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Abstract 

The operating room (OR) is among the highest hospital revenue generators while also accounting for an equally 
high cost of use. Thus, optimising the use of the OR becomes vital for the provision of efficient and cost-effective 
healthcare. A fundamental step towards achieving optimal scheduling of surgical procedures is to obtain accurate 
estimates of their duration. 
This master's thesis focuses on the study and construction of a resolution approach that can be applied as a tool 
to provide more accurate estimates on the use of the OR than the predictions currently made by the surgeons of 
the orthopaedic specialty at Hospital da Luz of Lisbon. 
Based on a literature review, linear regression was selected as the method to be applied to the problem in 
question. Three different scenarios were built (aggregate model, model per procedure and model per surgeon) to 
understand which of the three provides forecasts that are closer to what is observed. 
All models could outperform the predictions estimated by the surgeons, representing a preferable alternative to 
the currently used method. However, it was possible to confirm the best performance of the aggregate model 
compared to the others. 
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1. Introduction 

The operating room (OR) is a critical resource that 
represents more than 40% of the total revenue of a 
hospital and an equally high proportion of its total 
expenditure, which makes it the most expensive 
unit but also the one with the highest source of 
income (Denton et al., 2007). Thus, efficient 
management of this unit is fundamental when 
hospitals or other health services aim to maximise 
their results with the existing resources. 
This resource is sometimes unpredictable and has 
multiple factors that may interfere with its efficiency 
and make complex and challenging the exercise of 
sequencing and scheduling of surgeries correctly to 
ensure efficient use of resources and to avoid 
under or overuse of the OR, which also can have 
an undesired impact on patient waiting times. One 
of the most important components in this exercise 
is the duration of each surgery, which is difficult to 
predict (Lee et al., 2019). Therefore, when asked to 
present the expected time for each procedure, 
surgeons may overestimate or underestimate the 
duration of a surgery. When surgeries take longer 
than expected, the procedures that follow may be 
delayed (resulting in reduced starts at scheduled 
time with additional demands on workers' hours) or 

cancelled (creating throughput issues and 
undermining the value of the customer's hospital 
experience). On the other hand, overly 
conservative estimates result in empty operating 
rooms leading to lower occupancy and throughput. 
Overall, unbiased, and accurate estimates will be 
the prerequisite to achieve more efficient operating 
theatre sets, with well-demonstrated repercussions 
on both clinical outcomes and patient experience 
(Kayis et al., 2012). This last point is extremely 
important as, in an increasingly competitive area, 
the hospital experience felt by each client may be 
strongly penalised by a delay in the call to the block 
or an unwanted cancellation of their surgery. 
This study used data from surgeries performed 
between 2019 and 2022 within the orthopaedic 
specialty of Hospital da Luz of Lisbon, a private 
healthcare reference entity in Portugal. The main 
objective of this study was to build a prediction 
model that can be applied as an autonomous tool 
to provide more accurate estimates to service 
coordinators and block managers in charge of 
planning and sequencing surgeries to ensure their 
operational efficiency and, secondarily, to identify 
which preoperative variables are best related to 
surgical duration. In this way, and considering the 
existing literature, linear regression was selected 
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as the resolution approach to be applied. Three 
possible scenarios were built (one aggregate 
model, one model per procedure and one model 
per surgeon) with the purpose of understanding 
which of the three reproduces predictions that are 
closer to those observed. In general, all models 
outperformed the predictions currently estimated 
by surgeons, all representing better options than 
the method currently used. However, it was 
possible to assess lower RMSE values and mostly 
higher percentages of accurate predictions for the 
aggregate model. 
 

2. Problem Characterisation 

2.1 OR characterisation 

The OR represents an organic and functional unit 
of a hospital that integrates physical, human, and 
technical means and is characterised as the point 
of convergence of most services and specialties. 
This structure consists of operating rooms, 
disinfection rooms, support rooms, and anaesthetic 
induction rooms. Hospital da Luz of Lisbon has 
sixteen operating theatres, one of which is for 
robotics, an emergency room, and a Lasik room. 
Each room has a disinfection room as well as an 
anaesthetic induction room. This unit is open from 
Monday to Friday from 8am to 10pm and Saturday 
from 8am to 2pm. Regarding human resources, for 
each surgery, Hospital da Luz of Lisbon usually 
provides 6 staff members: surgeon, 
anaesthesiologist, anaesthesia nurse, circulating 
nurse, instrumentalist, and auxiliary nurse. 
 

2.2 OR planning and scheduling 

OR scheduling is the process of scheduling 
surgeries by surgeon and by room that has as output 
a detailed calendar, most often weekly, where the 
slot allocated to each procedure is described. 
Hospital managers aim to maximise the 
performance of OR utilisation through a variety of 
strategic steps. The literature refers to three surgical 
scheduling strategies: block-scheduling, open-
scheduling and modified block-scheduling. 
The strategy followed by Hospital da Luz of Lisbon 
is a surgical programming in block-scheduling since 
each specialty is assigned a fixed weekly schedule 
during which it can perform surgical scheduling. 
Each specialty is responsible for, together with the 
surgeons, carrying out its weekly planning 
considering the slots allocated to it. 
 

2.1 Constraints on OR planning and 

scheduling 

In most hospitals OR availability is limited and so 
there is a strong emphasis on scheduling as many 
cases as is feasible, safe, and cost-effective. 
However, while some surgeries have a relatively 
predictable duration others can have significant 
variability in their duration (Denton et al., 2007). In 
addition, some surgeons do not work exclusively in 
one hospital, which sometimes limits the time 
available to schedule their surgeries. 

At Hospital da Luz of Lisbon, and regarding the 
orthopaedic specialty, surgeons estimate the 
duration of the surgery they propose to perform 
based on their experience. There are few tools 
available to assist in the calculation of surgical 
time forecasts. However, this is a limitation that 
can easily be overcome, given that the hospital 
has rigorous and compiled management support 
data on the OR activity with which it is possible to 
work. 
Although this is a daily constraint and known by all 
parties involved, there is still no strict control over 
the time predicted by surgeons and the time 
observed, which makes it difficult to implement 
measures to alert surgeons to the imperative need 
to minimize these deviations. Figure 1 shows the 
comparison between the predicted duration of 
surgery estimated by orthopaedic surgeons at the 
Hospital da Luz of Lisbon and its actual duration in 
the period between 1 January 2019 and 31 May 
2022, data provided by the hospital following the 
positive opinion of the respective research and 
ethics committees and which will be used to 
develop this study. The red line shows the ideal 
scenario in which the estimates are always 
correct. It is possible to observe in the graph that 
observations tend to be located on the left side of 
the line. This reflects the obvious overestimation in 
the surgeons' forecast regarding the actual 
surgical times, which may encourage periods of 
OR downtime. 
 

Figure 1 I Comparison between the predicted 
surgical duration estimated by surgeons and the 
actual duration, for the period between 1 January 

2019 and 31 May 2022. 

 

3. Literature review 

3.1 OR planning and scheduling 

Within the scope of surgical time prediction, 
several approaches have been proposed. These 
include statistical models such like linear 
regression (LR) applied  by Strum et al. (2000), 
Eijkemans J. et al. (2010), Kayis et al. (2012) and 
Edelman et al. (2017) or machine learning 
algorithms used by Tuwatananurak et al. (2019), 
Bartek et al. (2019), Zhao et al. (2019) and Abbou 
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et al. (2022).  
Furthermore, in relation to the independent variables 
that present a greater relationship with the 
dependent variable, Ng et al. (2017) concludes that 
the variable with the highest weight in the model was 
related to procedures. However, the location, 
patient's class, surgeon, type of anaesthesia and 
gender of the patient all contribute significantly. 
Time of day seems to influence the performance of 
the models contrary to the day of the week. The 
month seems to introduce noise to the models, 
leading to a reduction in the performance of the test 
set.  On the other hand, Eijkemans J. et al. (2010) 
finds out that factors related to surgery and team 
have greater predictive power. Kayis et al. (2012) 
concludes that operational factors (order of surgery, 
OR allocation surgical team) are promising in 
improving the predictability of surgery. 
 

3.2 Selection of resolution approach  

Most of the articles mentioned in the literature 
analyse statistical models, namely linear regression, 
as an approach to solve the problem of surgical time 
prediction in hospital environment. This method is 
not very flexible since it can only generate linear 
functions (lines or planes) unlike non-linear 
approaches that avoid the assumption of a particular 
functional form for f, allowing a more accurate 
adjustment to a wide range of possible forms for f. 
When inference is the goal, there are clear 
advantages in using simple and relatively flexible 
statistical learning methods. In some scenarios, the 
interest is only in predictability and not in the 
interpretation of the predictive model. In these 
cases, it will be better to use the most flexible model 
possible. Interestingly, this is not always the case. 
More accurate predictions can be obtained using a 
less flexible method. This phenomenon, which may 
seem counterintuitive at first glance, has to do with 
the potential for overfitting in very flexible methods, 
an undesirable situation because the fit obtained 
may not produce accurate estimates of the response 
when new observations that were not part of the 
original dataset are used (Hastie et al., 2021). 
The aim of this dissertation, as already mentioned, 
is to develop a model that produces accurate 
estimates that outperform the prediction method for 
surgery times currently used in Hospital da Luz of 
Lisbon. To this end, it is necessary to identify which 
possible preoperative variables can be related to 
this duration. Thus, the selected resolution approach 
will have to enable accurate predictions to be 
achieved, allowing the model to be interpreted. 
For this reason, the linear regression method was 
selected. 
 

4. Research Methodology 

For each of the models, the methodology adopted 
follows the following steps: information selection, 
data preparation, modelling, and results. 
 

4.1 Information Selection 

Before establishing the prediction model using the 

historical data, a cleanup action was performed to 
eliminate data records considered "invalid". These 
include incomplete records, records relating to 
CPTs with less than 20 records to ensure the 
predictive potential of each procedure and records 
of surgery time with durations of less than 10 
minutes because they may represent recording 
errors, hardly reflecting durations associated to 
orthopedic procedures. Elective and urgent 
surgeries were considered as part of the sample, 
given that the scope of this master's dissertation 
does not require a distinction between the two 
types. Observations recorded during the 3rd and 
4th quarter of 2020 periods that reflected 
significant impacts of the pandemic on surgical 
durations were also disregarded. 
The data were subsequently divided into two 
samples: the training sample containing records 
from the years 2019, 2020 and 2021 and the test 
sample integrating observations recorded during 
the first half of 2022. 
This resulted in a training sample of 3312 
surgeries recorded in the period between 1 
January 2019 and 31 December 2021 (excluding 
the 3rd and 4th quarters of 2020) and a test 
sample of 713 surgeries referring to the first half of 
2022. The sample used to train the aggregate 
model includes 41 distinct procedures performed 
by 33 surgeons while the test sample features 34 
distinct procedures performed by 27 surgeons. 
 

4.1 Data Preparation 

This step is characterised by a set of validations 
required to ensure the success of the least 
squares approach, i.e., to ensure that this method 
reproduces the best linear and unbiased 
coefficients (Hosseini et al., 2015). The 
assumptions should be validated for all samples 
that are at the origin of the design of each model. 
However, in this section we will only exemplify the 
steps for the aggregate scenario. 
In a first stage, and to ensure the best 
performance of the model to be developed, it 
should be ensured that the independent variable, 
in this case the real duration of surgeries, presents 
a normal distribution. To assure this assumption, 
the logarithm was applied to this variable. 
For the development of the proposed model only 
the pre-operatively available variables described 
in table 1 were used. The "mean_duration" was 
the only variable added to the data shared by the 
hospital and it translates into a calculated field 
presenting the mean duration per procedure and 
per surgeon. This factor was added as it is 
mentioned in the literature as having predictive 
potential (Bartek et al., 2019). Currently, the 
average duration is still the prediction used by 
many hospitals. 
 
Table 1 I Description of the variables available pre-

operatively. 

Independent 
Variables (Factors) 

Type Levels 

month Nominal 12 
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week_day Nominal 5 

working_day Nominal 2 

shift Nominal 2 

room Nominal 14 

age_patient Numeric - 

gender_patient Nominal 2 

procedure_code Nominal 41 

main_surgeon Nominal 33 

ambulatory Nominal 2 

surgery_priority Nominal 2 

first_surgery_day Nominal 2 

mean_duration Numeric - 

predicted_duration Numeric - 

 
For each of the scenarios to be tested, the 
selection of variables to be included in each model 
considered the validation of the following 
assumptions: 
1) The independent variables are uncorrelated: 
assessed by Pearson's correlation coefficient.  
2) There is no multicollinearity among independent 
variables: assessed by the VIF (variance inflation 
factor) metric. 
3) The categorical variables are statistically 
significant: assessed by the p-value resulting from 
the analysis of variance (ANOVA) which allows for 
the analysis of the differences between the means 
referring to the various categories of a group. 
The validation of each assumption was performed 
using the statistical analysis software R, version 
4.2.1. The first assumption to be validated applied 
to the numerical variables ("age_patient", 
"mean_duration" and "predicted_duration"). With 
the help of R, it was possible to calculate the 
correlation coefficient between each pair of 
variables and confirm the high correlation between 
the variables "mean_duration" and 
"predicted_duration", which present a correlation 
coefficient of 0.89. Thus, it was necessary to 
disregard one of the variables. The choice of the 
variable to be rejected is arbitrary, however, the 
variable removed was "predicted_duration" as it 
adds the least information to the model and 
presents a lower accuracy, representing precisely 
the variable that is intended to be optimised. 
To evaluate multicollinearity, it is frequent to use 
the VIF which evaluates how much the variance of 
an estimated regression coefficient increases if its 
variables are correlated. A VIF between 5 and 10 
indicates high correlation, which can be 
problematic. If the VIF presents a value greater 
than 10, it can be assumed that the regression 
coefficients are poorly estimated due to 
multicollinearity. This metric can be applied 
considering numerical variables and categorical 
variables that do not present more than two levels. 
Since all considered variables presented low VIF 
values, none was disregarded. 
For the categorical variables with more than two 
levels, the ANOVA was performed and resulted in 
the removal of the variable “month”. 
It is from the aggregate data sample that the 
samples per procedure and surgeon can be 
created. However, it is necessary to ensure that 
the training samples are large enough to 
contribute to a correct prediction. Thus, to obtain 
data per surgeon, a threshold of 180 observations 

was set, below which the sample would no longer 
be able to produce reliable predictions. Therefore, 
in a first stage, procedures with a number of 
observations higher than 180 were selected, 
excluding those with a lower number of records. 
Each procedure will correspond to a distinct data 
sample that will allow the development of each 
model. The same logic was used to obtain data per 
surgeon, i.e., procedures with a frequency higher 
than 180 were selected and the remaining 
procedures were excluded. Thus, 9 distinct 
models were developed: one aggregate model, 
four models per procedure and four models per 
surgeon. 
 

4.3 Modelling 

After the data preparation step, modelling follows, 
a phase that begins with the selection of variables 
that are statistically significant enough to be 
included in the model. As presented in the 
theoretical background of the previous chapter, 
there are three different selection methods: 
forward selection, backward selection, and mixed 
selection. As n is considerably greater than p, it 
follows that the backward selection mechanism 
can be used. 
For the specific aggregate scenario, the variables 
eliminated were firstly the "week_day" and 
secondly the "shift", obtaining the model 
composed of the following variables: 
"working_day", "age_patient", "gender_patient", 
"room", "main_surgeon", "procedure_code", 
"surgery_priority", "first_surgery_day", 
"ambulatory" and "mean_duration". 
In addition to the general assumptions about the 
correct model specification, it is important for the 
whole development that there are: (1) non-linear 
relationships between the independent variables 
and the dependent variable, (2) that the model 
errors exhibit normal distribution with zero mean 
value, (3) that the model errors have constant 
variance and (4) that there are no outliers that 
could influence the model results. All these four 
assumptions can be validated by analysing the 
graphs in figure 2 (respectively, from left to right 
and from top to bottom). The "Residuals vs Fitted" 
chart assesses the linearity of the independent 
variables with respect to the dependent variable. If 
the residuals are distributed around a horizontal 
line with no distinct patterns, this is a good 
indication that there are no non-linear relationships 
between variables. If we analyse this graph for the 
aggregate scenario, we can see that the residuals 
are almost symmetrically distributed around a 
horizontal line, which confirms that the model does 
not exhibit non-linear relationships. The "Normal 
Q-Q" chart shows whether the residuals are 
normally distributed or not. If the residuals are 
normally distributed, they will follow a straight line 
without large deviations. Analysing this chart for 
the aggregate scenario, it is confirmed that despite 
a slight deviation at the tips, the residuals are well 
aligned on the dashed straight line and are 
therefore normally distributed. The "Scale-
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Location" chart shows whether the residuals are 
equally distributed along the predictor intervals. 
This is how the assumption of constant variance 
(homoscedasticity) can be verified. One way to 
check this assumption is to analyse if there is a 
horizontal line with equally (randomly) dispersed 
points. So, it is possible to conclude from this 
graphic for the aggregate case that the variance of 
the residuals remains constant. The purpose of the 
"Residuals vs Leverage" chart is to detect outliers 
that may represent influential cases in the linear 
regression analysis. One should look for values in 
the upper or lower right corner and watch for cases 
outside the line representing Cook's distance 
(cases with high Cook's distance scores) which 
represent influential cases for the regression 
results, that is, if we exclude them, the regression 
results are altered. Observations 39 and 254 are 
close to the boundary representing Cook's 
distance, however, they do not exceed it and 
therefore, despite being outliers, do not represent 
influential cases that have to be excluded from the 
model. 

5. Results 

5.1 Results for the three scenarios 

In a first stage, the RMSE was determined for each 
model developed and for the predictions estimated 
by the surgeons and concluded that all models 
present more accurate results (lower values of 
RMSE) than the surgeons’ predictions. 
In relation to the aggregate model, it is possible to 
conclude through its adjusted R2 value that it 
explains 84.29% of the variance of the dependent 
variable from the independent variables included in 
the model. This value is much lower for the models 
by procedure, showing that the independent 
variables included in the latter do not seem to have 
a great explanatory power regarding the variance 
of the response variable. On the other hand, the 
models per surgeon presented high adjusted R2 
values, even exceeding the value of the aggregate 
model for surgeon 1 and 3. Only the model 

concerning surgeon 2 originated a lower adjusted 
R2. Thus, it is possible to conclude that the 
aggregate model and the models per surgeon tend 
to better explain the variance of the surgical 
duration. 
To quantify the improvements in the prediction of 
surgical durations made possible by the models, 3 
levels of classification were distinguished:  

• Exact: predictions that are included in a 
certain tolerance range. 

• Overestimated: predictions that are higher 
than the defined tolerance. 

• Underestimated: predictions lower than 
the defined tolerance. 

Ideally, a model should provide a higher 
percentage of exact predictions and overestimate 
more than it underestimates (Zhao et al., 2019). 
Overestimation will be preferable because, 
although it may lead to lower block occupancy, it 
will not contribute to possible cancellations or 
postponements, both situations that can represent 
significant weights on patient health and the level 
of service that is expected from a private healthcare 
institution. However, this trade-off between block 
vacancy time resulting from overestimations and 
the time extra than expected should be strictly 
monitored so that the opportunity cost of one does 
not outweigh the other. 
Figure 3 demonstrates the percentage of 
predictions made by surgeons considered as 
accurate, overestimations and underestimations 
considering a tolerance interval of 10%, 20% or 
30% for surgeries lasting more than 100 minutes 
and a tolerance interval of 10, 20 or 30 minutes for 
surgeries lasting less than 100 minutes. As 
expected, as the tolerance interval increases more 
predictions are classified as accurate. However, it 
should be noted that, for a tolerance considered 
high (30% or 30 minutes), the percentage of 
overestimated cases is still considerable (63%), 
leading us to conclude that surgeons, in most 
cases, overestimate far beyond the actual duration 
of the surgeries they intend to perform. 
 

 

Figure 3 I Graph of the classification of the 
predictions made by the surgeons - Test Sample. 

By analysing the graph in figure 4 regarding the 
tolerance interval of 10 min for surgeries lasting less 
than 100 minutes and 10% for surgeries lasting 
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10%/10min 20%/20 min 30%/30 min

Exact Overestimation Underestimation

Figure 2 I Residuals Analysis - Aggregate 
Scenario. 
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more than 100 minutes it was possible to conclude, 
once again, that all models show significant 
improvements in prediction accuracy when 
compared to the surgeons' predictions for the same 
tolerance interval. The aggregate model accurately 
predicts 58% of the time and overestimates more 
than it underestimates. The models per procedure 
accurately predict from a minimum of 28% to a 
maximum of 74% of cases underestimating more 
than overestimating. Regarding surgeon models, 
these accurately predict between 37% and 74% of 
cases, overestimating more than underestimating. 
 

 

Figure 4 I Classification chart of the predictions 
made by the models considering a tolerance 

interval of 10 minutes for surgeries lasting less than 
100 minutes and 10% for surgeries lasting more 

than 100 minutes. 

The analysis was repeated for other tolerance ranges. 
Naturally, as this range increases the greater the 
percentage of accuracy presented by the models. 
If the hospital chooses to use a model as a tool to 
support the calculation of surgical time forecasts, it 
should define the tolerance allowed and then choose 
the model to be used. This tolerance should ideally be 
communicated to and considered by the person who 
subsequently carries out the weekly occupancy 
planning of the OR. 
However, the analysis carried out does not allow us to 
deduce, which model effectively reproduces the most 
accurate forecasts. To do so, it is necessary to 
compare the models individually with each other, 
comparing samples similar in size and information, an 
analysis that is reproduced in the following sections. 
However, to conclude whether the model per 
procedure outperforms the estimates of the model per 
surgeon or the opposite, it would be necessary to filter 
the results of both models simultaneously, that is, the 
models per procedure would be filtered by surgeon 
and compared with the results of the models per 
surgeon filtered for each procedure. This would result 
in very small data samples that would provide 
conclusions with little robustness. For this reason, it 
was decided not to perform this comparison. 
 

5.2 Comparison between the aggregate 

scenario and the scenario per procedure 

To be able to state which model had the best 
performance, in a first stage, the performance of the 
aggregated model was compared with that of the 
model per procedure. To this end, the results of the 
aggregated model were filtered by procedure and 
compared with those of the model relative to the 
corresponding procedure. This analysis was 
performed for the four selected procedures using, in 
a first stage, the RMSE metric (table 2). 
 
Table 2 I Comparison of the RMSE of the aggregate 
model calculated for each procedure and the RMSE 

of each model by procedure. 

Procedure Aggregate 
RMSE 

Procedure 
RMSE 

Procedure 1 11.8 14.0 

Procedure 2 15.5 15.4 

Procedure 3 21.8 27.5 

Procedure 4 20.5 18.7 

 
Table 2 shows little significant differences between 
the RMSE of the aggregate model filtered by 
procedure and the RMSE of the model by 
procedure. However, for procedure 1 and 3, the 
aggregate model has a lower RMSE, a value that 
translates into a higher percentage of accuracy than 
the per-procedure model, with this difference being 
particularly notable in procedure 3. For procedure 2, 
the RMSE of the per-procedure model is slightly 
lower than that of the aggregate model, a value also 
mirrored in the accuracy analysis where the 
percentage is higher for the per-procedure model 
than for the aggregate model. Regarding procedure 
4, the RMSE of the aggregate model is higher than 
that of the model by procedure. However, from 
figure 5 it can be seen that the percentage of 
accuracy remains higher for the aggregate model 
when compared to the per procedure model. A 
possible explanation for this fact may lie in the low 
adjusted R2 values for the per-procedure models 
relative to the aggregate model. These values may 
be justified by a limitation of the data provided. The 
codes of the shared procedures are not the 
standardised and universally used CPTs. The codes 
of the sample are internal to the hospital and include 
all procedures and sub-procedures that the surgeon 
intends to perform. This means that for the same 
procedure, if the sub-procedure is distinct or extra to 
the basic surgery, the surgery will present another 
code, even if in terms of complexity and surgical time 
it has no influence. This constraint directly impacts 
the sample size of each procedure available which 
could be considerably larger and thus contributing to 
the training of more accurate models per procedure. 
Thus, it would be more favourable to opt for the 
aggregate model which seems to better explain the 
variance in the duration of surgeries, presenting low 
RMSE values and accuracy percentages sufficiently 
high to constitute a good alternative to the current 
estimation model. 
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Figure 5 I Graph showing the ranking of the predictions made by the aggregate model filtered by procedure 
and by the model by procedure considering a tolerance interval of 10 minutes for surgeries lasting less than 

100 minutes and 10% for surgeries lasting more than 100 minutes. 

 

5.3 Comparison between the aggregate 

scenario and the scenario per surgeon 

As in the previous section, the comparison analysis 
between the aggregate model and the model per 
surgeon was performed. The results of the aggregate 
model were now filtered by surgeon and compared 
with those of the model relative to the corresponding 
surgeon. This analysis was performed for the four 
selected surgeons using also the RMSE metric (table 
3). 
 
Table 3 I Comparison of the RMSE of the aggregate 
model calculated for each surgeon and the RMSE of 

each model per surgeon. 

Surgeon Aggregate 
RMSE 

Procedure 
RMSE 

Surgeon 1 12.2 16.6 

Surgeon 2 30.5 37.1 

Surgeon 3 11.0 13.8 

Surgeon 4 11.1 11.7 

 
When comparing the RMSE values presented in table 
3 it is possible to see that, once again, there are no 
significant differences between the two models. 
Despite this fact, consistently lower values are found 
for the aggregate model. Even so, the models per 
surgeon return quite satisfactory adjusted R2 values, 
with two of them even obtaining higher values than the 
aggregate model (see table 3). Only surgeon 2 is 
associated with a lower adjusted R2 value, a 
behaviour that is subsequently reflected in its higher 
RMSE and in its accuracy percentage which is 
significantly lower when compared to the other models 
(see figure 6). This fact may be explained by the fact 
that the procedures performed by this surgeon in the 
test sample present significantly longer mean 
durations than the procedures recorded for the other 
surgeons analysed. Strum et al. (2000) refer that the 

absolute variability is expected to be higher for 
surgeries with high durations, which justifies the 
higher RMSE and lower percentage of accuracy for 
this surgeon. 
Regarding the percentages of accuracy, these also 
do not vary much between models, being mostly 
higher for the aggregate model. However, the 
models per surgeon show consistently higher 
percentages of overestimation than of 
underestimation, while the aggregate model shows 
the same frequency of overestimation and 
underestimation, although overestimating to a 
greater extent. 
Thus, it is predicted that the aggregate model will be 
the best option as an alternative to the method 
currently used. Even so, the per surgeon models 
show potential to possibly surpass the aggregate 
model when trained with a larger sample than the 
current one. A sample size of 3312 observations 
was used to train the aggregate model while the per-
surgeon models were trained using sample sizes 
ranging from 227 to 625 observations, a difference 
which is confirmed to be relevant. This conclusion 
may be supported by the study of Bartek et al., 
(2019). 
 

5.4 Analysis of the relationship between 

predictors and the dependent variable 

The models included operational variables (month, 
day of the week, working day, shift, room, whether or 
not the surgery was the first of the day, priority of the 
surgery), variables representing patient 
characteristics (age and gender), variables related to 
procedure characteristics (procedure code, whether it 
was an outpatient surgery or not, the average duration 
per procedure and per surgeon and the duration 
expected by the surgeon) and a variable representing 
the team (head surgeon).  
As expected, the variable "procedure_code" was 
included in all models and was, therefore, the factor 
with the highest predictive power, a conclusion that is
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Figure 6 I Graph showing the ranking of the predictions made by the aggregate model filtered by surgeon and 

by the model by surgeon considering a tolerance interval of 10 minutes for surgeries lasting less than 100 
minutes and 10% for surgeries lasting more than 100 minutes. 

 
already mentioned in the literature (Ng et al., 2017). 
Also, regarding the variables that characterise the 
procedures, we found that at least one of the durations 
(mean or expected) was relevant in the construction 
of the aggregate and per-procedure models, which 
were not very useful for the models per surgeon. On 
the other hand, we concluded that patient 
characteristics also had a significant weight and at 
least one of them was included in all models, except 
for surgeon 3. In addition, the main surgeon seemed 
to have a similar impact on the duration of surgeries, 
and this variable was selected for all aggregate 
models and by procedure, except for procedure 2. 
Finally, we found that among the operational 
variables, those that showed a greater relationship 
with the surgical time were the priority of surgery 
(elective or urgent) and whether the surgery was the 
first of the day or not. The variables "month" and 
"week_day" do not seem to influence the performance 
of the models as is the case in the work conducted by 
Ng et al. (2017). However, in the referenced study the 
time of day seems to be significant, however, in the 
present work the opposite is demonstrated with the 
variable "shift" being considered only in the model 
regarding procedure 2. 
 

6. Discussion 

The OR is the most critical and expensive resource of 
a hospital, representing, on the other hand, also its 
greatest source of income. Therefore, it is essential 
that it is managed efficiently since each minute wasted 
can cause significant loss of income. For an efficient 
use of the OR, accurate OR occupancy time forecasts 
are necessary to contribute to a better sequencing of 
surgeries. 
The OR occupancy time is characterized by several 
phases and presents many factors that may interfere 
with its efficiency and that make it demanding to plan 
surgeries in a way that maximizes the efficiency of 
resources and avoids overestimations or 
underestimations. These cases may cause, advances 
(resulting in losses in block occupation), delays or 

even cancellations that may have negative impacts on 
patient health as well as on the level of service that is 
intended to be offered to the client, a critical factor in 
a private health service unit. 
In this context, the aim of this work is to develop 
predictive models for surgery duration that overcome 
the estimates currently made by surgeons of the 
orthopaedic specialty at Hospital da Luz of Lisbon. 
Since few tools are currently available to support 
prediction, surgeons predict the surgical time based 
only on their experience. According to the analysis 
developed, this results in very low accuracy 
percentages of only 6% considering a tolerance 
interval of 10 minutes for surgeries lasting less than 
100 minutes and 10% of the real duration for surgeries 
lasting more than 100 minutes. Although there is no 
consensus in the literature regarding the definition of 
surgical duration, this study considers the duration 
between incision and patient closure. 
Within the scope of the optimisation of surgical time 
prediction, several approaches have been proposed 
in the literature. However, the selected approach was 
linear regression because it ensures the best trade-off 
between flexibility and interpretability. 
For this work, we chose to develop three different 
scenarios: an aggregate model, models per 
procedure and models per surgeon. The shared data 
sample includes surgeries performed between the 
years 2019 and 2022, corresponding to a total of 8937 
surgeries only concerning the orthopaedic specialty. 
After the data selection and preparation phase, this 
sample was reduced to 3312 surgeries used to train 
the models and 713 surgeries that made up the test 
sample. After ensuring the necessary assumptions, 
nine different models were modelled (one aggregate 
model, four models per procedure and four models 
per surgeon). 
In general, the developed models produced better 
predictions than the surgeons. The RMSE of each 
proved to be considerably lower than the method 
currently practised, and the percentage of accuracy 
rose to values between 28% and 74%. These 
percentages reflect a conservative tolerance range 
and analyses have been carried out for higher ranges 
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for which the percentage of accuracy reaches 98% for 
one of the models. However, to determine which 
model shows the best performance it was necessary 
to compare them individually. When comparing the 
aggregate model with the models by procedure it was 
possible to conclude through a much higher adjusted 
R2 value that the aggregate model has a greater 
explanatory power regarding the variance of the 
actual duration of surgeries. In addition to this fact, the 
reduced RMSE values and the high percentage of 
accuracy make it a valid alternative to the current 
standard. In a second stage, the aggregate model was 
compared with the model per surgeon. It was possible 
to observe consistently lower RMSE values for the 
aggregated model and slightly variable accuracy 
percentages between both, but mostly higher for the 
aggregated model. However, the models per surgeon 
return quite satisfactory adjusted R2 values, two of 
them even obtaining higher values than the aggregate 
model. Thus, everything indicates that the aggregate 
model represents the best alternative to the 
predictions currently estimated by surgeons; however, 
the models per surgeon show potential to possibly 
outperform the aggregate model when trained with a 
larger sample than that currently available. It is also 
considered that the use of this methodology, in 
addition to contributing to an improvement in OR 
efficiency, may progressively raise awareness among 
surgeons of the importance of making estimates as 
accurate as possible, thus cultivating a culture of co-
responsibility in the management of OR time. 
Despite the results obtained, there are important 
limitations that should be considered. The data were 
collected retrospectively, so no claims can be made 
about the accuracy of the times recorded by the OR 
team. On the other hand, and as previously 
mentioned, the codes per procedure shared do not 
correspond to the universally used CPTs. The codes 
used for the analysis are internal to the hospital and 
indicate all procedures and ancillary procedures to be 
performed during surgery. It so happens that some of 
these secondary procedures, having no real impact 
on the total surgery time, form new combinations of 
surgical codes and thus, new types of surgery. This 
fact, had a direct impact on the number of 
observations per type of procedure that could be 
higher in some cases and, consequently, originate 
better trained models. Effectively, it was possible to 
deduce from the results that the models per surgeon 
have the potential to possibly outperform the 
aggregate model; however, the models were trained 
with a substantially smaller sample than the 
aggregate model, and this may be one of their 
limitations. Additionally, it was not possible to quickly 
obtain data regarding some of the variables that the 
literature studied refers to as having predictive power, 
such as patient comorbidities or ASA risk class. 
Finally, this study was carried out only for the 
orthopaedic specialty of Hospital da Luz of Lisbon, 
and it is probably not generalizable to other specialties 
or facilities. 
Finally, although the effective duration of surgery is 
possibly the most critical factor to be considered, the 
optimisation of OR occupancy depends in a similar 
way on the monitoring of the remaining phases that 

integrate the operative process such as anaesthesia 
time and especially turnover time. The latter 
represents the time between the exit of a patient from 
the operating room and the entrance of a new patient 
and when the materials are removed from the 
operating room, cleaned, and prepared for the 
beginning of the next surgery. In most cases, 
according to the literature, there is often a lack of 
operational flow or a lack of standardised procedures 
that minimise the time associated with this stage. 
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