Lorentz invariant quantities are η and χ given by

η =

√
|(Fµνpµ)2|
Esme

(1.11a)

χ =

√
|(Fµνℏkµ)2|
Esme

, (1.11b)

where, pµ is the momentum 4-vector defined as pµ = (meγc,meγv⃗), ℏ is the reduced Planck constant,

Es = m
2
ec
3/eℏ is the Schwinger field [28] and kµ is the wave 4-vector of a photon defined as kµ = (ω/c, k⃗)

with k⃗ the wavevector associated with the photon with |k⃗ | = ω/c and ω the angular frequency of the photon.

Nonlinear Compton scattering only occurs in the QED regime, which is only reached when η ∼ 1. For η ≪ 1

and χ≪ 1, the interaction happens in the classical regime, and QED effects are negligible. It is important to

highlight the impact of the Schwinger field Es in these equations. Its value is ∼ 1018 V/m, while the highest

possible electric field reachable with state-of-the-art laser technologies is only around ∼ 1015 V/m. This

would imply that the QED regime is currently unobtainable. However, by using highly relativistic particles,

the lack of intensity in Fµν can be compensated with high values of γ in p
µ and ω in kµ. This way, η and

χ can still reach values in the order of 1 with state-of-the-art laser facilities. It’s worth mentioning that the

expressions for η and χ depend on the geometry of the collision between the laser and the particles. For a

head-on collision, the values of these parameters are maximized. However, for co-propagation χ, η −→ 0

and QED phenomena are suppressed.

In the energy regime we are interested, spin effects will not contribute significantly to the behavior of

the system, in comparison to the interaction between the particles and the external electromagnetic fields.

Therefore we will neglect these proprieties completely and consider only rates for QED processes which are
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spin averaged and integrated over all emission angles. The differential rate for nonlinear Compton scattering

d2NnCS/dtdχ of an electron or positron with parameter χ emitting a photon is then calculated to be [11]

d2NnCS
dtdχ

= 2
√
3
mec

2αη

hγχ
F (χ, η) , (1.12)

with α is the fine structure constant, h is Planck’s constant, and the function F (χ, η) is given by

F (χ, η) =
2χ2

3
√
3πη4

3∑
i=1

Fi(χ/η)Ji(Y ) , (1.13)

with Y , Fi and Ji defined by:

Y =
χ

3η(η − χ) , (1.14a)

F1(x) = 1 + (1− x)−2 , (1.14b)

F2(x) = 2(1− x)−1 , (1.14c)

F3(x) = x
2(1− x)−2 , (1.14d)

J1(x) =
1

3Y 2

∫ ∞

Y

du
u√

(u/Y )2/3 − 1
K22/3(u) , (1.14e)

J2(x) =
1

3Y

∫ ∞

Y

du
( u
Y

)1/3√
(u/Y )2/3 − 1K21/3(u) , (1.14f)

J3(x) =
1

3Y 2

∫ ∞

Y

du
u√

(u/Y )2/3 − 1
K21/3(u) , (1.14g)

where K are the modified Bessel functions of the 2nd kind.

This result for the differential rate of photon emission is valid for a constant external field with a very

high intensity. Since the intense field comes from a laser in this study, which is oscillatory in nature, this

result can only be applied locally for whatever value F µν has in the moment of the interaction. However, in

the approximation a0 ≫ 1, as is the case for our lasers, this approximation is justified, since the time scale

at which the electrons deflect is much slower than the intensity of the laser changes [29]. A plot of this

rates as a fraction of the energy imparted to the photon is present in figure 1.3 for some values of η. From

this plot, it is visible that most of the photons being generated are of very low energy, but the high energy

photons carry most of the radiated energy.

1.2.3 Nonlinear Breit-Wheeler Pair Emission

The other predominant QED process that is relevant in laser-beam interaction is the nonlinear Breit-Wheeler

pair creation. In this process, an energetic photon in the presence of an intense electromagnetic field decays

into an electron-positron pair. The Feynman diagram governing this process is seen in figure 1.4 on the

right, while the diagram on the left represents its linear counterpart, which remains to be experimentally

verified, due to the difficulty of colliding high energy photons with a density large enough for the process to

be seen [12]. However, for the nonlinear case, since the strong electromagnetic field mediates the process,

this problem is surpassed, and the energetic photons arising from nonlinear Compton scattering can, in the

presence of the same laser, decay into pairs.
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Figure 1.3: Plot of the differential rate of nonlinear Compton scattering as a function of the

fraction of energy that the photon can take from electrons with η of 0.001, 0.1, and 1. ηmin
corresponds to setting γ = 1 in equation 1.11a.
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Figure 1.4: Feynman diagrams for a) Breit-Wheeler pair creation and b) nonlinear Breit-Wheeler

pair creation. Time evolves from the left to the right. Image b) is, once again, in the presence of

a strong background field.

The differential rate for a photon with angular frequency ω decaying into a pair via this process can

be written, once again, as a function of the parameters χ and η as (spin averaged and integrated for all

emission angles)

d2NnBW
dtdη

=
αm2ec

4

√
3πℏ2ωχ

[(
ξ+

ξ−
+
ξ−

ξ+

)
K2/3(χ̂) +

∫ ∞

χ̂

dxK1/3(x)

]
(1.15)

where d2NnBW /dtdη is the differential rate for nonlinear Breit-Wheeler pair creation, and the auxiliary

quantities ξ+, ξ− and χ̂ are given by
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χ̂ =
2

3χξ+ξ−
, (1.16a)

ξ+ = 1− ξ− =
η

χ
. (1.16b)

A plot of this differential rate is given in figure 1.5 for some values of χ, in it, it is possible to see that

this function is symmetric. This behavior would be expected, since a photon should have no preference in

distributing its energy to an electron or positron, since they have the same mass. Therefore, the probability

of creating a lepton with a fraction of energy η/χ has to be the same as the probability of creating it with a

fraction 1− η/χ. It is also visible that as χ increases, it becomes more likely for one particle to carry most

of the energy.
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Figure 1.5: Plot of the differential rate of nonlinear Breit-Wheeler pair creation as a function of

the fraction of energy that an electron (or positron) takes from a photon with χ of 0.5, 1, and 10.

Focusing on the total rate of pair creation dNnBW /dt, given by integrating the previous quantity over

all possible values of η of the created pairs, the total rate is

dNnBW
dt

=

∫ χ−ηmin

ηmin

d2NnBW
dtdη

dη , (1.17)

where ηmin is obtained by setting γ to 1 in equation 1.11a, i.e., saying the pairs are produced at rest and

have only their rest mass energy. Once again, the use of equations 1.15 and 1.17 follows the assumption

that the local values of the electromagnetic field are a static background field, which is justified for high a0

values [29].
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1.3 Particle-in-Cell Codes

1.3.1 Particle-in-cell Algorithm

Particle-in-Cell (PIC) [30] codes are, due to their the ease in being implemented with massive parallel

computing, an extremely useful tool for simulation in plasma physics [20, 31]. The main mechanism behind

the PIC method that turns it into a very efficient simulation tool consists in calculating the electric and

magnetic fields only in a spatially discretized grid. Normally, in a system with N ≫ 1 particles, to account

for all interactions among them would scale with N(N − 1) ≈ N2 computations, since this is the amount

of possible interactions between 2 particles. However, depositing an electric field on the grid, and then

extrapolating the forces on the particles from these fields scales only with N computations. This is ideal

when scaling the simulation for high values of N. These particles are evolved in time according to the Lorentz

force in equation 1.1. Particles, however, live in full 3D space, so in order to know the field values in their

location, an interpolation of the fields to their position is made. After pushing the particles, a new current

density J⃗ is deposited on the grid points and a new value for the electric and magnetic fields is calculated by

solving Faraday’s law (equation 1.2c) and Ampere’s law (equation 1.2d). A flowchart of the algorithm can

be seen in figure 1.6.

Figure 1.6: Flowchart of the algorithm in conventional PIC codes. The blue boxes represent

algorithms occurring in the grid points and in pink the computations in full 3D space.
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Macroparticles

The first thing to consider when approaching a PIC code is that, despite the reduction of operations by

using a grid to mediate the forces, it is still unfeasible to simulate the same number of particles as in a

real plasma (which can is on the order of 1020 particles/cm3). Therefore, particles are instead clumped

into macroparticles. A macroparticle is a particle that represents a large number of real particles that are

intended to be simulated. The macroparticles carry the total mass, charge, and energy of the particles that

it simulates. A macroparticle also occupies a finite size, instead of being represented by a point. This has the

advantage of avoiding the divergences characteristic of the Coulomb interaction near the particle’s center

(E ∼ 1/r2). Particles live in finite-sized cells and represent a volume on the order of a cell size with a certain

charge density. Each cell may also contain more than one macroparticle and a down-sampled momentum

distribution. This gives rise to an important parameter in the simulations which is the number of particles

per cell. The more particles per cell there are, the more accurate the description of momentum space of the

macroparticles is.

Field Interpolation

The interpolation of the electric and magnetic fields happens according to a weighted average of the grid

points in the vicinity of the particle’s position. In 2D, normally the grid forms a rectangular lattice, where a

cell has the shape of a rectangle. In this case, the field is just determined by weighting each field with the

area that is closer to each part of the cell (see the bottom left part of figure 1.7). Calling the area that’s

closer to the field E1 and its area A1, and similarly for the other 3 fields, results in a field in the center of

the particle Epart given by

Epart =
E1A1 + E2A2 + E3A3 + E4A4

A1 + A2 + A3 + A4
. (1.18)

Particle Pusher

After knowing the fields in the positions of the particles, the Lorentz force acting on each particle advances

it in time. A method suggested by Boris [32] allows for higher accuracy in time evolution. For this, the

positions are defined for each step xn, and the velocities are defined in the intermediate steps vn+
1
2 . With

the relativistic equation of motion

d(γv⃗)

dt
=
q

m

(
E⃗ + ⃗v × B⃗

)
, (1.19)

the particles are then evolved as such (variables with primes are just auxiliary):

1. Use half of the electric force term in Lorentz force

γ′v⃗ ′ = γ n−
1
2 v⃗ n−

1
2 +
q∆tE⃗n

2m
(1.20)

with ∆t the time step of the simulation;
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2. With this, calculate an estimate for γ′ =
√
1 + (γ′v ′)2 and v⃗ ′ = γ′v⃗ ′/γ′;

3. Using γ′, advance half of the magnetic rotation

γ′′v⃗ ′′ = γ′v⃗ ′ +
q∆tv⃗ ′ × B⃗n

2m
; (1.21)

4. Perform the full rotation to this estimate and add to the initial one γ′v⃗ ′ (and assuring that the velocity

is kept constant after the rotation, hence the denominator in the next equation)

γ′′′v⃗ ′′′ = γ′v⃗ ′ + γ′′v⃗ ′′ ×
2 q∆tB⃗

n

2m

1 +
(
q∆tB⃗n

2m

)2 ; (1.22)

5. Finally, adding the remaining E⃗ half step

γ n+
1
2 v⃗ n+

1
2 = γ′′′v⃗ ′′′ +

q∆tE⃗n

2m
. (1.23)

After all this, γ n+
1
2 , v⃗ n+

1
2 and r⃗ n+1 are calculated by doing

γn+
1
2 =

√
1 + (γn+

1
2 vn+

1
2 )2 , (1.24a)

v⃗ n+
1
2 =
γ n+

1
2 v⃗ n+

1
2

γ n+
1
2

, (1.24b)

r⃗ n+1 = r⃗ n + v⃗ n+
1
2∆t . (1.24c)

Current Deposition

After the movement of the particles is updated, the electric current in the positions of the the cells is

calculated. However, it is required to interpolate these values to the grid, since that’s where the fields are

defined. To do this, a calculation of the amount of charge passing through the boundaries of the cells is

performed (see top right part of figure 1.7). The exact formula for this depends on how many boundaries

the cells cross, but the concept remains the same.

Field Evolution

After having the current, Maxwell’s equations are used to evolve the fields in time. Namely, the ones who

give the time evolution of the fields are

∂B⃗

∂t
= −∇⃗ × E⃗ , (1.25a)

∂E⃗

∂t
=
∇⃗ × B⃗
ε0µ0

−
J⃗

ε0
. (1.25b)

Finite differences can be used to evaluate the curls present in these equations. To increase spatial accuracy

in these curls, the various components of each vectorial field are defined in grids with some offsets. Also, to

increase time accuracy, the currents are defined for J⃗n+
1
2 , while the electric and magnetic field are defined for
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Figure 1.7: Schematic for the field interpolation (bottom left) and current deposition (top right)

for a simple PIC algorithm.

times E⃗n and B⃗n. The evolution of the fields and the current in time is then done with a leap-frog algorithm

quite similar to the one used for pushing the particles by 1) advancing B⃗ half a timestep; 2) advancing E⃗ a

full time step and 3) advancing B⃗ the remaining half timestep.

1.3.2 OSIRIS QED

For this thesis, all PIC simulations are done using the OSIRIS framework, which is a massively parallel

fully relativistic PIC code [18]. This code uses the algorithms presented in the previous section to advance

the electric and magnetic fields, as well as particle positions and velocities in time. However, in the QED

regime, some alterations have to be added to the code to correctly account for these phenomena. Radiation

reaction must be included to the motion of the particles [25]. This happens because, in the presence of

intense laser fields, particles undergo very rapid accelerations on the timescale of the oscillation of the

laser. This acceleration produces some radiation, as discussed previously, and causes the particle to lose

energy. In the regime where nonlinear Compton scattering is still not a dominant process (η ≲ 1), radiation

reaction can be approximated to the expression given in equation 1.9. With this in mind, the addition of

this force to the Lorentz force in the particle pusher corrects the movement for radiation reaction, since the

Landau-Lifshitz radiation reaction does not produce runaway solutions. In regimes where nonlinear Compton

scattering becomes a relevant phenomenon, the paradigm in the simulation must change.

First, the code loops over all charged particles in the simulation. If their η parameter is small, then

the reduced Landau-Lifshitz radiation reaction is simply added to the equation of motion, as stated above.

Otherwise, a Monte-Carlo algorithm determines, according to equation 1.12 if a photon is emitted or not by
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the particle [20]. In case the particle does emit a photon, then energy is removed from the emitting particle

equaling the one that the photon carried away. This way, a stochastic radiation reaction that only occurs in

the presence of photon emission in the corresponding time step is achieved. The photon that is emitted is

only added to the photon pusher (which is a separate pusher than for charged particles) in case its energy is

above a threshold which is chosen to be 2mec
2. This is done to not overload the pusher with photons that

would never be able to produce an electron-positron pair. This is particularly useful since nonlinear Compton

scattering produces a very large amount of low-energy photons (see figure 1.3).

After this, the simulation has energetic photons that free-stream in time in a straight line until they

decay into pairs (due to the interaction with a strong background field). Therefore, another Monte-Carlo

algorithm loops over all photons in the simulation to calculate if they emit an electron-positron pair or not.

This algorithm uses the differential rate of the nonlinear Breit-Wheeler pair creation from equation 1.15

[20]. This results in the emission a positron and an electron, moving in the direction the photon was initially

moving, in such a way that momentum is conserved (recall the symmetry in figure 1.5). The photon is also

destroyed and removed from the simulation. The new pair is now added to the particle pusher, also subject

to more QED effects and radiation reaction. A flowchart with the algorithm can be seen in figure 1.8.

OSIRIS is coded, as most PIC codes, in plasmas units. This allows better precision since a good amount

of numeric factors are no longer present in these units and quantities are of the same order of magnitude.

Therefore, with primed variables representing the value of that variable in plasma units, they are related to

their value in SI units by

t ′ = tωp , (1.26a)

v ′ = v
1

c
, (1.26b)

x ′ = x
ωp
c
, (1.26c)

m′ = m
1

me
, (1.26d)

ϵ′ = ϵ
1

mc2
, (1.26e)

q′ = q
1

e
, (1.26f)

E′ = E
mecωp
e

, (1.26g)

B′ = B
meωp
e
, (1.26h)

where ϵ is the energy of a particle and ωp is the plasma frequency given by

ωp =

√
nee2

ε0me
(1.27)

and ne is the critical density of the plasma, to which all densities are normalized.
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Figure 1.8: Flowchart of the algorithm in OSIRIS with QED module. The yellow boxes correspond

to Monte Carlo calculations. ”Damping” is either according to the reduced Landau-Lifshitz equation

for low η particles, or QED corrected for high η. Photons are only added if they have an energy

higher than 2mc2.
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Chapter 2

Analytical Study of Electron-Seeded

Pair Generation in Two-colored Pulses -

Ideal Description (Plane Wave)

2.1 Motion in Two-colored Pulses

I consider, as shown in the setup on figure 1.1, that a relativistic electron beam collides with a two-colored

laser pulse. In the present study, the high-intensity laser is composed by the sum of two waves, where the

second is the second harmonic of the first. An expression for the field is, therefore, for linearly polarized

waves (assuming propagation along the z axis and polarization in the x axis)

E⃗ = E1 cos (φ)e⃗x + E2 cos (2φ+ θ)e⃗x , (2.1)

where E1 and E2 are the amplitudes of the 1st and 2nd harmonic fields, respectively, φ is the phase of the

wave given by φ = ω0t − k0z with ω0 the angular frequency and k0 = ω0/c the wavenumber of the first

harmonic, θ is an offset phase between both harmonics and e⃗x is a unit vector pointing in the x direction. In

this section, I consider both harmonics as plane waves, however, in Chapter 3, the simulations are performed

with pulses with finite size and duration.

Since the motion of the electrons and positrons is relativistic, Newton’s 2nd law must be solved for the

relativistic motion of these particles under the Lorentz force. A correct description would require the addition

of a radiation reaction force. However, in this section, for simplicity, only the case of negligible radiation

damping is discussed. Despite affecting the motion of the particles, the qualitative presence of a net current

in the transverse direction shouldn’t be altered, since radiation damping acts similarly to a drag force and

wouldn’t be able to swap the direction of drift of a particle. The equations of motion are then written as
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dγβx
dt

=
qEx
mc
(1− βz) , (2.2a)

dγβy
dt

= 0 , (2.2b)

dγβz
dt

=
qEx
mc
βx , (2.2c)

dγ

dt
=
qEx
mc
βx . (2.2d)

From the equations, it is possible to conclude the conservation of two quantities

γ(1− βz) = const , (2.3a)

γβx +
qAx
mc
= const , (2.3b)

(2.3c)

with A being the vector potential satisfying E = −∂A/∂t and here given by

A = −
E1
ω0
sin (φ)ex −

E2
2ω0
sin (2φ+ θ)ex . (2.4)

This alongside with the definition of Lorentz factor γ = (1 − β2)−1/2 allows me to calculate the final

velocity of a particle born somewhere along the pulse. This analysis is also valid for a pulse whose envelope

varies very slowly in time, in comparison with the temporal variation associated to the oscillating fields. With

this in mind, assuming pairs are born moving only in the z direction (the angle of emission will depend on

1/γ, which for highly relativistic particles, allows us to neglect it) with velocity v0z = β0zc , the final drift

velocity (after leaving the pulse, Ax = 0), represented by vdr if t in the x direction is given by

vdr if t =
q

|q|
2γ0(1− β0z)a1(sinφ0 + E2

2E1
sin (2φ0 + θ))c

1 + γ20(1− β0z)2 + a21(sinφ0 +
E2
2E1
sin (2φ0 + θ))2

, (2.5)

where φ0 is the phase at which the particle is born and a1 = eE1/mcω0. This velocity describes how fast

the electrons and positrons drift in the polarization direction after they leave the pulse. It is important to

highlight that vdr if t has an opposite sign for positrons and electrons, which means that they drift at the same

rate in opposite directions. The opposite-sign drift velocity could ultimately result in a spatial separation of

the charges.

2.2 Pair Production in Two-colored Pulses

The electrons of the beam emit some photons via nonlinear Compton scattering, which then decay into pairs

via nonlinear Breit-Wheeler pair creation, as illustrated in figure 1.1. Since the particles are highly relativistic,

conservation of momentum dictates that in the photon emission, the particles emit the photons in the

direction of motion. Also, the photons decay into an electron-positron pair, partitioning their momentum

into two parts.

For a head-on collision along the z-axis, for the case of an electron or positron with Lorentz factor γ, the
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momentum four-vector is pµ = (γc, 0, 0, γvz) with vz < 0. For the case of a photon with angular frequency

ω, analogously, kµ = (ω/c, 0, 0,−ω/c). With these 4-vectors, equations 1.11 can be simplified to

η = 2
|E|
Es
γ , (2.6a)

χ = 2
|E|
Es

ℏω
mc2

. (2.6b)

where |E| is the instantaneous total electric field.

The electric field is modeled in equation 2.1. Therefore I can replace its expression to determine how η

and χ depend on φ

η = 2γ
|E1 cos (φ) + E2 cos (2φ+ θ)|

Es
, (2.7a)

χ = 2
ℏω
mc2

|E1 cos (φ) + E2 cos (2φ+ θ)|
Es

. (2.7b)

Since I have an expression for χ, η and vdr if t of the pairs being born, I can estimate the total current being

produced by averaging the drift velocity of each particle with the Breit-Wheeler pair creation rate, which will

determine in which phases it is most likely for a photon to decay into a pair, and ultimately give rise to an

asymmetry in the drift of the species, turning the production of an accumulated current Iacum possible, and

given by

Iacum =
2q

c

∫ 2π

0

∫ χ−ηmin
ηmin

vdr if t
dNnBW
dtdη

dηdφ0 . (2.8)

This quantity accounts not only for the fact that some phases produce a higher drift velocity, but also

that there are some phases where pair creation is more likely, giving therefore an estimate of the current

dependency on φ0. It is worth mentioning that equation 2.8 has no information on the spectrum of photons,

and assumes a mono-energetic photon bunch decaying into pairs. This is an approximation that should bear

good results when considering the critical photon frequency ωcr it , which corresponds to the characteristic

energy carried by each photon, and defined according to the condition∫ ωcr it

0

ω
dN

dE
dω =

1

2

∫ ωcutof f

0

ω
dN

dE
dω , (2.9)

with dN/dE the energy distribution of the photon spectrum and ωcutof f the maximum frequency that a

photon can have (assuming it removes all the kinetic energy from a lepton). This quantity can be calculated

numerically assuming we know the photon distribution.
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Chapter 3

Full-Scale Particle-in-Cell Study of

Electron-Seeded Pair Generation in

Two-Colored Laser Pulses

Finite Laser Size Effects and Species Separation

3.1 Benchmarking the Analytical Predictions in a Plane Wave-Like

Simulation Environment

First, I test (in the approximation of a plane wave) how changing θ and the ratio between the fields E2/E1

affects the amount of generated current. This allows me to determine if in fact we should keep θ = ±π/2, as

observed for the ionization scenario. It also allows to determine if there is an optimal ratio E2/E1 for current

production. Therefore, I use OSIRIS to perform 2D simulations in which I initialize the two overlapping plane

waves discussed in the previous chapter, where the second harmonic has a phase offset of θ. This laser is

then sent to collide against a photon bunch. The laser and the photons are initialized moving in the positive

and negative x1 direction respectively. The x2 direction is set to have periodic boundary conditions, which

allows for a representation of an infinite plane wave in the x2 direction. The laser envelope has the profile in

x1 given by the polynomial p(δ)

p(δ) = 10δ3 − 15δ4 + 6δ5 , (3.1)

where δ = (x1 − xstart)/cτr ise with xstart the starting position of the pulse and τr ise the rise time of the

pulse. This function goes from 0 to 1 during τr ise and afterward, the same polynomial is used to go back

to 0 in a time τf al l which I take as τf al l = τr ise . The photon bunch has a uniform density and has an

energy distribution given by the quantum synchrotron spectrum (following distribution in equation 1.12) of

a mono-energetic electron in a constant field. A table with the simulation parameters is present in table 3.1

21



and an example of an output from OSIRIS can be seen in figure 3.1

Variable Value

ω0 ≈ 1.9 x1015 Hz
a1 300

E2/E1 {0, 1/3, 2/3, 1, 4/3, 5/3, 2, 3}
θ {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}

τr ise = τf al l ≈ 32 fs
Number of cells 4800 x 320

Box size ≈ 70 x 10 µm
∆t ≈ 2.6 as

Radiation Reaction Off

nonlinear Compton scattering Off

nonlinear Breit-Wheeler pair creation On

Particles per cell 2 x 2

Photon density ≈ 1.4 x1027 m−3
Photon bunch thickness ≈ 3 µm
Synchrotron spectrum γ 10000

Synchrotron spectrum χ 0.5

ℏωcr it 1.25 GeV

Table 3.1: Simulation parameters for the simulations. Only E2/E1 and θ were varied.

Figure 3.1: Output from an OSIRIS run where a two-colored laser pulse (in purple) moving to

the right has collided with a photon bunch (moving to the left and suppressed in the figure for

simplicity), which made electrons (in blue) and positrons (in orange) to appear due to nonlinear

Breit-Wheeler pair creation. Simulation with E2/E1 = 1 and θ = π/2.
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Variation with θ

I start by discussing the results obtained when changing θ. For these runs, E2/E1 was kept at 1. In

these simulations, there can be no transverse charge separation by construction, so electrons and positrons,

produced in the same number, have exactly the same distributions in figure 3.1. However, according to

the conclusions of chapter 2, there should be a drift current whose origin lies in the different transverse

momentum direction of the species. To observe if this is the case, the distributions of the transverse

momentum of electrons and positrons are shown in figure 3.2. In these plots, it is possible to observe that

for the phase offsets of θ = 0 and θ = π, the distribution of both species is quite similar, with only minor

changes near p2 = 0. This results in no net current being produced by the movement of these charges.

However, for π = θ/2, it is possible to see that these distributions differ, with a dominance of positive

momentums for electrons and negative momentums for positrons. This results in a net current in the

negative x2 direction. Also, for the case of θ = 3π/2, a similar separation in momentum space is observed,

but in the opposite direction. This would give rise to a current of similar amplitude, but opposite direction.

It is worth noting that for θ = 0 and θ = π particles still have a transverse drift velocity, however, both

species drift symmetrically in the positive and negative x2 direction, so no net current is produced.

To conclude what is the optimal phase offset, the data for the transverse current was gathered for

simulations with 8 different values of θ, and a plot of J2 as a function of x1 is made, for the end time of

the simulation. To obtain J2 as a function only of x1, an averaging of the data over x2 is performed. This

is physically justifiable since the x2 direction is periodic and the plane wave and photon bunches, therefore,

have no dependency in x2. A plot of the currents for all values of θ is presented in figure 3.3.

From figure 3.3 it can be seen that the tendency for the produced current to evolve as θ changes is to

• Increase for 0 < θ < π/2;

• Decrease towards 0 for π/2 < θ < π;

• Increase in the opposite direction for π < θ < 3π/2;

• Decrease back towards 0 for 3π/2 < θ < 2π.

In order to see if the theoretical model from equation 2.8 correctly predicts this behavior, a comparison of

the total integrated current and the output of equation 2.8 are shown for photon energies close to ℏωcr it

as a function of θ are shown in figure 3.4, where the simulation points have been re-scaled to match the

maximum value at π/2 from the theoretical predictions. From here, I can conclude that despite not being

able to give correct estimates for the values of the current (due to different energies in the system), the

theoretical description of chapter 2 captures all the main features of the dependency of the charge separation

as a function of the phase offset between the laser harmonics for various values of photon energy close to

ℏωcr it . Finally, I verify that this increase in current is in fact due to the variation of θ and not due to an

increase of pairs in the system, I present the ratio of the number of pairs and the initial number of photons

in the simulation Npairs/Nγ in table 3.2 alongside the values for the integral of the current density of figure
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Figure 3.2: Plots of transverse momentum distribution dN/dp2 for electrons (blue) and positrons

(red) in various for values of θ 0, π/2, π and 3π/2.

3.3. In this table, it is possible to see that the variation in pair number is the order of 2%, while the current

changes by more than an order of magnitude, which allows us to conclude that the gain in current is solely

due to θ.

Variation with E2/E1

Similarly to the study for θ, I now change E2/E1 for a fixed value of θ, which is chosen to be π/2, since it

maximizes the produced current. Analogously to the previous simulations, the momentum distributions of

the produced pairs for some values of E2/E1 are given in figure 3.5. In these distributions, it can be seen

that:
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Figure 3.3: Current density J2 as a function of x1 at the end of the simulation for all the values

of θ simulated. J2 was first averaged over x2, in order to depend only of x1. Then, a moving

average with a window of 100 points has been performed to remove noise from the output of the

simulation.
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Figure 3.4: Comparison between the θ dependency of the produced current from theoretical

predictions for various photon energies (colored lines) and the simulations (black dots).

• For E2 = 0 there is no net current, and the drift of both species is suppressed since both electrons

and positrons have transverse momentum distributions that peak at 0;

• The current increases until E2 ≈ E1;

• For higher values of E2, the peaks start getting closer together.

In order to see how E2/E1 affects the current in our case, I show a plot of J2 as a function of x1 at the

end of the simulation for the various values of E2/E1 that were simulated. This plot is shown in figure 3.6,

from which I can conclude that the maximum current production does in fact appear to be in a 1.5 ± 0.5
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θ Npairs/Nγ
∫
J2dx1 [10−3 pC/fsµm]

0 0.47 -0.3

π/4 0.47 -5.0

π/2 0.48 -6.7

3π/4 0.47 -4.8

π 0.47 0.2

5π/4 0.47 4.9

3π/2 0.47 6.7

7π/4 0.47 4.6

Table 3.2: Current density integral and ratio of the number of pairs with the initial number of

photon for the simulated values of θ.
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Figure 3.5: Plots of transverse momentum distribution dN/dp2 for electrons (blue) and positrons

(red) in various for values of E2/E1 of 0, 1/3, 1 and 5/3.
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window. After the increase in peak current, the tendency is to once again decrease the charge separation

and therefore the net current. However, unlike the θ variation, the case of increasing and decreasing E2

without changing E1 has a consequence on the number of pairs being produced. The ratio of pairs at the

end of the simulation and photons at the start is shown in table 3.3. There is a correlation between the

number of produced pairs and E2/E1, but despite this, the highest value for E2/E1 still doesn’t maximize

the current. Similarly to what was done for θ, the theoretical prediction and the simulation result can be

compared. In figure 3.7 it can be seen that, although the agreement isn’t as well achieved as in figure 3.4

for various values of photon energy, the behavior of both theory and simulation results are the same for

energies close to ℏωcr it (which is 1.25 GeV for the photon spectrum used).
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Figure 3.6: Current density J2 as a function of x1 at the end of the simulation for all the values

of E2/E1 simulated. J2 was first averaged over x2 and then a moving average with a window of

100 points has been performed to remove noise from the output of the simulation.

E2/E1 Npairs/Nγ
∫
J2dx1 [10−3 pC/fsµm]

0 0.35 -0.01

1/3 0.38 -2.9

2/3 0.43 -5.1

1 0.47 -6.9

4/3 0.51 -7.4

5/3 0.55 -7.5

2 0.58 -6.9

3 0.64 -4.2

Table 3.3: Current density integral and ratio of the number of pairs with the initial number of

photons for the simulated values of E2/E1.

It is important to note that despite the success of the theoretical model in predicting the behavior of the

current, both in its direction and in the dependency of θ and E2/E1, these simulations are far from valid in

a real laser-electron scattering experiment. Radiation reaction was completely neglected and the laboratory
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Figure 3.7: Comparison between the E2/E1 dependency of the produced current from theoretical

predictions for various photon energies (colored lines) and the simulations (black dots).

lasers require a small spot size (in the order of tens of microns) to be able to achieve local intensities on the

order of 1023 − 1024 W/cm2. This means that in order to correctly predict what would happen in an actual

experiment, I need to model a finite laser pulse and consider a fully quantum treatment of the interactions,

with nonlinear Compton scattering and radiation reaction.

3.2 Phase Control and Charge Separation with a Finite Gaussian

Laser Pulse, Including QED Radiation Reaction

I now input a finite spot size to both the laser pulse and generate the photons consistently from a relativistic

electron beam in OSIRIS. For this study, I am using 2D PIC-QED simulations without periodicity in any

direction. For the electron beam, I consider a mono-energetic beam with a gaussian density profile with the

same standard deviation in all directions. The two-colored laser pulse is initialized by overlapping both laser

frequencies using the same spot sizes. Since the pair production is linear with the number of electrons in the

beam, one can extrapolate the total number of pairs or current generated for other electron beam charges.

The laser focuses exactly when its center encounters the center of the electron beam. For this study, I ran

3 simulations for different values of θ, and for E2/E1 = 1, since this is a good value for current generation

according to the previous section. The simulation parameters can be found in table 3.4.

Since the lasers in these simulations have a finite spot size, the separations of momentum that were

shown in the previous section should give rise to a separation of charges in the x2 direction. In order to

visualize this, I present in figure 3.8 the electron and positron distributions for θ = 0 and θ = π/2 after ≈ 98

fs from the beginning of the simulation time. In the case where θ = 0, the electrons and positrons drift both

in positive and negative x2 direction, so despite the drift of the particles, no charge separation is produced.

However, for θ = π/2 this is no longer true. Electrons have a preferential drift along the positive x2 direction
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Variable Value

ω0 ≈ 1.9 x1015 Hz
a1 300

E2/E1 1

θ π/2, π/4, 0

τr ise = τf al l ≈ 32 fs
Spot Size (both harmonics) ≈ 12.8 µm

Number of cells 8640 x 1800

Box size ≈ 70 x 80 µm
∆t ≈ 2.6 as

Radiation Reaction On

nonlinear Compton scattering On

nonlinear Breit-Wheeler pair creation On

Particles per cell 2 x 2

Electron beam peak charge density ≈ 10 pC/µm3
Electron beam energy γ ≈ 5 GeV

Electron distribution standard deviation ≈ 3.2 µm
Electron beam total charge ≈ 32 pC

Table 3.4: Simulation parameters for the simulations with finite spot size. Only θ was varied.

while positrons show a preferential drift along the negative x2 direction. Due to radiation reaction, it is also

observed that particles lose a large amount of their energy and begin co-propagating with the laser pulse

(represented in purple).

(a) Electron charge density for θ = 0. (b) Positron charge density for θ = 0.

(c) Electron charge density for θ = π/2. (d) Positron charge density for θ = π/2.

Figure 3.8: Charge density for electrons (in blue) and positrons (in red) for simulations with finite

spot size with θ = 0 (figures a) and b)) and θ = π/2 (figures c) and d)).
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The result of figure 3.8 achieves the main objective of this thesis: By controlling the phase offset

θ between the two components of a two-colored laser pulse, it is possible to generate a current in the

transverse direction and control the species separation among the generated electron-positron pairs. The

fact that the laser eventually defocuses and liberates the particles that are co-moving with it ensures that

given enough time (which is computationally non-viable to simulate in the present runs) the product of the

scattering will be two beams, one consisting mostly of electrons and another one of positrons, moving at

opposite angles with relation to the optical axis. For a better 3D visualization of the achieved separation,

image 3.9 showcases how the two species are separated in space for the case of θ = 0 and θ = π/2. Here,

it can be seen that for θ = 0, the electrons and the positrons are overlapping in the laser beam and that

the charges outside the laser influence have no preferential distribution. However, for θ = π/2, the particles

that already left the pulse are separated, and even the particles still oscillating inside the pulse are already

physically separated.

(a) Final charge density distribution with θ = 0.

(b) Final charge density distribution with θ = π/2.

Figure 3.9: 3D visualization of charge density of electrons (in blue) and positrons (in orange)

of figures 3.8a, 3.8b, 3.8c and 3.8d. Regions with highly oscillatory behavior are still under the

influence of the laser pulse, as the charged particles co-propagate with it.

Because both species get separated and move in opposite directions, θ = π/2 is an ideal setup to

maximize the produced current also in the finite-pulse scenario. A plot of the produced current both with

θ = 0 and θ = π/2 is shown in figure 3.10. Here it is seen that the current deposited for θ = 0 is barely
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distinguishable from noise, except in the region where particles are still oscillating under the influence of the

pulse (where the current is produced by that oscillation, and not an overall drift). Meanwhile, for θ = π/2

there are two large concentrations of current, both in the same direction but on opposite sides of the optical

axis, due to both species moving in opposite directions and having opposite charges. A study is performed

to understand where the net current is more intense and how it changes for the simulated values of θ. I

define I2T as being the total current in a slice of constant x2, i.e

I2T =

∫ x1max
x1min

J2dx1 . (3.2)

This allows for the visualization of how close the maximum current is to the optical axis while neglecting

the current produced by the particles oscillating in the laser fields (since that contribution averages to 0 in

the integral), therefore I present a plot for this total current in figure 3.11a. From this plot, it is visible that

the maximum of the current occurs around 30 µm and 50 µm, and that θ = π/2 has a higher peak current

than θ = π/4, which agrees with the results from the previous section. Since the spot size of the laser is

around 12.8 µm and the optical axis is located at x2 = 40 µm, I can conclude that most of the particles that

contribute to the net current are nearly outside the most intense laser region. It is also visible that this plot is

not perfectly symmetrical around the optical axis and that there is a small current for the case of θ = 0. This

small current changes sign around the optical axis and corresponds to a contribution of the ponderomotive

force that the electrons in the beam feel when crossing the pulse. If I subtract this contribution to the

remaining plots, symmetry around the optical axis is now observed in the currents produced as seen in figure

3.11b.

(a) Transverse current density for θ = 0. (b) Transverse current density for θ = π/2.

Figure 3.10: Transverse electric current generated by the movement of the produced pairs for a)

θ = 0 and b) θ = π/2.

Finally, I investigate the impact that θ has on the number of pairs present in the simulation. A table

with the ratio of the number of created pairs and initial electrons in the beam is found in table 3.5. From

here, it is visible that the variation of θ still keeps the variation in the number of pairs in the order of 2% as

was concluded in the plane wave simulations, and therefore doesn’t contribute significantly to the increase

of current observed.
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(a) Plot of I2T for θ = 0, θ = π/4 and θ = π/2.
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(b) Plot of I2T subtracting the contribution of θ = 0.

Figure 3.11: Plots of I2T vs. x2 for θ = 0, θ = π/4 and θ = π/2. A moving average with 20

points has been done to smooth the plot.

θ Npairs/Ne−

0 6.0

π/4 6.1

π/2 6.1

Table 3.5: Ratio between number of pairs and initial number of electron for the values of θ simulated.
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Chapter 4

Conclusions

This thesis deals with phase control of species separation in Breit-Wheeler electron-positron beams. The

pairs are generated from a head-on collision of electrons with a two-colored laser pulse. The two-colored

laser can be experimentally obtained by overlapping a laser beam with its second harmonic.

I have derived an analytical model for the separation of electron-positron pairs born amidst a two-colored

laser pulse. The theoretical analysis reveals that spatial separation of electrons and positrons is directly

related to the phase difference θ of the two laser modes, and by varying θ we can obtain a full separation or

no separation at all. The phase scan can be used as a direct experimental signature of this effect.

The model assumes a transversely infinite plane wave for the laser beam. According to the analytical

calculations, the optimal distribution of energy between the two harmonics is when the peak value of the

electric field is comparable in each mode.

To confirm the validity of the theoretical description in non-ideal conditions, the same setup was studied

with particle-in-cell simulations. The first verification was obtained using a plane wave with a finite envelope.

This showed the same parametric dependencies as the model predicted. We then proceeded to full-scale,

two-dimensional simulations, featuring a finite spot size, two-colored Gaussian laser pulse. Simulations

of a head-on collision between a relativistic electron beam and this laser pulse were performed to further

investigate the process of charge separation and show that the process could have macroscopic observable

for laboratory experiments. We confirm that the maximum current generated by the particles being born via

Breit-Wheeler pair creation in this setup occurs for phase differences of θ = ±π/2 and comparable values

of the electric fields of each harmonic, just like the analytical estimates predict. This means that the effect

is local, and the laser pulse transverse structure is not required to observe this process. For a single-mode

laser (e.g. E1 = 0 or E2 = 0), the species separation is fully suppressed.

If the laser spot size is very small (of the order of the laser wavelength), it may happen that the pondero-

motive force accelerates the charge separation once the leptons are first launched in opposite directions, and

this could be a subject of a future investigation. Further work would include upgrading the theoretical model

for it to predict the value of the obtained current density, instead of just identifying the optimal parameters

where it is maximized. Computing the asymptotic angle of lepton escape in each direction would also be
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of interest to guide the detector design for experiments. A detailed study of emitted radiation from this

system could reveal an additional experimental signature, analogously to the THz radiation emitted by a

similar setup of two-colored laser ionization.

Original Contributions

The work which has lead to the completion of this thesis has led to contributions in the following peer

reviewed papers:

- B. Barbosa et al, to be submitted to MRE (2022) - Analytical description and simulation confirmation

of phase control of of charge separation in Breit-Wheeler pairs using two-color pulses;

- B. Martinez, B. Barbosa, M. Vranic, submitted, ArXiv: https://arxiv.org/abs/2207.08728 - Calcula-

tions of low-energy pairs which are later used for plasma channel acceleration ;

- D. Ramsey et al, submitted (B. Barbosa in the Acknowledgments) - Enthusiastic discussions.

The work was presented at:

- PULSE Division Student Meeting, LLE, Rochester, June 2022;

- GoLP EPP Meeting, IST, November 2022.
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[21] J. D. Jackson, Classical Electrodynamics, 3rd ed. Wiley, 1999.

[22] C. F. Nielsen et al., “Experimental verification of the landau–lifshitz equation”, New Journal of Physics,

vol. 23, no. 8, p. 085 001, Aug. 2021.

[23] T. Nakamura, “On the schott term in the lorentz-abraham-dirac equation”, Quantum Beam Science,

vol. 4, no. 4, 2020.

[24] M. Tamburini, F. Pegoraro, A. D. Piazza, C. H. Keitel, and A. Macchi, “Radiation reaction effects

on radiation pressure acceleration”, New Journal of Physics, vol. 12, no. 12, p. 123 005, Dec. 2010.

[25] M. Vranic, J. Martins, R. Fonseca, and L. Silva, “Classical radiation reaction in particle-in-cell simu-

lations”, Computer Physics Communications, vol. 204, pp. 141–151, 2016.

[26] L. Landau and E. Lifshitz, The Classical Theory of Fields. Course of Theoretical Physics, 4th ed.

Elsevier Science, 2013.

[27] W. H. Furry, “On bound states and scattering in positron theory”, Phys. Rev., vol. 81, pp. 115–124,

1 Jan. 1951.

[28] J. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev., vol. 82, pp. 664–679, 5

Jun. 1951.

[29] C. Ridgers et al., “Modelling gamma-ray photon emission and pair production in high-intensity laser–matter

interactions”, Journal of Computational Physics, vol. 260, pp. 273–285, 2014.

36

http://dx.doi.org/10.1117/12.880696
http://dx.doi.org/10.1117/12.880696
http://dx.doi.org/https://doi.org/10.1038/s41598-018-23126-7
http://dx.doi.org/https://doi.org/10.1038/s41598-018-23126-7
https://link.aps.org/doi/10.1103/PhysRevLett.105.080401
https://link.aps.org/doi/10.1103/PhysRevLett.105.080401
http://dx.doi.org/10.1038/nphoton.2008.153
http://dx.doi.org/10.1038/nphoton.2008.153
https://link.aps.org/doi/10.1103/PhysRevLett.127.095001
https://link.aps.org/doi/10.1103/PhysRevLett.127.095001
https://aip.scitation.org/doi/abs/10.1063/1.4965629
https://aip.scitation.org/doi/abs/10.1063/1.4965629
http://books.google.com/books?vid=ISBN9780471309321
https://dx.doi.org/10.1088/1367-2630/ac1554
https://www.mdpi.com/2412-382X/4/4/34
https://dx.doi.org/10.1088/1367-2630/12/12/123005
https://dx.doi.org/10.1088/1367-2630/12/12/123005
https://www.sciencedirect.com/science/article/pii/S001046551630090X
https://www.sciencedirect.com/science/article/pii/S001046551630090X
http://books.google.com/books?vid=ISBN9781483293288
https://link.aps.org/doi/10.1103/PhysRev.81.115
https://link.aps.org/doi/10.1103/PhysRev.82.664
http://dx.doi.org/10.1016/j.jcp.2013.12.007
http://dx.doi.org/10.1016/j.jcp.2013.12.007


[30] J. M. Dawson, “Particle simulation of plasmas”, Rev. Mod. Phys., vol. 55, pp. 403–447, 2 Apr. 1983.

[31] B. Martinez, “Radiative and quantum electrodynamic effects in ultra-relativistic laser-matter interac-

tion”, Theses, Université de Bordeaux, Dec. 2018.
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