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Resumo

Esta tese estuda o impacto da tensão superficial num escoamento “quasi-capilar” dominado por forças

inerciais. Para analisar isto foram realizadas experiências em três montagens diferentes com o obje-

tivo de testar o impacto da tensão superficial em várias geometrias. A primeira experiência realizada

utilizou a técnica conhecida como “sessile droplet test” para obter o ângulo de contacto entre uma in-

terface liquida e uma superfı́cie sólida. Em condições estáticas, o “ângulo de contacto estático” é uma

propriedade da combinação do fluı́do e do sólido em questão, que no caso deste teste se tratava de

HFE7200 (“hydrofluoroether”) e uma placa de quartzo. A segunda montagem é um tubo em forma de

“U” onde testes sobre a deformação da interface após a aplicação de um sobrepressão foram efetuados

numa campanha experimental anterior. Os resultados desta campanha experimental são comparados

com os resultados obtidos com a terceira montagem experimental e por isso requerem que a distorção

ótica que acontece em tubos cilı́ndricos seja tida em conta e corrigida. A terceira montagem exper-

imental consistia em duas placas paralelas com um pequeno canal no meio por onde uma interface

gás-lı́quido subia propulsionada por uma sobrepressão. Esta montagem permitiu estudar os modelos

integrais desenvolvidos para escoamentos em tubos capilares numa nova geometria de modo a testar

o impacto da tensão superficial em escoamentos “quasi-capilares” dominados por forças inerciais.

Palavras-chave: Escoamento Capilar, Angulo de Contacto, Distorção Ótica
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Abstract

This work addresses the impact of surface tension forces on the dynamics of an inertia-driven capil-

lary rise of a gas-liquid interface. Several experimental campaigns were conducted, cross-checking the

impact of surface tension forces on different geometries. The experimental campaigns used three dif-

ferent facilities. The first facility carried out sessile droplet tests to obtain the angle of contact between

a liquid interface and a solid surface. In static conditions, the ”static contact angle” is a property of the

fluid/solid combination, which in this work concerned HFE7200 (hydrofluoroether) and quartz surfaces.

The second facility is a quasi-capillary U-tube set-up where tests on the interface deformation following

a pressure step were performed in a separate experimental campaign. The results from the latter were

compared with the ones obtained by the third facility studied in this work, hence requiring the charac-

terization of the optical distortion in cylindrical tubes and the development of a corrective routine. The

third facility concerns two parallel plates in close vicinity where a gas-liquid interface is forced to rise by

means of a pressure step. The facility allowed to test integral models developed for capillary tubes to

explore the possibility of measuring the impact of surface tension and the role of the contact angle on

the inertia-driven capillary rise between the parallel plates.

Keywords: Capillary Flow, Contact Angle, Optical Distortion
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This master’s thesis was developed during a Short Training Program at the Von Karman Institute

For Fluid Dynamics. The project aimed to compare the motion and shape of the liquid-gas interface in

different geometries, to gauge the impact that geometry has on the prevailing models for capillary follow.

Several configurations were considered, the first one was the quasi-capillary parallel plates. This

experimental set-up consists of a channel formed by two parallel quartz plates at a distance of 5 mm

and closed at both ends. This channel was immersed in a large liquid bath at one end and open to the

atmosphere on the other. The reservoir where the liquid bath is housed is then pressurised forcing a

liquid column to rise through the channel, where the interface is observed and measurements are taken.

After building up a database for the interface evolution, the data gathered was compared with a

previous experimental campaign performed in the quasi-capillary U-tube. This facility is made of a U-

shaped cylindrical quartz tube with an inner diameter of 8 mm. However, the images collected from

this experimental campaign had to be corrected for optical distortion first, so the existing corrections for

optical distortion in the literature were also tested during the experimental campaign conducted in this

thesis.

Sessile droplet measurements were also carried out to compare the contact angle measured with

this method to the one obtained in images of the static interface in the former experimental campaigns.

The contact angle parameter mentioned previously played a big role during the experimental cam-

paigns conducted for this thesis. In static conditions, as is the case of a sessile droplet, the equilibrium

contact angle, θY oung, is given by Young’s relation γSV −γSL = σcos(θY oung), where γSV and γSL are the

solid-vapor and solid-liquid interface energies respectively and σ is the surface tension. θY oung varies

largely depending on the characteristics of the substrate and the atmosphere surrounding the droplet,

consequently experiments on sessile droplets characterise only the static contact angle θS . [1] [2]

Figure 1.1: Visualisation of the static contact angle of a generic droplet [1]

However, this changes for a moving contact line, where the value of the dynamic contact angle,

θd, will be a function of other parameters such as the velocity and acceleration. This dependence will

be evaluated through the use of correlations found in the literature and developed over the course of

other experimental campaigns conducted in the Von Karman Institute under Project Slosh II and more

specifically Domenico Fiorini’s PhD work. [3]

The objective behind testing these correlations is to ultimately test their accuracy in describing the

2



contact angle variation with time. Once this is achieved, they can be incorporated into the integral model

for the motion of the interface to complement the term related to the surface tension, which depends on

the contact angle. This opens up the possibility of characterising the motion of the interface by optimising

the coefficients of the correlation to fit the interface height data. This will be looked at in greater detail in

the chapter 5.

The impact of better modelling for phenomena related to capillary flows and surface tension domi-

nated motion can not be understated. The liquid sloshing motion studied at the Von Karman Institute in

the Project Slosh II and Project Minerva has implications in diverse industrial fields.

One such example is liquid storage in overhead reservoir tanks where the load on supporting beams

and structures can be up to three times higher for sloshing when compared to the hydrostatic load. Thus,

better modelling for the vibration modes could help improve earthquake safety for such structures either

in a residential or an industrial context. [4]

In the aerospace industry, these types of flow play an important role in orbital manoeuvres where

the fuel and liquids stored within the spacecraft tanks are not bounded by gravity. This means that the

liquid sloshing motion occurs in low Bond numbers, i.e. that the flow is capillary dominated and the

prevailing forces are surface tension mechanisms, which can be modelled using the contact angle. A

study was performed for the Ariane 5 A5ME upper stage where the controller struggled to cope with the

time dependant inertia tensor due to the sloshing motion under a slew manoeuvre, this led to a high

number of thrust activations. Better control and understanding of this phenomena would lead to quicker

manoeuvres, settling times and higher fuel efficiency in these sorts of spacecraft. [5]

To round this off, capillary flow and the contact angle also play an important role in several com-

mon manufacturing and industrial processes, such as coatings, powder processing and fuel injector

manufacturing, which would see an increase in efficiency with better modelling. [6] [7] [8]

1.1 Thesis Layout

This document is laid out to try to answer the underlying question of the influence geometry has on the

contact angle parameter and, thus, on capillary flow.

Firstly, modelling is addressed. In chapter 2, a model based on the Young-Laplace equation for the

liquid droplet shape is derived and discussed. In addition to this, the existing integral models for the

motion of a liquid column within capillary tubes are also presented. Then, with the existing models in

mind, an equation for the quasi-capillary parallel plates set-up is derived.

Chapter 3 ties both dynamic contact angle campaigns together, by discussing the optical corrections

applied to the data of the quasi-capillary U-tube. In this chapter, the correction equations are presented;

the influence of several parameters on the optical distortion is discussed as well as the predicted impact

on the data collected from the U-tube experimental campaign.
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In chapter 4 the experimental set-ups used to achieve the goals of this experimental campaign are

presented as well as a brief overview of the methodology used to process the data collected and extract

the results.

These results are then analysed in chapter 5, where a comparison between the different facilities is

established and the correlations for the dynamic contact angle found in the literature and developed in

the previous experimental campaign are presented and discussed. In this chapter, these correlations

and the integral model developed in chapter 2 are combined and analysed in light of the experimental

results.

This culminates in a conclusion where remarks are made about the results obtained by answering

the questions:

• Did the prevailing model for optical correction yield the expected results?

• Is the static contact angle similar across different geometries?

• Are the prevailing integral models adequate to describe the motion of the liquid column with the

Quasi-Capillary Parellel Plates?

• Are the capillary models sensitive to an optimisation based on the correlation’s coefficients?

Finally, comments on future work to advance knowledge related with these research questions.
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During the work conducted for this thesis, both static and dynamic phenomena were analysed. Both

need to be properly modelled to gauge the influence of each of the parameters on their behaviour,

namely the dynamic contact angle and the correlations that describe its relation with the liquid column

motion.

During this chapter, each model will be discussed, and the reasoning behind their use will be pre-

sented.

2.1 Sessile Droplet Test

During the course of the experimental work for this thesis, a sessile droplet test campaign was con-

ducted, which aimed to determine the static contact angle for HFE7200, an abbreviation for hydrofluo-

roether. HFE7200 is a synthetic fluid mimicking the properties of cryogenic propellant (e.g. liquid oxy-

gen). The tests consisted in recording a video of a drop of liquid on a quartz plate and then determining

the contact angle through a fitting procedure. [1]

Thus, the equation to fit the droplet surface is derived with the appropriate parameters and forces

that model its shape. The first force to be considered is the one produced by the hydrostatic pressure of

the droplet. The second force is surface tension which balances the hydrostatic pressure. This balance

is the macroscopic manifestation of the attractive and repulsive forces at a molecular level which gives

the droplet and a meniscus its shape. The balance between these two quantities was established in

equation 2.1. [9] [10]

ρgz = σ~∇.~n (2.1)

Equation 2.1 is known as the Young-Laplace equation, and it accounts for the pressure difference

across the interface on the left side of the equation and balances this term on the right side of the

equation with the surface tension.

Then, the normal vector to the surface must be derived to obtain the final form of equation 2.1. In

this case, the coordinate system for the droplet is first defined as z = h(r, θ), where z, r and θ form a

cylindrical coordinate system, which is described in image 2.1.
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Figure 2.1: Coordinate system droplet [11]: h - coordinate for the distance between the liquid/gas inter-
face and the solid surface; r - radial coordinate; θ - axial coordinate; R - radius of the droplet; H - height
of the droplet

A functional that is equal to zero on the surface of the droplet was defined as f(z, r, θ) = z − h(r, θ)

and, thus, one can obtain the expression for the unit normal vector to the interface, using equation 2.2.

[10]

~n =
~∇. ~f∥∥∥~∇. ~f∥∥∥ (2.2)

After setting up this equation in terms of its independent variables, one arrives at equation 2.3 for the

curvature of the surface, ~∇.~n. This equation also accounts for the axial-symmetric nature of the droplet

interface; thus, all terms with respect to the variation of θ will disappear. All the steps to arrive at this

equation are laid out in appendix 7.

~∇.~n =
−rhr − r2hrr
r2(1 + h2

r)
3/2

(2.3)

Taking equation 2.3 and substituting it into equation 2.1, the differential equation for the surface

shape of the droplet is obtained, where lc =
√

σ
ρg and is defined as the capillary length. This quantity is

directly linked to the balance between surface tension and gravity.

hrr =
h

l2c
(1 + h2

r)
3/2 − hr

r
(2.4)

From the Neumann-type boundary conditions, expressed in 2.5, we can obtain the static contact

angle by fitting the experimental points of the surface with this equation. In this process, the boundary

conditions in 2.5 are used to solve equation 2.4 numerically. The contact angle used in these boundary

conditions will then be optimised to minimise the difference between the experimental data and this

numerical solution. This will be elaborated on further in chapter 4.

 hr = 0, r = 0

hr = −tan(θstatic), r = R
(2.5)

Figure 2.2 shows a plot of a hypothetical fit to a droplet with a radius of 2.5mm using a contact angle

of 7◦. The surface’s slope near its hedges corresponds to the tangent of the static contact angle in the
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plot show in figure 2.2.

Figure 2.2: Example of the curve generated by the Young-Laplace equation using cylindrical coordinates

2.2 Symmetric meniscus

The same procedure is applied to the meniscus in the quasi-capillary U-tube, which shares a similar

coordinate system described in figure 2.3.

Figure 2.3: Coordinate system for the quasi-capillary U-tube interface (cylindrical coordinates): h is the
coordinate for the height of a generic point with respect to the lowest point in the meniscus; r is the radial
coordinate; θ is the axial coordinate

In this case, the boundary conditions are described in 2.6, where ri represents the inner tube radius

and hr represents the spatial derivative with respect to r.

 hr = 0, r = 0

hr = 1/tan(θstatic), r = ri
(2.6)

The quasi-capillary parallel plates rely on a Cartesian coordinate system to describe the bi-dimensional

approximation of the interface. This coordinate system leads to a slightly different equation to describe

its interface and boundary conditions to match it, as seen in 2.7 and 2.8, where w corresponds to the

width of the channel.
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hxx =
h

l2c
(1 + h2

x)3/2 (2.7)

 hx = 0, x = 0

hx = 1/tan(θstatic), x = w/2
(2.8)

The coordinate system used to derive this equation is described in figure 2.4.

Figure 2.4: Coordinate system for the quasi-capillary parallel plates interface (bi-dimensional interface -
fully developed flow along the length of the length of the channel): h is the coordinate for the height of
a generic point with respect to the lowest point in the meniscus; x is the distance to the centre of the
channel

2.3 Dynamic Capillary Motion

The dynamic formulation for capillary phenomena is much more complex than its static counterpart.

One of the main difficulties lies in the fact that, as of the making of this thesis, there is no theoretical

formulation to describe the shape of the dynamic two-phase flow interface.

Traditional models for the surface tension forces at the interface and the dynamic contact angle have

characterised mainly small test-case applications dominated by capillary and viscous forces, such as

capillary tubes [12] [13] [14]. However, emerging technologies for space applications require a deep

understanding of free interface flows driven by the balance of capillary and inertial forces. Thus, the

formulation of capillary-driven flows is extended for the case of forced pressure rise, and the impact of

the contact angle within the surface tension term is evaluated on the interface rise.

2.3.1 Existing Models

One of the most commonly used models for capillary flow is the Lucas-Rideal-Washburn, equation 2.9,

introduced in Washburn [15] and Deutsch [16]. This equation is of great significance to the work carried

out during this thesis since all of the papers researched for establishing the model used reference this
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equation, and most of its terms will appear in the final model.

dl

dt
=

1

8µl
[∆P ′ − ρgl]r2

o (2.9)

In equation 2.9, l refers to the length of the liquid column within the capillary tube; µ is the fluid

viscosity; ∆P ′ is the capillary pressure; ρ is the liquid density; g is the gravitational acceleration, and ro

is the tube radius.

This equation is derived from Poiseuille’s Law, equation 2.10, by substituting its volumetric flow rate

term by its cross-sectional area and the length of the liquid that has entered the capillary, expressed in

equation 2.11.

dQ

dt
=
π∆Pro

8µl
(2.10)

dQ = πr2
o

dl

dt
(2.11)

In these equations, Q is the volumetric flow rate; ∆P is the pressure drop; ro is the radius of the tube;

µ is the viscosity of the fluid, and l is the length of the tube.

However, some authors have improved this formulation over the years to include a complete descrip-

tion of the phenomena. The most common issue with this equation is its inability to accurately account

for the initial stages of the liquid rise in the tube since it results in an infinite velocity and acceleration,

i.e. for l → 0, dl
dt → ∞. This overshoot is the effect of the steady-state approximation used to derive it.

[12]

Several proposed solutions account for the entry flow from the reservoir and dissipative effects

caused by circulation at the entrance to the capillary tube. J. Szekely, A. W. Neumann and Y. K. Chuang

were the first to propose a solution incorporating all the terms the final model should include, in reference

[13]. This model rests on an energy balance conducted to the control volume described in figure 2.5.
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Figure 2.5: Control volume used to formulate the model for the flow within the capillary tube: capped by
surface S1 and S2 and limited laterally by the tube walls

The control volume used to model the liquid rise in the capillary tube represented in figure 2.5 is

limited by the walls of the tube and the surfaces S1 and S2. The semi-circle designed at the bottom of

the tube serves as the control volume, used to obtain the pressure at S1. In the context of the quasi-

capillary parallel plates, this semi-circle represents a cylinder cut in half in its longitudinal direction. For

the equations and coefficients derived for the the following models, it represents the bottom half of a

sphere since the geometries used are capillary tubes.

The integral energy balance is postulated as between [rate of change of kinetic energy + potential

energy of the control volume] and [net input of kinetic energy - potential energy + pressure energy] -

[rate of work done on the surroundings] + [rate of work dissipated irreversibly ]. This energy balance

results in equation 2.12.

(h+ 7/6ro)
d2h

dt2
+ 1.225(

dh

dt
)2 +

8µ

ρr2
o

h
dh

dt
=

1

ρ
[∆P − ρgh] (2.12)

In equation 2.12, l is replaced by h as the length of the liquid column in the capillary. The first term

of equation 2.12 on the left side of equation 2.12 is related to the rate of change of kinetic energy. This

term also includes an adjustment for the flow converging on the entrance coming from the reservoir, this

equates to adding an effective height increase of 7
6 of the width of the tube. This term also solves the

previously mentioned problem of the Lucas-Rideal-Washburn equation since it prevents the existence of

an infinite velocity/acceleration when h tends to zero. While the second term is related to the pressure

loss due to circulation at the entrance of the tube. The third term is associated with viscous forces’ work

on the tube walls. Finally, the term on the right side is related to the work done by the gravity force and

surface tension.

However, this model is used for higher Reynolds numbers than those generally encountered in exper-

imental campaigns on capillaries due to the formulation used for its dissipative term and some authors
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have pointed out that the added quantity due to flow coming from the reservoir is not correct.

Given this, the model presented will be based on the work done by S. Levine, P. Reed and E. J.

Watson to come up with a different equation that more accurately describes the rise through the tube.

[12]

To get the model, it becomes essential to understand the origin of its coefficients and how they are

obtained.

For this derivation, the same control volume was applied to a capillary tube, but in this instance,

a momentum balance will be used. With this model, a similar equation is obtained. However, the

differences lie in the coefficients used for the term concerning the flow converging into the tube and

the dissipation term due to the vena contracta phenomena. This paper will also be a reference since it

outlays all the steps to reach the coefficients used in the model equation.

For the term regarding the converging flow, a momentum balance is established in the semi-sphere

where the change in momentum balances the pressure acting on this frontier.

The momentum balance established can be written as such: [rate of change of total momentum in

the system] = [flux of momentum entering] - [flux of momentum leaving]- [pressuring acting in the vertical

direction at h = 0] + [pressure acting in the vertical direction at R = ro].

The objective of establishing this balance is to obtain the previously mentioned pressure at surface

S1, i.e. h = 0, represented in figure 2.5. Thus, two boundary conditions are imposed to get an expression

for the radial velocity. The first is that the radial velocity will tend to zero as the sphere’s radius at the

bottom of the tube is expanded. This condition makes sense since it is equivalent to stating that the

velocity will be zero far away from the tube entrance. Secondly, for a radius equal to that of the tube, the

influx coming into the tube must be equal to that coming into the sphere, which is achieved in equation

2.13.

− 2πr2
o

∫ π
2

0

sinθ[radial velocity]R=rodθ = πr2
o

dh

dt
(2.13)

With these conditions, it is possible to solve the Navier-Stokes equation for the radial velocity, which

only depends on the radius and time. This will, in turn, result in an expression for the pressure term

across the semi-sphere. This term accounts for the term concerning the [pressure acting in the vertical

direction at R = ro] in the previously established balance.

An average acceleration is considered to get the term [rate of change of total momentum in the sys-

tem]. To achieve this, an average between the average acceleration calculated for the tube entrance at

h = 0, using Poiseuille flow as the velocity profile within the capillary tube, and the average acceleration

for the hemisphere at R = a, taking into account the previous expression obtained for the radial velocity

are considered.

For the term concerning the fluxes of momentum through the control volume, [flux of momentum
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entering] - [flux of momentum leaving], similar considerations are taken into account.

This is the basis for the added mass term that is used to model the motion for the capillary channel

and is adapted to include only a term for the over-pressure, which is not included in these exclusively

capillary-driven flows. This approximation will be later evaluated and discussed in chapter 5 when the

influence of the parameters is discussed.

The result of all these operations is a change in the coefficient regarding the inertia of the fluid near

the entrance of the tube from 7
6ro to 37

36ro. More recent works, such as Stange et al. [14], have suggested

that this term should be 73
60 . This value will be used to model the flow behaviour in the capillary channel.

Another difference between the two previously mentioned models introduced in references Levine

et al. [12] and Szekely et al. [13] is the dissipative terms used. Both formulations use the Hagenbach

and Couette corrections which relate the behaviour of the liquid and the contraction ratio upstream of

the tube’s entrance. In Szekely et al. [13], only the Hagenbach coefficient, KH , is used. This is a good

approximation for higher Reynolds numbers since the Couette coefficient becomes less significant, as

seen in equation 2.14. [17] [18]

∆p

ρV 2/g
= KH +

KC

Re
(2.14)

However, for the range of Reynolds Numbers typical of capillary-driven flows, the Couette correction,

KC , becomes quite significant and can not be ignored.

These considerations result in a final model for the motion in a capillary tube, represented in equation

2.15, which is the basis for the one obtained in the following section.

ρr2
o(h+

37

36
ro)

d2h

dt
= 2roγ − 8µh

dh

dt
− ρr2

ogh−
1

2
ρr2
o

[
KH ḣ

2 +
µKC

ρro
ḣ

]
(2.15)

To compare the Lucas-Rideal-Washburn equation with the model suggested in equation 2.15, both of

these equations were solved using the properties of Di-propylene Glycol and considering a capillary tube

with a radius of 0.05mm. This radius is of the same order of magnitude as the capillary length, which

means that capillary phenomena will dominate this flow. The results for these equations are displayed

in figure 2.6.
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Figure 2.6: Solution of the Lucas-Rideal-Washburn and Levine equations: a logarithmic scale was
applied the time axis for the plot of the interface height; both plots share the same curve labelling

Figure 2.6 displays similar results for both models. Despite this, the role of the added mass term

is observed in the difference between both models in the initial stages of the motion. While the initial

velocity of the Lucas-Rideal-Washburn equation tends to be infinite, the velocity predicted by Levine’s

equation is bounded. This singularity leads to an initial height offset being considered for the Lucas-

Rideal-Washburn equation. In addition, the added term of the pressure dissipation at the entrance to

the tube ensures that the liquid column height predicted by Levine’s model is ever so slightly smaller.

2.3.2 Model Equation for the Quasi-Capillary Channel

Based on the models described in the previous section, it is now possible to establish that the control

volume used will be represented in figure 2.5. The axis for this figure will be at the bottom of the channel,

as illustrated in figure 2.7.
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Figure 2.7: Model for the quasi-capillary parallel plates: x is the coordinate for the width of the channel;
h is the coordinate that accounts for the distance from the bottom of the channel; ε accounts for the
difference between the surface of the liquid and the entrance to the channel

Equation 2.16 defines an integral force balance that is applied to the control volume defined by the

dashed lines in figure 2.7.

d

dt
(mḣ) =

∑
i

~Fi (2.16)

Firstly, the term on the left-hand side of equation 2.16 must be analysed. There are two ways to

consider this term. It can either be admitted that the infinitesimal volume of fluid, dV = δLdh, acquires

its velocity instantaneously upon entry into the control volume, which would result in equation 2.17, or

that this infinitesimal volume added to the control volume at time ∆t has the fully developed velocity ḣ,

which results in equation 2.18.

ρδL lim
∆t→0

[
(h+ ∆h) ddt (h+ ∆h)− hdhdt

∆t

]
= ρδL

d

dt
(h
dh

dt
) (2.17)

ρδL lim
∆h→0

(h+ ∆h)× lim
∆t→0

[
d
dt (h+ ∆h)− dh

dt

∆t

]
= ρδLh(

d2h

dt2
) (2.18)

The latter formulation was chosen for the following modelling since it is featured in both Lucas-Rideal-

Washburn and Levine’s models. [16] [12]

As discussed previously, the forces that must be considered for this balance are the pressure force

acting on the lower surface, S1; the pressure force applied on the upper surface, S2; the surface tension

acting on surface S2; the weight of the liquid column; the viscous forces on the walls and the pressure

loss due to a sudden contraction of the flow coming in from the reservoir.

The pressure on the lower surface is related to the term derived for the converging flow on the tube

entrance. The inclusion of the term for the over-pressure in the reservoir in this formulation is achieved
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by changing the pressure at the surface of the reservoir to include it. This change results in the same

formulation seen in the previous section, where the deviation from the hydrostatic pressure on the tube

entrance will be offset by an effective increase in the liquid column inertia. However, in this instance

and since the pressure at the reservoir’s surface is different from the one on top of the liquid column

this term concerning the pressure difference between the two appears in the final equation. Thus, an

increasing the inertia by 73
60
δ
2 , is observed which is included in term derived in equation 2.18 changing it

to 2.19. With this, the deviation from hydrostatic pressure is accounted for, and it is possible to obtain

the pressure for surface S1 as the hydrostatic pressure in equation 2.20.

d

dt
(mḣ) = ρδL(h+

73

60

δ

2
)ḧ (2.19)

FpressureS1 = δL(pa + ∆p+ (ρgε)) (2.20)

In equation 2.20, ε represents the distance to the surface, seen in figure 2.7, which is considered to

be approximately constant and pa represents the ambient pressure.

The pressure acting on the upper surface is much easier to obtain since this portion was open, and it

can be considered to be at ambient pressure. Thus, the force acting on the upper surface due to ambient

pressure is described in equation 2.21.

FpressureS2 = −δL(pa) (2.21)

A circular shape will approximate the meniscus surface for the surface tension term. This approx-

imation is the most common for the meniscus shape, and together with the static formulation for the

meniscus using the Young-Laplace equation, it yields equation 2.22. In this equation, θ is the contact

angle, and σ is the surface tension. [19] [20]

FSurfaceTension = (δL)(
2

δ
σcos(θ)) = 2Lσcos(θ) (2.22)

This formulation is used since there was no available dynamic formulation for the meniscus. Further-

more, in reference Petrov and Sedev [9], it is argued that a fit of the meniscus with the static formulation

based on the Young-Laplace equation would yield good dynamic contact angle results.

The weight of the liquid column is readily obtained using the liquid density, ρ, in equation 2.23.

FWeightColumn = −ρLδgh (2.23)

Then, the velocity profile has to be determined to calculate the forces acting on the fluid due to the

viscous forces on the wall. In capillary tubes, the velocity profile is typically assumed to be that of a

Poiseuille flow.
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Thus, the viscous force, assuming that HFE 7200 is a Newtonian fluid, is given by equation 2.24. [21]

FV iscousForce = (Lh)µ
du

dx
(x =

δ

2
) (2.24)

The velocity profile for a Couette flow is given by equation 2.25. [22]

uy = umax(1− x2

(δ/2)2
) (2.25)

To include this in the model for the capillary channel, this velocity profile must be related to the

average velocity for the liquid column. This is achieved through equation 2.26.

ḣ =
1

δ

∫ δ
2

− δ2
umax(1− x2

(δ/2)2
)dx =

2

3
umax (2.26)

Thus, the final expression for the viscous force is obtained in equation 2.27.

FV iscousForce = (2Lh)µ
du

dx
(x =

δ

2
) = −(2Lh)µumax(

2 δ2
(δ/2)2

) = −3(2Lh)µḣ

2
(

δ

(δ/2)2
) = −12µL

δ
hḣ

(2.27)

The pressure loss due to the sudden contraction must also be accounted for in this case. However,

most of the formulation for this phenomenon found in the literature centres around the usage of the

Hagenbach and Couette corrections described before, which are used for capillary tubes, which have

a different geometry from the capillary channel. Nonetheless, this correction is introduced in equation

2.28 as represented in Dutt [23].

∆pcontraction
ρv2/2

= KH +
KC

Re
(2.28)

In equation 2.28, v is the mean velocity of the liquid column entering the tube; KH is the Hagenbach

correction coefficient; KC is the Couette correction coefficient, and Re is the Reynolds number.

Using these definitions, it is possible to calculate the force acting on the control volume caused by

this pressure loss. This is done in equation 2.29, where v is substituted by ḣ, the Reynolds number is

broken down into its components, and the pressure loss is multiplied by the channel area.

Fcontraction = δL∆pcontraction = δL(ρḣ2/2)(KH +
KC

ρḣδ
µ

) =
ρδL

2
(KH ḣ | ḣ | +

µKC

δρ
ḣ) (2.29)

As an initial approximation, the coefficients considered for this term will be the ones used in Levine’s

equation as the values used in those equations match correlations used in later works such as Dutt’s

work Dutt [23]. So, the Hagenbach correction used is KH = 7
3 and the Couette correction is KC = 4.

[12]
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With all the forces taken into account, it is now possible to get a complete model for the interface

motion in the capillary channel, equation 2.30.

(h+
73

60

δ

2
)ḧ =

∆p+ ρgε

ρ
+

2σcosθ

ρδ
− gh− 12µ

ρδ2
hḣ− 1

2
(KH ḣ | ḣ | +

µKC

δρ
ḣ) (2.30)

This model is a non-linear second order differential equation and in the interest of predicting its

behaviour pressure steps corresponding to the experimental points considered in chapter 4. In addition,

all the pertinent properties for HFE 7200 were considered, and a static contact angle obtained from prior

experimental campaign of 27.5 degrees was taken into account. The results are represented in figure

2.8. [21]

Figure 2.8: Model response pressure-step inputs of 1510Pa, 1650Pa, 1800Pa and 1900Pa

Figure 2.8 shows that this system exhibits the same behaviour as a second-order under-damped

system when subjected to a step impulse, which makes sense when considering the nature of the

pressure impulse and the viscous effects. [24] [25]
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3
Optical Deformations and Corrections
for Liquid Images in Straight Channels
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In everyday life, the apparent deformation of a drinking straw inside a glass of water represents the

most common optical deformation due to the different refractive indexes of the materials involved (gas,

liquid and solid) and the curvature of the glass. In this case, the initial straight straw, once immersed in

water, appears to be bent at the contact point with the liquid interface.

This phenomenon also happens when observing a meniscus inside a straight tube, as seen in figure

3.1, where a small piece of plastic with a grid-like pattern was inserted. Upon closer observation, one

can see that the vertical line number 6 is being distorted going through the fluid.

Figure 3.1: Image of the straight section of U-tube facility where a grid has been placed and distorted
by its curvature

In the experimental campaigns conducted, the shape of the gas-liquid interface of a liquid (meniscus)

was observed, and just like in the case of the drinking straw in the glass, the form of the tube distorts the

meniscus image in the radial direction of the channel itself. Thus, ignoring distortion effects would lead

to an incorrect meniscus shape and, consequently, the wrong contact angle with the solid surface.

3.1 Context

The results of the experimental campaign conducted in the quasi-capillary parallel plates will be com-

pared with those obtained from the experimental campaign conducted in a facility that consisted of a

cylindrical tube shaped like a ”U”, henceforth referred to as ”U Tube”. Given the problem mentioned

above of optical distortions in cylindrical channels, this chapter focuses on the experimental campaign

conducted within this tube, described in chapter 4.

During this experimental campaign, the meniscus movement inside the U Tube is observed by a

camera perpendicular to the U Tube, which is illuminated by a uniform, diffused light source on the

opposite side of the camera. This results in the observed meniscus being a blacked-out area on the

image, which is cast to the tube wall closer to the camera. This shadow is distorted due to the different

refractive indexes of HFE, quartz and air and the curvature of the tube wall.

Since the shape of the meniscus interface corresponds to this shadow, it is imperative to correct it
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to obtain the right contact angle. Furthermore, it is essential to characterise optical distortion to get this

contact angle. The ray-tracing techniques employed in Darzi and Park [26] and in Lowe and Kutt [27]

will be compared against the results obtained from correcting distorted geometries within the tube.

3.2 Problem Geometry

In the U-tube experiment, a generic light ray belonging to a diffused light source comes through the air

into the tube, where it goes through the glass and then into the fluid, then finally it reaches the camera

after having gone through glass and air again, as illustrated in figure 3.2.

Figure 3.2: Light ray passing through the U Tube facility

Notably, the path of the rays distorts the image’s proportions in the radial direction. While in the axial

direction, the image conserves its proportions. Even if any distortion due to differing refraction indexes

would occur, it would simply magnify or shrink the image since there is no curvature in this direction.

This behaviour is explained in section B of Darzi and Park [26].

To trace the path of a generic light ray through a transverse section of the U tube depicted in figure

3.2. This path is traced from the light source, represented on the left side of figure 3.3, to the camera on

the right side.
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Figure 3.3: Generic light ray passing through a transversal section of cylindrical tube, where the corre-
sponding refraction and angles with the horizontal axis are represented, figure from [26]

Figure 3.3 considers the camera sensor as a single point, which allows each light ray to be associated

with its angle relative to the camera axis, Ω. Thus, through Snell’s Law each of these angles has a set of

accompanying refraction angles(δ, γ, α and β) that is unique to each value of Ω. Given this, it is possible

to conclude that in this formulation, each point that is observed along the surface of the cylindrical tube

has only one light ray coming through it that reaches the camera.

Figure 3.3 makes it clear that to account for the effect of optical distortion in each of these points,

point B, which will be the position of the meniscus captured by the camera, has to be transformed to

point A, that corresponds to the position of the meniscus on the inner tube wall. However, the images

represent a bi-dimensional projection of this geometry. Thus one can not simply compute the distance

between points A and B but the projection of this distance onto the plane of the camera sensor. This

projected distance is calculated by relating the position of points A and B through the refraction angles,

distance from the camera sensor and the tube dimensions to obtain the length of segment BM as

represented in figure 3.4. The length of segment BM represents the distance between points A and B

projected onto the plane of the camera sensor.
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Figure 3.4: Geometric construct relating points A and B (0 represents the center of tube) with their
projection onto the camera’s aperture plane, figure from [26]

Then, considering both triangles formed in this geometrical construct and the sine law, the distance

AB can be calculated and then projected onto BM , which will be the distance projected onto the camera

plane sensor, as explained in equations 3.1 and 3.2.

AB = Ro
sin(θA − θB)

sin(180− β)
(3.1)

BM = ABsin(θA − θB) (3.2)

The parameters in equations 3.1 and 3.2 are obtained using Snell’s law and trigonometric relations.

The refraction angles are derived from the prior knowledge of the distance from the centre of the

tube to the camera sensor and Ω, as well as the inner and outer radius of the tube.

The angles with the horizontal axis, θA and θB can be derived through trigonometric relations, and

their equations depend only on the previously obtained refraction angles, Ω and the camera misalign-

ment angle, θ0 which is the angle between the normal vector the plane formed by the camera sensor

and the one from the diffuse light source.

All derivations of the expressions for these angles can be found in 8.

The correction can then be applied to each point along the surface of the tube. First, to use this

correction, the distance between points B and M must be calculated for each point along the meniscus

surface, as described in equation 3.2. Then, each meniscus point is shifted horizontally by adding this

quantity to its horizontal coordinate.

For example, considering a generic point along the meniscus of coordinates (xi, yi), where xi is its

horizontal coordinate and yi is its vertical coordinate, the corrected position of this point will be given by

(xf , yf ), where xf = xi +BM and yf = yi.

23



3.3 Predicted Impact on Observations

´ The correction process described in the previous section allows some predictions to be made regarding

how this correction will shift the points that belong to the meniscus and how some of the parameters will

impact this shift.

In reference Darzi and Park [26], the observed effect of the correction was a shift of all the points on

the meniscus to the centre of the tube, as seen on figure 3.5.

Figure 3.5: Effect of the correction on the meniscus, figure from [26]

Figure 3.5’s prediction agrees with what was observed during the experimental campaigns since

the meniscus seemingly penetrates the inner wall of the tube, as can be observed in figure 3.6. In

figure 3.6, the inner wall of the tube is marked with two vertical blue lines and its position is obtained by

relating the outer radius of the tube with its inner radius. Since the position of the outer wall is easily

obtained, one can obtain the pixel to millimetre ratio and, thus, obtain the position of the inner wall

by offsetting each of the outer walls by half of the difference between the outer and inner radius, i.e.

xInnerWall = xOuterWall ± (Ro −Ri)× pix2mm.
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Figure 3.6: Penetration of the meniscus of the inner wall of the tube represented with the vertical blue
lines

To further test this, in reference Darzi and Park [26], a plug gauge with a known diameter was

inserted in the tube and the difference between the known and corrected diameter was found to be

less than 3%. This result indicates that this correction will accurately account for the effect of optical

distortion and, thus, produce a correct contact angle. Furthermore, in the study mentioned, more tests

were conducted using this correction method for cylindrical tubes. These tests had static contact angles

for water on untreated borosilicate glass, which showed a good agreement with the reference values for

sessile droplet tests of this material. These comparisons will also be established between the results

obtained for the experimental campaigns conducted during this thesis.

In addition, reference Lowe and Kutt [27] also supports the use of this method for this facility. The

tube’s diameter and thickness are investigated in this paper. These parameters are instrumental in

controlling the behaviour of the light rays within the tube. The behaviour of these light rays is studied

extensively using ray tracing algorithms applied to a plexiglass tube filled with water.
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(a) Ray tracing for higher q values (b) Ray tracing for lower q values

Figure 3.7: Ray tracing algorithm from reference Lowe and Kutt [27]

In figure 3.7, the effect of different inner to outer diameter ratios, q = Ro/Ri, can be observed. For

higher values of q that can be observed in image 3.7(a), typically above 1.33, rays within the tube run

practically parallel to each other in the middle, which will mean that an object placed in the middle of the

tube will suffer little to no distortion. While closer to the edges of the tube, rays will be more affected by

distortion, which will lead to bigger values for the correction.

The same can be said for image 3.7(b), which depicts what happens for lower values of q, typically

less than 1.11, where distortion effects are significant, and there are even regions where particles located

within do not even appear in the captured image.

For the experimental campaign conducted within the scope of this thesis, the value of q is 1.5, which

would put it in the bracket of larger q values. However, the refractive indexes for both the liquid and

the tube material are slightly different at nf = 1.28 for HFE and nw = 1.46 for the quartz UTube, when

compared to the nf = 1.33 and nw = 1.49 for plexiglas, which represent differences that will be assumed

to have negligible impact on the brackets for the behaviour of the rays.
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This chapter describes the experimental set-ups used during this thesis’ work. Dynamic contact

angle experiments have been performed using a quasi-capillary parallel plate facility, where the flow is

not exclusively driven by capillary forces but also by a pressure gradient applied by a pressurised tank.

The results are compared with the ones obtained by a separate campaign performed in quasi capillary

U-tube set-up with similar conditions. The U-tube set-up has been characterised in terms of optical

distortions to compare the two sets of data obtained from these experiments. As further validation, the

interfaces obtained by the two set-ups in static conditions are compared with a more traditional sessile

droplet test through a separate test set-up. In the following sections, the three facilities are further

detailed.

4.1 Quasi-Capillary Parallel Plate Facility

This facility offered a different geometry to test the models previously developed for quasi-capillary flow

in the U-Tube setup. The former has a rectangular cross-section and the latter a circular one. This opens

up the opportunity to compare models for capillary flow, which are commonly developed for cylindrical

capillary tubes with new geometry and see how well they describe it.

4.1.1 Facility Description

To achieve this parity, the facility has a similar operation to the U-Tube facility. A tank also pressurises it,

and the objective here is to record the motion of the interface and its shape as the pressure is released

and it moves between the two parallel plates. So, the air is let on to the system via an electronically

operated pressure valve which also records the time of the pressure release. This time record allows the

images of the liquid motion to be synchronised with the pressure release. The motion of the interface

is driven by capillary forces and the pressure applied to the reservoir. It then seeks to balance this

pressure with the atmospheric pressure in the opening between the two plates. Figure 4.1 demonstrates

this facility, and its components.
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Figure 4.1: Descriptive photo of the quasi-capillary facility illuminated by the laser with each major
component labelled

Figure 4.1 shows the two pressure lines from the pressurised tank, marked as 1. The tank was

pressurised with the over-pressure of the experimental point under analysis. Four experimental points

were considered for pressures of 1510Pa, 1650Pa, 1850Pa and 1900Pa with three test runs each. The

pressure is then applied to the reservoir containing HFE 7200, marked as 2, once the electronic pressure

valve marked as 3 is activated.

HFE7200 is the liquid that will penetrate the channel formed by the two parallel quartz plates, marked

as 4. This liquid is seeded with particles of Pyrromethene 75820-500MG with a concentration of 6mg/L.

These are responsible for the fluorescent behaviour displayed.

Component number 5 is the high-speed camera and lens assembly. The camera model used was an

SP-12000M-CXP4, which captured frames at 500 Hz. The lens mounted to this camera was a Nikon-

Mirror 105 mm 1:2.8 with a Nikon PK-13 27.5 magnification ring.

The fluid is illuminated by a continuous green laser which first passes through a concave lens and

then a cylindrical one. The concave lens, marked as 6 in figure 4.1, is responsible for focusing the laser

beam, and the cylindrical lens turns it into a laser sheet, marked as 7 in figure 4.1.

These components are all employed to obtain the motion of the interface in the channel between

the parallel plates. This is done by making use of the ”Level Detection and Recording” Technique. This

technique involves seeding the fluid with particles that are lighter than its own particles and, thus, go to
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its surface. The particles emit fluorescent light towards the camera upon being hit by green light from

the laser sheet and show the shape of the meniscus in the laser plane. [28]

The laser is directed at the interface when the experiment is calibrated and is then recorded by the

camera resulting in images similar to the one shown in figure 4.2.

Figure 4.2: Image collected directly from the quasi-capillary plates campaign

4.1.2 Methodology

There were several procedures applied to process and obtain the results from the images recorded by

the camera.

Firstly, the pressure sensor was calibrated, and its voltage was made to match the pressure that was

being applied to the pressurised tank. This calibration resulted in a series of matching pressure and

voltage points that were subsequently fitted using a linear fit. This set of points is represented in figure

4.3 and the fit equation is pressure[Pa] = 210× voltage[V ]− 9.89.

Figure 4.3: Pressure as a function of the voltage measured at the pressure sensor

The pressure calibration allowed the data from the pressure sensors to be synchronised with the

data obtained from the recorded images. This match-up is done via a Labview algorithm that records

the values from the sensors and matches them with a corresponding time stamp. The beginning of the
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time scale is set when the program starts to run, and the subsequent time stamps are then recorded as

shown in the time scale of figure 4.4.

Figure 4.4: Time scale for the experimental procedure with a sequential representation of the time
stamps

The fourth time stamp in figure 4.4 marks the beginning of the interface’s observable movement

since the camera’s field of view does not cover the entire motion of the meniscus. This timestamp is not

directly recorded in the Labview algorithm but is obtained by relating the frame number with the frame

capture frequency, which in this case was 300Hz. This timestamp highlights the need for a height offset

for the meniscus since it started its rise on the third time stamp upon the release of the pressure valve.

All the images gathered after the fourth time stamp were treated and analysed using an algorithm

developed during this thesis and based on previous work done by Domenico Fiorini and Miguel Mendez.

The first step is selecting the image which first captures the meniscus within the field of view. The

frame number of this image will correspond to the fourth time stamp, and it is the first image where

the meniscus will be detected. Then, the analysis interval is defined by choosing the last frame to be

analysed. Thus, the total time that the height is being recorded and analysed is given by timerecording =

(nlastframe − ninitialframe)frequencycapture.

The algorithm is run in parallel to analyse the previously selected images in several cores using

a pre-existing function which accelerates the entire process. The function used for this is from the

concurrent.futures library in Python.

The algorithm fed into this function is responsible for all image processing and outputs stages. The

image processing was subdivided into four different stages. The first one is, of course, to import the

image. For this stage, the OpenCV Python library provided the functions to read and rotate the images.

By the end of this stage, the image being analysed was also cropped, making its width correspond to

the channel width and, thus, obtaining the pixel-to-millimetre ratio for the image analysis process. Figure

4.2 shows an example of the resulting images from this stage.

In the second stage of this image processing algorithm, the image is denoised using a Non-Local

Means Denoising filter from the OpenCV library. This filter compares the intensity of pixels within the

search area defined by its parameters and averages it with pixels of similar intensity. Essentially apply-
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ing a low pass filter has the added benefit of not removing as much information from the image as a

conventional one would. [29]

After this, the algorithm executes a function to detect the meniscus position. This function first applies

a directional re-contrast filter to the image. This filter is helpful since it highlights the meniscus near the

wall of the channel, where the meniscus tends to lack illumination. Figure 4.5 shows the impact this has

on the image.

Figure 4.5: Directional re-contrasted image compared with an original image

This is achieved through equation 4.1, which describes a re-contrasting operation done column-wise.

In this operation, each cell of a given column has its value changed by adding a parameter proportional

to its column’s intensity. This parameter is described in equation 4.2.

Recontrasted Image = Original Image+ β ×Orginal Image (4.1)

βn = (
µn
µa

)−k (4.2)

In equation 4.2, µn represents the average intensity of column n and µa the average intensity of the

image. The ratio between the two is raised to the power of −k, which accounts for the intensity of this

filter. Thus, it is possible to conclude that the columns with lower overall intensity will be multiplied by a

higher factor. Thus the magnitude of re-contrasting in these will be higher. These sets of images result

in the columns close to the image edge being brightened up.

After this, the image is convolved using a Sobel-like kernel suggested in reference Mendez et al. [30]

and described in equations 4.3. This works as a high pass filter highlighting the horizontal edges as its

peak values, as seen in image 4.6.

Kernel =


−E

C

E

 (4.3a)
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E =


1 2 1

1 2 1

1 2 1

 (4.3b)

C =


0 −1 0

0 0 0

0 1 0

 (4.3c)

Figure 4.6: Resulting image from convolution with Sobel kernel which highlights the gradient intensity
throughout the image

Figure 4.6 is the representation of the gradient of the original image, which is the result of convolving

it with the previously mentioned kernel. As can be seen from the colour scale represents the intensity of

the gradient, and the higher values of the gradient will correspond to the meniscus. [31]

To locate the position of these peaks in the image, the find peaks function of the Scipy library was

used. Several considerations must be taken into account when using this function. Firstly, to avoid the

detection of other points, either leftover noise or other, a height for the peaks must be defined. The

threshold is the minimum value a cell must have to be considered during this search for peaks in the

gradient, and it was adjusted before the analysis of each image set. However, it is worth pointing out that

it did not vary much since the camera settings and illumination was very similar. Another parameter to

this function is the distance between peaks. The distance between peaks is another easy way to exclude

other points than those belonging to the meniscus since it considers only one point within a distance.

This means that if the distance between peaks is defined as the length of each column being analysed,

only one peak will be considered per column.

The only other operation left within the detect edges function is applying a median filter to the array
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of points detected by the find peaks function. This filter prevents points that stray too far from the line

detected for the meniscus from being considered.

With all these operations completed, the algorithm can now detect the meniscus positions throughout

the image, as seen in figure 4.7.

Figure 4.7: Detected meniscus position marked with a red line

After this, the algorithm runs a fit to the points represented in figure 4.7. The objective of this fit is to

extract the contact angle, which is a boundary condition to this fit.

These points are fitted using the Young-Laplace equation, equation 2.1. This equation is used despite

the dynamic nature of the phenomena because there is no adequate description for a dynamic meniscus.

Thus, the equation that is derived for this geometry is equation 2.7.

With the boundary conditions established in equation 2.8, this becomes a boundary value problem

for which the contact angle will be optimised to obtain the best fit to the interface. This contact angle

will be considered for the correlations tested against the model data. The fitting procedure and functions

used are very similar to those used for the Sessile Droplet tests, and further explanation can be found in

that experimental campaign’s Methodology section.

After this, the data concerning the frame number of the image was analysed, the contact angle

obtained for the frame, the average height of the meniscus in pixels for the frame and the height of the

contact line (h for the x = ChannelWidth) is stored in .txt files to be interpreted by a different script

responsible for adjusting the parameters to include height offsets and synchronise the data time-wise.

The time synchronisation is achieved taking into account the timeline presented in figure 4.4, and

a measurement is taken each run of the final position of the meniscus once it has stabilised. This

measurement is the distance between the final position of the meniscus once it has stopped moving and

the bottom of the channel.

This method results in plots similar to those in figure 4.8, that have the height converted from pixels

34



to millimetres and the time synchronised properly with the pressure valve opening.

Figure 4.8: Sample of the data extracted from the image sets: the image on the top left side is a plot of
the pressure on the reservoir vs time; the image on the top right side is a image of the capillary number
vs time; the image on the bottom left side is a plot of the meniscus height vs time; the image on the
bottom right side is a image of the contact angle obtained from the fitting process vs time

This data will be used to compare the behaviour of the fluid within the channel to the preexisting

correlations. These results will be analysed in chapter 5.

4.2 Quasi Capillary U-tube Setup

The objective of this facility was to evaluate the accuracy of the corrections proposed in the literature

[26]. A similar set-up to the one used during previous experimental campaigns in the U-Tube facility was

employed. However, during this experiment, there was no interest in the dynamic nature of the meniscus

movement, and thus, the pressure system was disconnected.

4.2.1 Facility Description

This facility is very similar to the one used for the dynamic experiments in the U-Tube. The most sig-

nificant difference is the lack of pressure systems, i.e. the overpressure line was disconnected as well

as the pressure sensors and pressure valve and all the systems used to record it all using the LabView

algorithm.

Thus, the U-Tube was detached from the pressure system, and its leads were unfastened to allow

for better access to place the calibration grid. The whole system can be seen in figure 4.9.
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Figure 4.9: Experimental set-up for testing the correction for the radial distortion with each major com-
ponent labelled

Upon closer analysis of image 4.9, the different components of this set-up can be identified. The

feature identified as number 1, refers to the camera assembly, which in the case of the distortion ex-

periments was made up of the camera itself, a Spark Series SP-1200M-CXP4 high-speed industrial

camera, and the objective, a Nikon-Mirror 105 mm 1:2.8 objective. Component number 2 refers to the

Utube and its support. This is where a grid to test the correction is inserted. This grid can be seen in

figure 3.6, and there were several renditions of this grid. The grid that was ultimately chosen to perform

most measurements was imprinted on a transparent plastic sheet. The space between the vertical lines

was 0.5mm and between the horizontal lines 20mm. Its use for testing the optical corrections will be

discussed further ahead.

Component number 3 acted as a light diffuser for the light coming from the light source marked as

number 4. Also important to note is the grid pattern marked as number 5. This was used to align the

camera and get the distance between the camera sensor and the centre of the tube. This was also used

to estimate the magnitude of the misalignment angle, which is marked in figure 3.3 as θ0.

4.2.2 Methodology

To run this experiment, the first step was to place the grid carefully inside the U-Tube set-up using a

pincer. Special care was taken to ensure the grid wrapped around the inner diameter of the tube as well
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as it could.

After this, the backlight was turned on, and the images were ready to be captured. These images

were the first ones to be processed in the context of this thesis and were the starting point for the image

processing done for this thesis. For every experiment run, a video file was captured using the GenICam

software. After this, the video file was broken down into frames using VirtualDub software. This software

was used to collect data in all the experimental campaigns performed during this thesis.

This software applied two filters to the images: a re-contrasting filter to enhance the image’s contrast

and a brightness filter. These filters were applied to increase the contrast of the vertical black lines

against the background. This image treatment will make detection much easier since the minimum

values for the intensity of the image will be more pronounced.

After this, the images are imported to the script, where the data will be collected and the points

corrected. Once the image is imported, it is denoised using the Fast Non Local Means Denoising Filter.

This filter will look for pixels with similar intensities within a prescribed kernel and average those pixel

intensities, just like it was described in the previous section regarding the quasi-capillary parallel plate

set-up.

With this denoising process complete, the images are now ready for point detection. The approach

used in this campaign differed from the one used for the meniscus detection in the previous section.

In the case of the images of these experiments, the objects that will be detected are the vertical lines,

which correspond to local intensity minima in the image. Thus, to detect them, a function from the Scipy

library was employed called argrelextrema that searched for local minima within an interval of intensity

from the absolute minimum intensity in the image. This interval had to be implemented to account for

slight differences in intensity from the different vertical lines.

There are still two important parameters missing, the distance between the centre line of the tube

and the aperture of the camera (L) and the camera misalignment angle (Θ0), which takes into account

if the camera is pointing towards the centre of the tube or not.

Figure 4.9 shows how the entire set-up was positioned on a grid pattern to measure the distance

between the centre line of the U-Tube and the camera aperture as well as the misalignment angle.

The position of the tube and the camera’s aperture were then recorded on the grid, and the angle and

distance were obtained.

However, these parameters are difficult to determine through a direct measurement method but can

be determined through an inverse method. Thus, these parameters were determined by an optimisation

algorithm which looks for values of Θ0 and L that minimise the difference between the corrected points

and calculated the grid positions that are not affected by distortion. This process is repeated 100 times

with different randomly picked initial values for the optimisation to ensure that the absolute minimum of

the error is picked. In addition, these values are compared with the measurements made experimentally
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to verify their accuracy. The inverse method’s results will be discussed in chapter 5.

4.3 Sessile Droplet Test Setup

The objective of these tests was to compare the static contact angle obtained for the sessile droplet test

campaign, which is commonly used to get this parameter in the literature, with the static contact angle

obtained for the other two configurations.

4.3.1 Facility Description

This facility used the set-up used during the optical distortion campaign. The most important difference

was that the Utube assembly was replaced with an adjustable height platform, as in figure 4.10.

Figure 4.10: Detailed view of the height adjustable table set-up for the sessile droplet test

Figure 4.10 shows the adjustable struts, which allowed to perform fine height changes to better

frame the pictures taken within the camera’s field of view, marked as 1. It is also possible to see a

representation of the quartz plate where the liquid was dropped, which is marked as 2.

This set-up was mounted in the same position as the set-up holding the U-Tube, and the back-light

illuminated the droplet area in a similar fashion to the distortion campaign. The liquid was dropped

through a syringe which was mounted on a bracket to keep its position steady relative to the quartz

plate.

This is important because the droplets are very small, with average diameters between 5 and 8mm,

and to capture them properly, the camera needs to be focused on an appropriate spot. Thus, securing
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the syringe with an optical support was the best solution found for consistent liquid placement. This was

necessary since the time available to capture shots of the droplet on the quartz plate was limited by the

high evaporative rate of HFE7200.

It is also important to note that the platform marked as 3 where the quartz plate was supported was

levelled after every height adjustment to avoid droplet movement in one specific direction.

4.3.2 Methodology

The procedure for this experimental campaign has already been looked over in the previous section, but

this section will explain it further. For each experiment run, the camera was focused on one spot of the

plate using a calibration grid, as seen in figure 4.11.

Figure 4.11: Calibration picture where the calibration grid is displayed along with the tip of the syringe
used

This grid served a dual purpose. The first objective was to focus the camera on the spot in its field of

view as close to the surface of the quartz plate as possible. The second objective was to guarantee that

during the image processing phase, there was a way to obtain a pixel-to-millimetre ratio to convert the

image measurements.

In addition, during this preparation phase, the syringe was also positioned near the calibration grid,

as shown in figure 4.11. This placement is essential to ensure that the liquid is dropped in the vicinity of

the area where the camera is focused and, thus, allows for quick capture of shots of the droplet.

After completing this procedure, the images were recorded using the same method as in the distor-

tion set-up and quasi-capillary parallel plates. These images were then submitted to a similar process

to the previous campaigns. The first operation was to set the coordinates corresponding to the droplet

width and height. These coordinates mark out the area of the image which will be analysed. Following

this, the images were denoised using the same filter used for the previously described experimental

campaigns.

Then, the algorithm enters a function designed to detect the droplet edges similar to the one used
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in the quasi-capillary parallel plates campaign. However, this function does away with the directional

re-contrasting and changes the criteria to find the peaks. This change is done to accommodate the

specifics of this image set, of which figure 4.12 is an example.

Figure 4.12: Captured image of a droplet of HFE7200

Image 4.12 is an example of an unfiltered image taken directly from the image set. It is quite hard to

discern where the droplet’s surface is and what should be considered to be the droplet’s surface. This

difficulty is typical of all the images captured, and as seen from the figure 4.13, the algorithm is capable

of capturing several surfaces which seem to be adequate to consider as the droplet surface.

Figure 4.13: Surfaces droplet detected by the algorithm

Figure 4.13 shows why a different method to find the peaks of the gradient and, thus, the surface of

the droplet was employed. Firstly, a restricted analysis is defined to consider only one of these surfaces

separately. This area is marked out by the perceived width and height of the droplet according to the

surface being considered. So, for example, to obtain the surface described by the red dots in figure 4.13,

the area considered is restricted to the width and the height of the points detected, just as seen in image

4.14.

Figure 4.14: Example of the area analysed for a given surface

This area might include, in some instances, other surfaces. However, this issue is solved by removing

the distance parameter from the find peaks function, which will result in both surfaces being detected.

This change in the algorithm means that for each column of the image gradient analysed, more than

one peak may appear, as illustrated in figure 4.15 if this is the case, then the appropriate peak is se-

lected through considering the proper cell of the peaks array generated for each column. Alternatively,

if the surface being analysed is the strongest in the analysis area, this operation might be unnecessary

altogether if one considers an appropriate minimum value for the gradient.
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Figure 4.15: Peaks obtained for the middle column of figure 4.13

After the appropriate array of points is chosen as the droplet’s surface, the algorithm can perform

the fit. This fit is done through an optimisation process, where the curve fit function from the Scipy

Optimize library optimises the parameters fed to a user-defined class, where the boundary value problem

described in chapter 2 is solved. This boundary value is solved using the solve bvp function from the

Scipy Integrate library. The final objective of this optimisation process is to minimise the difference

between the computed solution for the boundary value problem and the points for the surface. The

solution for this boundary value problem is extrapolated to match every point of the detected surface,

and the contact angle and offset coordinates for the curve are then tweaked by the curve fit function

until it can no longer reduce the difference between the two.

With this, a fit is produced for the droplet’s surface, and the contact angle is obtained. Figure 4.16 is

an example of the fit obtained.

Figure 4.16: Fit for a given surface

The results of this experimental campaign all the others are discussed in chapter 5 and the code

used for these experimental campaigns can be found in 9.
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5.1 Sessile Droplet test

The objective of these tests was to obtain the static contact angles for the combination of HFE7200 and

quartz. Getting the contact angle was, however, more difficult than expected because the liquid droplet

formed a thin film over the quartz plate characterised by a small contact angle.

Thus, capturing the geometry of the liquid droplets was a challenging procedure, involving many

tries. This unusual measurement led us to develop a technique where the fluid needle was mounted in

an optical bracket which held it in place to make the focusing easier with the grid displayed in chapter 3.

Despite this, image quality was poor due to oscillations in dropping HFE7200 onto the quartz plate and

the fast evaporation of the liquid droplets. Therefore, when determining the contact angle since more

than one surface was identified per image, as seen in image 4.14.

To improve accuracy, many measurements were taken and the results analysed statistically. This

analysis resulted in a static angle of 6.23◦ with a standard deviation of 3.53◦ on a sample of 20 indepen-

dent images. This uncertainty is higher than the generally accepted 2◦ encountered in sessile droplet

tests. However, this liquid has a significantly smaller contact angle than what is usually found and the

evaporative rate is considerably higher. Given these constraints, the current approach represents a im-

provement in the accuracy of the results for HFE7200. For reference, image 5.1 is a comparison of a

water droplet image against that of an HFE7200 droplet.[7] [2]

Figure 5.1: Captured image of a droplet of water and a droplet of HFE7200, where it is possible to see
that the higher contact angle of water allows makes for a more clearly defined droplet

5.2 Radial Distortion

The method used to evaluate the radial distortion will be discussed in this section, as well as an evalua-

tion of the uncertainty when determining the position of the points.

5.2.1 Experimental Method Used

The first method consisted in measuring directly the parameters L and Θ0. However, this proved to

be not accurate enough since both the distance and the angle were hard to measure. The uncertainty

of the position of the aperture produced a corresponding uncertainty in the evaluation of the distance

between the tube and camera. From outside of the camera, it is difficult to locate the position of the

shutter, and thus, an estimate was made as to its position. This limitation extends to assessing the
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camera misalignment angle, Θ0, since not knowing the exact position of the centre of the shutter makes

it much harder to calculate or measure this angle.

The evaluation of the uncertainty of these two input parameters had to be calculated to evaluate the

uncertainty associated with the optical corrections. However, an uncertainty of 0.5 mm for the parameter

L, which corresponds to half of the smallest division of the scale of the grid, was considered unrealistic

due to the constraints described previously. Deriving the uncertainty considering only the grid resolution

would yield optimistic results for the overall uncertainty of the correction and lead to misinterpretation of

the results.

The issue with the uncertainty and determination of the parameters described above was addressed

by implementing an inverse method, which also improved the expediency in applying an optical correc-

tion to the experimental campaigns performed in the U-Tube facility. The objective was, as described in

chapter 4 to obtain the values for L and Θ0 by comparing the corrected points with the positions of the

grid lines and obtaining the value which minimised the difference between the two.

Figure 5.2: Distortion Results for Optimization of the L and Θ0, where a section of the U-tube is displayed

Figure 5.2 represents a section of the U-Tube facility where the algorithm has been applied to correct

the position of the grid lines. The white dots correspond to the algorithms’ detection of the vertical grid

lines, that are affected by distortion and must be corrected. The dashed yellow line marks the centre of

the U-Tube, and the two blue lines mark the inner tube walls. The green vertical lines correspond to the

vertical grid lines if no distortion took place. If the correction were to work as intended, it should shift the

white dots onto the green lines once it was applied.

The red dots represent the corrected position of each of the white dots. The arrows connecting each

white dot with a red one help identify the correction applied.

First, we may observe that, as expected, the magnitude of the correction increases towards the

edges of the U-Tube, as can be seen on the graph displayed in figure 5.3.
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Figure 5.3: Correction for the Original Optimisation: magnitude of the correction as function of the radial
coordinate

The results of figure 5.3 are to be expected since the closer to the radius of the tube, the higher the

value of Ω and, thus, the value of ΘA upon which the optical correction depends, as seen in equation

3.2.

This leads us to the next comment: the red points do not coincide with the green lines as they were

supposed to. Even when considering the uncertainty related to the measurements of the parameters,

as discussed previously, they do not coincide.

This difference is related with how the green lines are being generated. Errors impact the inverse

method and the ability to evaluate its accuracy. To verify that they are being generated incorrectly, the

approximation used to generate them must be evaluated.

The green grid was generated by considering that the centre of the tube would be unaffected by

the distortion effects. As such, it would be reasonable to assume the closest point to the centre is not

distorted. If this assumption was valid, then the position of the true grid lines could be easily obtained

by considering the inner radius of the tube and the arc length between each of the vertical lines, which

was imposed by the grid’s design to be 0.2 mm long.

This approximation would be true if there was no camera misalignment, as can be seen in figure 5.4.
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Figure 5.4: Influence of Θ0 on the magnitude correction displayed for three different values of this vari-
able

However, figure 5.4 shows that when Θ0 is different from zero, the correction is not null in the centre

of the U-Tube. Since the results from the direct measurements of the experimental campaigns yielded a

Θ0 different from zero, this method becomes inaccurate in estimating the experimental results. Thus, if

an inverse method is to be implemented to improve the correction’s parameters, a new approach must

be implemented.

5.2.2 New Method Analysis

A new approach was developed to correct the assumptions of the previous method. This new approach

was based upon a similar procedure described in Darzi and Park [26]. This paper suggested using a

plug gauge with a diameter equal to the tube’s inner diameter to test the accuracy of the correction.

This method could be applied to the images already available by considering the horizontal lines on

the grid as seen in figure 3.1. Since the grid wraps around the inner diameter, the length of the visible

part of a horizontal grid line corresponds to the inner diameter. Thus, if the correction is applied to

the outer points of the horizontal grid line highlighted in red in figure 5.5, they should coincide with the

vertical blue lines.

Figure 5.5: Detected red horizontal line and the inner tube walls represented in blue

The vertical blue lines in figure 5.5 represent the inner tube walls and are obtained using the pixel
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to millimetre ratio which is the ratio between the tube width measured in millimetres and pixels. The

calculation of the position of the walls is done in 5.1.

 xfirstWall = (Router −Rinner) ∗ pix2mm

xsecondWall = (Router +Rinner) ∗ pix2mm
(5.1)

This ensures that no approximation is introduced to obtain the points that will be used to optimise

the L and Θ0 parameters. However, since Θ0 is the harder parameter to measure the optimisation was

conducted only for this parameter, and L was considered to be 39cm as measured previously.

The results obtained for this optimisation are displayed in figure 5.6.

Figure 5.6: Detected points, corrected points, real position of the tube wall and uncertainty

Figure 5.6 displays similar levels of distortion on both sides of the image since the detected points

for the position of the inner tube wall are at identical distances to the real positions of the tube walls.

Accordingly, the angle obtained for this was 0.77◦. This result is to be expected since, for low values of

Θ0, the correction is symmetric relative to the central axis of the tube.

As for the error associated with this image and the calculation procedure, the difference between

the diameter calculated using the corrected points and the real positions of the inner tube walls the

difference obtained was 4.64%. When compared to the experimental error obtained by Darzi and Park

[26], it is slightly higher, but it should be taken into account that despite the best efforts in placing the

grid inside the tube as close as possible to the tube walls, the adherence of the grid to the tube walls

can not be guaranteed and the distance to the tube could be measured more precisely with the aid of a

laser distance measurer.

However, the issue of the adherence of the grid to the tube walls becomes irrelevant when consid-

ering that this procedure can be performed using the meniscus images directly. Since the meniscus

adheres to the inner tube walls, there is no need to place a grid within the tube, and the calibration

procedure for the camera misalignment angle becomes much simpler. In this case, only the outermost

points of the meniscus have to be considered to perform the calibration. This calibration is achieved by

comparing these points with the positions of the inner tube walls.

Finally, it is also worth noting that the results displayed in the image were obtained with an algorithm
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that optimised the value of Θ0 for 1000 random initial values of these parameters within an interval of

[−10, 10]◦. In addition, the uncertainty bars allocated to each corrected point were calculated using

the derived uncertainties method, so an uncertainty of 5 mm was considered for the distance from the

camera aperture to the centre of the tube and an uncertainty of 2◦ for the camera misalignment angle.

[32]

The results seem to be satisfying considering that the real positions of the inner tube walls fall within

the uncertainty associated with the corrected positions and a similar range of diameters to that of refer-

ence Darzi and Park [26]. It is also worth pointing out that the value obtained for Θ0 is in line with the

value obtained for using direct measurements of 2◦.

5.2.3 Meniscus Correction

The method previously described was applied t a set of images pertaining to a static interface. The

results for an image belonging to that set are displayed in image 5.7.

Figure 5.7: Detected meniscus interface in blue and the correction for the optical distortion of these
points in orange

Figure 5.7 shows the detected points for the meniscus surface, represented in blue. These points

correspond to the distorted position of the meniscus as captured directly by the camera and are to be

corrected by the inverse method presented earlier. The corrected points that result from the inverse

method are the ones in orange. As expected, a general shift towards the centre of the tube is observed

in line with the predictions displayed in image 5.5. In addition, the correction’s magnitude increases

towards the edges as predicted in figure 5.4. This shift effectively decreased the contact angle obtained

from the fit of the experimental points.

As in the sessile droplet campaign, the contact angle was obtained through an optimisation pro-

cedure to match the experimental points with the solution of equation 2.4, considering the boundary

conditions imposed by 2.6. The contact angles were corrected from 34.05◦ to 8.55◦, emphasising the
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importance of correcting the data of this experimental set-up.

5.2.4 Static Contact Angle

With the information gathered from the sessile droplet test campaign and the corrected quasi-capillary U-

tube results, it is now possible to compare the static contact angle in axial-symmetric configurations with

the results obtained from the quasi-capillary parallel plates. Static images from each experimental point

in this set-up were collected and an average static contact angle of 26.75◦ with the standard deviation

of the sample being 4.67◦. This differs from the results of the sessile droplet tests and quasi-capillary

U-tube.

According to [33], the contact angle should be independent of geometry. However, this is not ver-

ified in the case of the 2D parallel plates. The difference between the axial-symmetric interfaces and

the quasi-capillary parallel plates might be due to the detection of the interface. The resolution in the

interface detection plays a relevant role in the measurement, given the uncertainty of the wall position

and the influence of the meniscus illumination near it. That might be responsible for this difference since

most likely, the steepest part of the meniscus curvature is not visible in the images collected utilizing the

”Level Detection and Recording” technique as seen in figure 4.2.

5.3 Dynamic test in 2D Channel Facility

The objective of these tests was to compare the results obtained for the quasi-capillary U-tube with the

set-up for the quasi-capillary parallel plates and adapt the correlations and models developed for the

former facility to the new geometry.

The objective here is to show that similarly to what has been proven for the static contact angle

in capillary set-ups, the dynamic contact angle should be independent of the geometry and, thus, the

correlations developed for a tube with a circular cross-section should also describe what happens in the

case of the quasi-capillary parallel plates.

In addition, these correlations aim to replace the need to extract the contact angle from a static

approximation to the meniscus shape and, thus, substitute this parameter in the prevailing models for

capillary flow as described by equation 2.30.

5.3.1 Quasi-Static Fit to the Meniscus

The contact angle data that will be analysed in the next section was obtained by a fit to the detected

points of the meniscus. The fit and its equation have been discussed in chapter 2 and are based on an

equation that does not consider the meniscus’s motion. Despite this, using a bootstrapping method to

calculate the variation of the contact angle for each frame, using a training set of 70% of the detected
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points and the other 30% as the validation group, the variation uncertainty obtained for the contact angle

extracted was very small, at an average of 0.0034◦. This uncertainty means that effectively the quasi-

static fit performs very well in its role of assessing the meniscus shape. [32]

Another interesting comparison is between this new method of analysing the contact angle and

the gradient method, which has been typically used to obtain the dynamic contact angle directly. The

gradient method considers the value of the gradient of the meniscus shape near the wall is equal to

the tangent of the dynamic contact angle. The difference between both methods is on average 0.708◦.

This difference is represented over time in figure 5.8, where the light grey band represents the variation

around the contact angle obtained by the fit.

Figure 5.8: Results from the static fit to the quasi-capillary parallel plates meniscus and its uncertainty

To analyse the contact angle correlation we will use this difference as a proxy of the uncertainty of

the measured contact angle.

It should also stressed that the wall position and the way it was measured may also account for some

added uncertainty in the contact angle extracted, as explained previously.

5.3.2 Correlations

To analyse the correlations with the experimental data, we will first consider the Hoffman-Tanner corre-

lation, which is one of the most common basis for developing several correlations [34].

This correlation, proposed by Hoffman [19], accounts for the relation of the dynamic contact angle

with the capillary number, Ca. That relates the viscous forces with surface tension in the liquid-gas

interface, as defined in 5.2. [33]

Ca =
µ

σ
V (5.2)

Where µ represents the dynamic viscosity, σ represents the surface tension and V is the velocity of
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the three-phase interface. Hoffman used it in his correlation as expressed in 5.3.

θ3
d − θ3

s = aCa (5.3)

The correlation displayed in 5.3 assumes that a linear relationship between the meniscus three-phase

interface and the contact angle. The contact angle for static conditions is also added to this correlation

as an offset to the data. Figure 5.9 shows an optimisation of the correlation for the experimental data.

Figure 5.9: Experimental data for the contact angle plotted against time and the prediction by Hoffman-
Tanner’s correlation

Figure 5.9 displays the contact angle as a function of the capillary number extracted for the experi-

mental run with the lowest pressure value applied to the reservoir 4. As indicated in the colour bar, the

meniscus appears in the field of view with a high velocity and decelerates as time passes. So, towards

the end of the observation time, the relation between the capillary number and the dynamic contact

angle stops being linear as the contact angle oscillates around its static value. This is incompatible with

Hoffman-Tanner’s correlation, as can be seen from the green line in figure 5.9. The optimisation of the

correlation’s coefficients leads to a average the initial linear portion of the motion with the oscillations

in the later stages. However, there is still some merit to this correlation since for for capillary numbers

bigger than 0.002 the behaviour of the interface is linear.

Thus, the need for a correlation with extra terms that account for the effect of acceleration changes

in the latter stages of the liquid motion. At this stage, the meniscus is oscillating around its equilibrium

position. So to consider the effect of gravity and the acceleration of the contact line on the correlation, a

dimensionless unit A is introduced where A = a
g with a representing the contact line acceleration and g

the gravitational acceleration. This new correlation can be seen in 5.4. [35]

Θd = aCab + cA + F (Θs) (5.4)
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This correlation considers the acceleration, and it is possible to see in figure 5.10 that it describes

better the variation of the contact angle with time and the capillary number.

Figure 5.10: Results for the correlation proposed by Manuel Ratz. On the left side the correlation
predictions and experimental data for the contact angle are plotted against time and on the right side
they are plotted against the capillary number

Figure 5.10 shows that correlation 5.4 can follow the contact angle trend with time quite accurately,

especially near the equilibrium position. The correlation has a cyclic elliptical behaviour around its

equilibrium angle equal to that of the experimental data. The similarities between the experimental

data and the correlation are also supported by the plot on the left, where the oscillations around the

equilibrium contact angle are aligned. However, there are still some noticeable differences in the peaks

in the later stages of the motion as seen in the plot on the left. Nonetheless, these differences are within

the range of the uncertainty associated with the experimental measurements.

The problem with this correlation lies in the initial stages of the meniscus movement, where the

correlation does not follow the experimental data with the same precision. As a result, the first oscil-

lation produces lower contact angles than those predicted by the correlation, and the three following

fluctuations are misaligned and overshoot the contact angle recorded by the experimental data.

To solve this issue, Domenico Fiorini suggested introducing an unsteady term proportional to the rate

of change of the dynamic contact angle with time. [3] This term enables the correlation to adapt better to

the rate of change of the dynamic contact angle and resolve the issues noted with correlation 5.4 since

it performed very well when compared to the quasi-capillary U-tube experimental data. This correlation

can be seen in 5.5.

αΘ̇′ + Θ′ = aCa + bA (5.5)

In this equation, Θ′ does not represent the dynamic contact angle but rather a parameter which also

accounts for the static contact angle that offsets this correlation, similar to Hoffman-Tanner’s correlation.
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This parameter is given by 5.6.

Θ′ = Θ3
D −Θ3

S (5.6)

The analytical solution of the correlation is represented in 5.7.

Θ′(t) =
1

α
e−

t
α (a

∫ t

0

Ca(t′)e
t′
α dt′ + b

∫ t

0

A(t′)e
t′
α dt′) (5.7)

In this equation, the entire history of the capillary number and acceleration plays a part in determining

the dynamic contact angle. In addition, it is possible to see a decay factor responsible for the exponential

decay of any disturbance in the meniscus shape.

To optimise the coefficients in equation 5.5 a set of initial conditions for the motion were provided to

solve this first-order linear differential equation. These correspond to the contact angle observed within

the first captured frame and the average meniscus velocity and acceleration up to that point which is

calculated using the meniscus height and the time since the pressure valve opened. In addition to this,

the boundaries for the optimisation of the coefficients were progressively adjusted to get a more accurate

solution. The results for this procedure are displayed in figure 5.11.

Figure 5.11: Results for the correlation proposed by Domenico Fiorini. On the left side the correlation
predictions and experimental data for the contact angle are plotted against time and on the right side
they are plotted against the capillary number

Figure 5.11 shows that the positions around the static contact angle are well described. However,

this correlation performs much better than correlation 5.4 in the initial oscillation since it can follow the

dip in the contact angle value very closely, just like it does in the following oscillation. In addition, it can

replicate the harmonic behaviour of the dynamic contact angle quite accurately with the frequency in the

oscillations matching that of the experimental data.

These results were achieved for the coefficients displayed in the following table.
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α a b

0.15 26.42 3.92

Table 5.1: Table with the optimised coefficients of equation 5.5

These coefficients were compared to the experimental data for the remaining points, with each point

consisting of a different over-pressure and several test runs as seen in chapter 4. In this regard, the

model performed similarly with an offset to the data, which corresponds only to the difference in the

static contact angle offset as seen in image 5.12.

Figure 5.12: Model data against the experimental data obtained from several experimental points and
their respective tests

5.4 Model Implementation

Considering the previous results, it is now possible to address the main objective of this campaign, which

was to test the existing formulation for the capillary motion for of a liquid interface in the quasi-capillary

parallel plates and use it to optimise the coefficients for dynamic contact angle correlation using the

height variation of the meniscus.

To implement this formulation both equations 2.30 and 5.5 were coupled into a system of ordinary

differential equations described in the set of equations 5.8.


ḣ = v

v̇ = f(h, v, θ′)

θ̇′ = f(θ′, v, v̇)

(5.8)

This means that equation 5.5, the dynamic contact angle correlation, will substitute θ in the surface

tension term of equation 2.30, the model for capillary motion. By doing this, it is now possible to optimise
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the contact angle correlation coefficients using the experimental height data, which eliminates the need

to measure the contact angle directly or through a fit of the meniscus.

This approach is different from the approaches described in the previous sections. In those sections,

the contact angle has been measured directly and those measurements were used to assess the corre-

lations and evaluating their ability to describe the phenomena. The approach in these previous section

depends on several approximations were made, mainly using the Young-Laplace equation to measure

the dynamic contact angle from each frame. In addition to this, measuring the contact angle is very

difficult due to the uncertainty related with the wall positioning and meniscus brightness near it.

The new approach uses correlation 5.5 developed with the aid of the data measured during the

experimental campaign and do away with the need for this approximation by eliminating the need for

measuring the contact angle altogether and optimise the description of the motion of the interface by

comparing it against the meniscus positions. The success of this new approach depends, firstly, on the

validity of equation 2.30 and its initial conditions, and, secondly, on the dynamic contact angle correlation.

This correlation has already been validated in the previous section. The initial conditions of equation 2.30

are the initial height and velocity of the liquid column when the meniscus first appears in the image. The

initial height is approximately the height of the lower boundary of the camera’s field of view, and the initial

velocity is approximately the average velocity up to that point. We experimented different initial values

and the best overall fit of the experimental data was obtained with the referred initial values.

Figure 5.13 exhibits the solution of equation set 5.8 with the most common parameters found in the

literature for the capillary model 2.30. The numerical simulation shows both higher frequency and lower

damping than the experimental data. This is an indication that the present test rig requires different

parameters, that we are going to identify in the next sections. This second order equation is similar to

spring-mass-damper system. [24] [25]

Figure 5.13: Plot of the model equation using the coefficients from the literature against the experimental
data
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5.4.1 Added Mass

The mass of fluid inside the channel is known, from the geometry, but the overall moving mass is

greater, including some fluid in the reservoir. This contribution to the inertia term is commonly known as

the added mass. For a tube of radius R, with its lower end submerged in an unbounded reservoir, [12]

calculated that the added mass is equivalent to increase the liquid column height by 73/60R. According

to figure 5.13, the added mass is far greater for a channel between two parallel plates, because the

experiments show a lower natural frequency of the liquid oscillations. Since the natural frequency of a

dynamic system is roughly inversely proportional to the square root of the mass, and the experimental

data exhibits a frequency 1.5 times greater than the simulations, the effective moving mass must increase

by a factor of about 1.2. That means that the added mass corresponds approximately to an added height

of 0.2h̄ ' 28 δ
2 . Figure 5.14 was obtained with this estimate of the added mass, that improves significantly

the quality of the simulations.

Figure 5.14: Plot of the model equation using optimised added mass factor against the experimental
data

The value obtained for the added mass parameter is very different from the one indicated in the

literature. In [12], creeping flow is considered and, thus, the range of Reynolds number considered

is much smaller than the one obtained for the experimental data of Re ' 200, which would imply a

significant difference in the phenomena description. Furthermore, the geometry described in [12] is a

axial-symmetric which is not the case for the experimental set-up used. All in all, this results in the

increase of the influence of the flow within the channel on the surrounding reservoir which leads to a

higher added mass coefficient to make up for that difference.

57



5.4.2 Dissipation

Figure 5.14 shows that the dissipation parameters are too small to reproduce the experimental evolution.

There are two kinds of dissipation terms, the viscous force on the wall and the Hagenbach-Couette

correction 2.28. The viscous force on the wall was initially evaluated as if the flow was a developed

Couette flow under a given pressure gradient. The whole dissipative term is

Dissipative Terms =

[
12µ

ρδ2
h+

KH ḣ

2
+
µKC

2δρ

]
ḣ. (5.9)

The average height is h̄ = 50 mm, the channel thickness is δ = 5 mm and an average vertical

velocity of ḣ = 2mm/s. For the present fluid properties and coefficients given in the literature, KH = 7/3

and KC = 4, the Hagenbach-Couette correction represents about 20% of the total magnitude of the

dissipative terms. However, if we consider the first oscillation of the liquid column where the vertical

velocities are on average ḣ = 200mm/s, the Hagenbach-Couette correction assumes 95% of the total

magnitude of the dissipative terms. So, we conducted an optimisation procedure for the Hagenbach-

Couette coefficients based on the varying impact this correction has throughout the motion. This led us

to KH = 1000 and KC = 17.6 which were used to generate the plot in figure 5.15.

Figure 5.15: Plot of the optimised model equation predictions and the experimental data against time

Figure 5.15 shows that there are still significant differences between the model and the experimental

data. The flow in this oscillating liquid column is not developed and the cross-sectional average velocity

changes over time. These two features affect both the wall shear stress and the vertical component

of the momentum flow rate. The curvature of the shape of the free surface also changes in time and,

therefore, the pressure jump due to the surface tension. The PIV velocity profiles measured by Manuel

Ratz [35] demonstrated a departure from the parabolic velocity profile towards a flatter velocity profile,

see figure 5.16 of that report. As stated before, the wall shear is not important and, as we will see later,

the change in the surface tension and the momentum flow rate also have a negligible impact on the
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dynamic of the liquid column.

Figure 5.16: Velocity profile at several distances from the interface

5.4.3 Impact of the Dynamic Contact Angle

Figure 5.17 takes into consideration the previous optimisation procedure and tests the model sensitivity

to each parameter. The forces considered in the model are plotted as a function of the height change

they would produce on the liquid column if they were applied by themselves.

Figure 5.17: Plot of the forces produced by each term in the model equation as the height change they
would produce in the liquid column

Figure 5.17 represents forces per unit length divided by ρgδ. This result is the height of a hydrostatic

liquid column subject to that force. Figure 5.17 shows that the major forces at play are pressure and

gravity, which somehow cancel out.
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Up until the latter stages of the motion, the dissipative forces seem to be closely linked to the pressure

as seen in figure 5.18. This suggests that the velocity is linked with the pressure applied to the reservoir

and not influenced by surface tension.

Figure 5.18: Plot of the pressure evolution in the reservoir against and dissipative term against time

Figure 5.17 shows that the modulus of the surface tension is small compared to the other forces at

play, and its variation is also very small despite the variation in the contact angle, as seen in figure 5.19.

Figure 5.19: Plot of the surface tension forces against time

From this plot, it is possible to assume that the model is not yet sensitive enough to require adjust-

ments of this order of magnitude, especially considering the difference in predicted and experimental

heights displayed in figure 5.15. To test the sensitivity of the results to the contact angle correlation,

the model was run using the coefficients for the contact angle correlation previously obtained and using

coefficients one order of magnitude higher. Figure 5.20 shows that both solutions overlap within plotting

precision.
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Figure 5.20: Plot of the experimental data against model predictions using the dynamic contact angle
correlation coefficients obtained in the optimisation process and a random set of coefficients for this
correlation

5.4.4 Additional modelling

To improve the model sensitivity to the contact angle variations, modelling of the motion of the meniscus

should be expanded to account for three dimensional phenomena. The vibrations the meniscus interface

presents in the latter stages of the motion could be better modelled by accounting for the vibration modes

along the channel length.

If we were to compare it with a string constrained at each end, the first vibration mode would impact

the measurements of the meniscus height significantly. As seen in figure 5.21, an anti-node would be

present at the middle of the channel, which would impact the height measurements taken at this point.

For the second vibration mode this would not be an issue, since the a node would appear in the middle

of the channel.

Figure 5.21: Vibration modes for a string constrained at its edges
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Chapter 5 enables us to answer the research questions formulated in the introduction.

Did the prevailing model for optical correction yield the expected results?

The results obtained with the method employed for obtaining the Θ0 parameter seem to be very

encouraging since the error associated with the correction of the inner diameter was similar to that

found in the literature that conducted identical experiments. [26] [27]

This method allows for a much simpler correction of the results without requiring more expensive

instrumentation. Furthermore, the correction performed on the images from the quasi-capillary u-tube

yielded similar contact angles to that obtained using the data from the quasi-capillary parallel plates.

Is the static contact angle similar across different geometries?

According to Jiang et al. [33], the static contact angle for the same fluid and material should be

independent of geometry. Yet, there was a noticeable difference between the axial-symmetric menisci

and the quasi-capillary parallel plates. This difference was attributed to the image cropping procedure for

the parallel plates facility, which might have omitted parts of the image near the wall where the meniscus

was not visible.

Are the prevailing integral models adequate to describe the motion of the liquid column be-

tween Parallel Plates?

As seen in chapter 5, the common models used for the capillary tubes, the geometry usually studied

in the literature, required many modifications to adapt them to the parallel plates geometry. Surface

tension is less significant for the column between parallel plates of a given width than inside a tube of

similar diameter. Furthermore, our test rig had a larger width than it is common in capillary tubes. On

the other hand, the introduction of a term that accounted for the acceleration of the contact line and

the history of the meniscus shape led to a good description of the contact angle when compared to the

more traditional correlations in reference [19]. In addition, there is a need to better describe the unsteady

phenomena, mainly with the velocity profile with the channel and the changing velocity field at the tube

entrance.

Are the capillary models sensitive to an optimisation based on the correlation’s coefficients?

With the current model, an optimisation of the correlation’s coefficients inside the surface tension term

does not seem to be feasible. However, further work on better modelling of the unsteady velocity profile

and improving of the coefficients can achieve enough accuracy. Nevertheless, the present correlation

for the contact angle seems to capture its variation, having the same harmonic behaviour and being able

to significantly predict its values. So, this might be a worthy topic of research for future work.

6.1 Future Work

With this said, future work should focus on better modelling for the quasi-capillary parallel plate set-

up. The model used is based on equations developed for the rise of liquid in a capillary tube, and a
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departure from these equations might be needed, especially regarding their description of the dissipative

terms. The term for the pressure loss at the entrance to the channel should be changed to account for

the different flow conditions when the liquid is rising and receding. In Levine et al. [12], the fluid is

constantly rising, which is not the case for this quasi-capillary flow. In addition, a departure from the

steady flow approximations might be required to account for the velocity profile. As seen in figure 5.16,

the velocity profile is not parabolic throughout the motion, and this needs to be accounted for to model

the term concerning the viscous forces on the wall. Finally, better detection of the meniscus interface in

the vicinity of the walls of the quasi-capillary parallel plates is needed to establish a fairer comparison

between the different static contact angles.

65



66



Bibliography
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7
Curvature Calculations
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In this appendix, a description of the curvature for both the droplet and both menisci of the quasi-

capillary u-tube and parallel plates.

7.1 Polar coordinates

Both the droplet and quasi-capillary u-tube meniscus can be described in polar coordinates, z = h(r, θ).

A functional that is zero on both surfaces can be defined as such g(r, θ, z) = z − h(r, θ). This functional

can be used to compute the normal to both surfaces using equation 7.1.

n =
∇g
| ∇g |

=
ẑ − hr r̂ − 1

rhθ θ̂

(1 + h2
r + 1

r2h
2
θ)

1/2
(7.1)

The local curvature can then be calculated using the gradient of the normal in equation 7.2.

∇ · n =
−hθθ − h2

rhθθ + hrhθ − rhr − 2
rhrh

2
θ − r2hrr − hrrh2

θ + hrhθhrθ

r2(1 + h2
r + 1

r2h
2
θ)

3/2
(7.2)

If the axisymmetry of both interfaces is taken into account then equation 7.3 is obtained.

∇ · n =
−rhr − r2hrr
r2(1 + h2

r)
3/2

(7.3)

7.2 Cartesian coordinates

In the case of the quasi-capillary parallel plates the coordinate system used is Cartesian so a new

formulation is necessary: z = h(x, y). Once again, a functional is defined as f(x, y, z) = z − h(x, y)

which is zero in the meniscus surface. With this in mind the normal vector is given by equation 7.4.

n =
∇f
| ∇f |

=
ẑ − hxx̂− hy ŷ

(1 + h2
x + h2

y)1/2
(7.4)

This leads to the curvature expressed in equation 7.5.

∇ · n =
−(hxx + hyy)− (hxxh

2
y + hyyh

2
x) + 2hxhyhxy

(1 + h2
x + h2

y)3/2
(7.5)

If the two dimensional nature of the phenomena is taken into consideration, then the curvature equa-

tion reduces to equation 7.6.

∇ · n =
−hxx

(1 + h2
x)3/2

(7.6)

Equations 7.6 and 7.3 are the ones used to deduce the equation for the static fit of the interface.
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Distortion Angles
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In this appendix, a description for all the refraction contact angles and the angles with horizontal axis

is made.

8.1 Refraction angles

The refraction angles as described in figure 3.3 can be related with Ω, through the following equations:

sinα =
no
nf

L

Ri
sinΩ (8.1)

sinβ =
no
nw

L

Ri
sinΩ (8.2)

sinγ =
no
nw

L

Ro
sinΩ (8.3)

sinδ =
L

Ro
sinΩ (8.4)

8.2 Angles with Horizontal Axis

With the refraction angles calculated, it is now possible to calculate the angles with the horizontal axis

as represented in figure 3.3 and described in the following equations.

θA = δ + β − γ − Ω + θo (8.5)

θB = δ − Ω + θo (8.6)

θC = π + δ − 2α+ β − γ − Ω + θo (8.7)
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9.1 Optical Distortion Code

1

2 #%% NECESSARY LIBRARIES

3

4 import sys

5 sys.path.append(’../ libraries/’)

6 #import lib_ImgProcessing as ImPro

7 #import lib_CapillaryFuncs as capillary

8 import numpy as np

9 import cv2

10 from matplotlib import pyplot as plt

11 from scipy.signal import savgol_filter

12 import os

13 import sys

14 import time

15 from scipy.optimize import minimize

16 from random import randrange

17 from scipy.signal import find_peaks

18

19 plt.close(’all’)

20 #%% CUSTOM FUNCTIONS

21

22 #function to import image

23 def import_images(image_path , image_name , image_number , image_format , rotation_angle ,

crop_coordinates):

24

25 toavg_img = np.zeros(( crop_coordinates [1]- crop_coordinates [0], crop_coordinates [3]-

crop_coordinates [2], image_number [1]- image_number [0]))

26

27 for k in range(image_number [0], image_number [1]):

28

29 file_path = image_path + os.sep + image_name + ’%02d’ %k + image_format

30

31 print(’Read image ’ + str(k))

32

33 img = cv2.imread(file_path ,0)

34

35 #image rotation (if proper cropping hasn’t been done yet , this might make the

script not work)

36 image_center = tuple(np.array(img.shape [1:: -1]) / 2)

37 rot_mat = cv2.getRotationMatrix2D(image_center , rotation_angle , 1.0)

38 img_rotated = cv2.warpAffine(img , rot_mat , img.shape [1::-1], flags=cv2.

INTER_LINEAR)

39

40 dst = cv2.fastNlMeansDenoising(img_rotated ,10,10,7,21)

41

42 crop_img =dst[crop_coordinates [0]: crop_coordinates [1], crop_coordinates [2]:

crop_coordinates [3]]

43

44 toavg_img [:,:,k] = crop_img

45

46

47 image = np.mean(toavg_img ,axis =2)

48

49 return image

50

51 #function that sorts the vectors

52 def sortingvectors(x_index , y_index):

53

54 """

55 Sorts vector x_index and matches this with y_index

56

57 ---

58 Parameters:

59 x_index: vector to be sorted
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60 y_index: vector to be matched

61 """

62 #sort points according to their position along the x axis

63

64 #creating the vectors that will be sorted

65 x_sorted = []

66 y_sorted = []

67

68

69 x_sorted , y_sorted = (list(t) for t in zip(* sorted(zip(x_index , y_index))))

70

71 x_sorted = np.array(x_sorted)

72

73 y_sorted = np.array(y_sorted)

74

75 return y_sorted , x_sorted

76

77 #function to detect horizontal lines

78 def detect_horizontal_line(image , search_interval):

79

80 #defining image area to be searched

81 image_band = image[search_interval [0]: search_interval [1], :]

82

83 #assembling kernel to find horizontal line

84 E = np.array ([[1,2,1],

85 [1,2,1],

86 [1,2,1]])

87

88 C = np.array ([[0,-1,0],

89 [0,0,0],

90 [0,1,0]])

91

92 kernel_MM = np.vstack((-E, C, E))

93

94 #high pass filtering the recontrasted image

95 filtered_image = cv2.filter2D(image_band ,-1, kernel_MM)

96

97 #define height and distance of the peaks to be considered

98 height_peaks = 250

99 distance_peaks = 25

100 peaks_positions = np.zeros(image_band.shape)

101

102 #obtain line positions

103 for column in range(filtered_image.shape [1]):

104

105 peaks , _ = find_peaks(filtered_image [:,column], height = height_peaks ,

distance= distance_peaks)

106

107 if(len(peaks) != 0):

108 peaks_positions[peaks , column] = 1

109

110 #storing line positions in two separate arrays

111 y_line , x_line = np.where(peaks_positions == 1)

112

113 #offsetting line position

114 y_line = y_line + search_interval [0]

115

116 y_line , x_line = sortingvectors(x_line , y_line)

117

118 return x_line , y_line

119

120 #get the points in extremities

121 def points_extremities(line_x , line_y):

122 x_1 = line_x [0]

123 x_2 = line_x[len(line_x) -1]

124

125 y_1 = line_y [0]
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126 y_2 = line_y[len(line_y) -1]

127

128 return np.array([x_1 , x_2]), np.array ([y_1 , y_2])

129

130 #function to obtain real position line

131 def real_positions(R_O , R_I , pix2mm):

132

133 #inner tube wall for the left side

134 x_real1= (R_O - R_I)/pix2mm

135

136 #inner tube wall for the right side

137 x_real2 = (R_O + R_I)/pix2mm

138

139 return x_real1 , x_real2

140

141 #function to correct points

142 def corrected_position(x_coordinate , pix2mm , R0, Ri , L_cm , T_degrees):

143

144 """

145 This function corrects the position of the detected points

146

147 ---

148 Parameters:

149 x_coordinate: detected x positions

150 pix2mm: pixel to mm ratio

151 R0: outer utube diameter [mm]

152 Ri: inner utube diameter [mm]

153 vertical_dividers: number of strips in the calibration grid

154 L_cm: distance between the center of the utube and camera [cm]

155 T_degrees: angle between camera and utube [degrees]

156 """

157

158 #converting inputs to correct dimensions

159 L = L_cm *10

160 T0 = np.radians(T_degrees)

161 x_raw = x_coordinate*pix2mm

162

163 # Refractive indexes

164 no = 1 # refraction index air

165 nf = 1.282 # refraction index HFE

166 nw = 1.458 # refraction index quartz

167

168 X = (x_raw -R0) # shift the coordinate sistem to go from [0:2R] to [-R:R]

169 h1p = np.sqrt(R0**2-X**2)

170 h1 = L-h1p

171 omega = np.arctan(X/h1) # angle of view of the camera

172

173 # refraction angles calculation

174 alpha = np.arcsin ((no/nf)*(L/Ri)*np.sin(omega))

175 beta = np.arcsin ((no/nw)*(L/Ri)*np.sin(omega))

176 gamma = np.arcsin ((no/nw)*(L/R0)*np.sin(omega))

177 delta = np.arcsin ((L/R0)*np.sin(omega))

178

179 TA = delta+beta -gamma -omega+T0

180 TB = delta -omega+T0

181

182 # compute correction

183 correction = R0*(np.sin(TA -TB)/np.sin(np.radians (180)-beta))*np.sin(TA-beta)

184

185 index_nan = np.argwhere(np.isnan(correction))

186

187 if len(index_nan) != 0:

188 print(’Unable to calculate the correction!’)

189

190 #this is to prevent the cases in which the algorithim is not able to calculate

alpha or beta

191 correction = np.delete(correction , index_nan)
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192 x_raw = np.delete(x_raw , index_nan)

193 X = np.delete(X, index_nan)

194

195 #compute the corrected positions

196 x_corrected = x_raw - correction

197

198 return x_corrected

199

200 #function to correct points

201 def corrected_position_uncertainty(x_coordinate , pix2mm , R0, Ri, L_cm , T_degrees):

202

203 """

204 This function calculates the uncertainty of the corrected points

205

206 ---

207 Parameters:

208 x_coordinate: detected x positions

209 pix2mm: pixel to mm ratio

210 R0: outer utube diameter [mm]

211 Ri: inner utube diameter [mm]

212 vertical_dividers: number of strips in the calibration grid

213 L_cm: distance between the center of the utube and camera [cm]

214 T_degrees: angle between camera and utube [degrees]

215 """

216

217 #converting inputs to correct dimensions

218 L = L_cm *10

219 T0 = np.radians(T_degrees)

220 x_raw = x_coordinate*pix2mm

221

222 # Refractive indexes

223 no = 1 # refraction index air

224 nf = 1.282 # refraction index HFE

225 nw = 1.458 # refraction index quartz

226

227 X = (x_raw -R0) # shift the coordinate sistem to go from [0:2R] to [-R:R]

228 h1p = np.sqrt(R0**2-X**2)

229 h1 = L-h1p

230 omega = np.arctan(X/h1) # angle of view of the camera

231

232 # refraction angles calculation

233 alpha = np.arcsin ((no/nf)*(L/Ri)*np.sin(omega))

234 beta = np.arcsin ((no/nw)*(L/Ri)*np.sin(omega))

235 gamma = np.arcsin ((no/nw)*(L/R0)*np.sin(omega))

236 delta = np.arcsin ((L/R0)*np.sin(omega))

237

238 TA = delta+beta -gamma -omega+T0

239 TB = delta -omega+T0

240

241 # compute correction

242 correction = R0*(np.sin(TA -TB)/np.sin(np.radians (180)-beta))*np.sin(TA-beta)

243

244 index_nan = np.argwhere(np.isnan(correction))

245

246 if len(index_nan) != 0:

247 print(’Unable to calculate the correction!’)

248

249 #this is to prevent the cases in which the algorithim is not able to calculate

alpha or beta

250 correction = np.delete(correction , index_nan)

251 x_raw = np.delete(x_raw , index_nan)

252 X = np.delete(X, index_nan)

253

254 #compute the corrected positions

255 x_corrected = x_raw - correction

256

257 #measured variables
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258 uR0 = 0.001 #mm

259

260 uRi = 0.001 #mm

261

262 uL = 5 #mm

263

264 uT0 = 0. #rad

265

266 ucrop_index = 1 #pix

267

268 ux_coordinate = 1 #pix

269

270 #derived variables

271

272 #pix2mm uncertainty

273

274 upix2mm = np.sqrt (((2/( crop_indx2 -crop_indx1))*uR0)**2+((2* R0/( crop_indx2 -

crop_indx1)**2)*ucrop_index)**2)

275

276 #x_raw uncertainty

277

278 ux_raw = np.sqrt(( x_coordinate*upix2mm)**2+( pix2mm*ux_coordinate)**2)

279

280 #omega uncertainty

281

282 uX = np.sqrt(( ux_raw)**2+( uR0)**2)

283

284 uh1p = np.sqrt (((R0/np.sqrt(R0**2-X**2))*uR0)**2+((X/np.sqrt(R0**2-X**2))*uX)**2)

285

286 uh1 = np.sqrt(uL**2+ uh1p **2)

287

288 uomega = np.sqrt (((1/(1+(X/h1)**2))*(1/h1)*uX)**2+((1/(1+(X/h1)**2))*(X/(h1**2))*

uh1)**2)

289

290 #beta uncertainty

291

292 w1 = no*L*np.sin(omega)/(nf*Ri)

293

294 ubeta = np.sqrt (((1/np.sqrt(1-w1**2))*(no*L*np.cos(omega)*uomega)/(nf*Ri))**2+((1/

np.sqrt(1-w1**2))*(no*np.sin(omega)*uL)/(nf*Ri))**2+((1/ np.sqrt(1-w1**2))*(no*L*np.

sin(omega)*uRi)/(nf*Ri**2))**2)

295

296 #gamma uncertainty

297

298 w2 = no*L*np.sin(omega)/(nw*R0)

299

300 ugamma = np.sqrt (((1/ np.sqrt(1-w2**2))*(no*L*np.cos(omega)*uomega)/(nw*R0))**2+((1/

np.sqrt(1-w2**2))*(no*np.sin(omega)*uL)/(nw*R0))**2+((1/ np.sqrt(1-w2**2))*(no*L*np.

sin(omega)*uR0)/(nw*R0**2))**2)

301

302 #delta uncertainty

303

304 w3 = L*np.sin(omega)/R0

305

306 udelta = np.sqrt (((1/ np.sqrt(1-w3**2))*(L*np.cos(omega)*uomega)/R0)**2+((1/ np.sqrt

(1-w3**2))*(np.sin(omega)*uL)/R0)**2+((1/ np.sqrt(1-w3**2))*(L*np.sin(omega)*uR0)/(

R0**2))**2)

307

308 #TA and TB uncertainty

309

310 uTA = np.sqrt(udelta **2+ ubeta **2+ ugamma **2+ uomega **2+ uT0 **2)

311

312 uTB = np.sqrt(udelta **2+ uomega **2+ uT0 **2)

313

314 #correction uncertainty

315

316 aux1 = (np.sin(TA-TB)*np.sin(TA-beta)/np.sin(np.pi-beta))*uR0
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317

318 aux2 = (R0*(np.cos(TA-TB)*np.sin(TA-beta)+np.sin(TA -TB)*np.cos(TA -beta))/np.sin(np.

pi-beta))*uTA

319

320 aux3 = (R0*np.cos(TA-TB)*np.sin(TA-beta)/np.sin(np.pi-beta))*uTB

321

322 aux4 = R0*((np.cos(np.pi-beta)*np.sin(TA-TB)*np.sin(TA-TB)/(np.sin(np.pi-beta)**2))

-(np.sin(TA-TB)*np.cos(TA-beta)/np.sin(np.pi-beta)))*ubeta

323

324 ucorrection = np.sqrt((aux1)**2+( aux2)**2+( aux3)**2+( aux4)**2)

325

326 #x_corr uncertainty

327

328 ux_corr = np.sqrt(ux_raw **2+ ucorrection **2)

329

330 return x_corrected/pix2mm , ux_corr/pix2mm

331

332 #cost function to be minimized

333 def cost_function(coef , x_coordinate , pix2mm , R0, Ri, L, inner_tube_walls):

334

335 #quantities to be optimized

336 T0 = coef

337

338 #obtaining the corrected position

339 x_corrected = corrected_position(x_coordinate , pix2mm , R0, Ri, L, T0)

340

341 #to prevent times where the correction is correctly calculated

342 try:

343 error = np.linalg.norm(( x_corrected [:]- inner_tube_walls [:]* pix2mm))

344 except:

345 print(’Correction disregarded!’)

346 error = 100000

347

348 return error

349

350 #%%IMAGE INPUTS AND IMPORT

351

352 #image path

353 image_path = ’trialT20_1 ’

354 image_name = ’test’

355 image_format = ’.png’

356

357 #image numbers

358 n_start = 0

359 n_finish = 1

360

361 #rotation angle (in case image is not upright)

362 rotation_angle = np.radians (0)

363

364 #crop coordinates

365 crop_indx1 = 1915

366 crop_indx2 = 2852

367

368 crop_indy1 = 1000

369 crop_indy2 = 2000

370

371 #obtaining the image

372 image = import_images(image_path , image_name , [n_start , n_finish], image_format ,

rotation_angle , [crop_indy1 , crop_indy2 , crop_indx1 , crop_indx2 ])

373

374 #%% HORIZONTAL LINE INPUTS

375

376 #LINE 1

377 #search interval for the horizontal line

378 y_upper = 640

379 y_lower = 670

380
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381 #search for line

382 line_x , line_y = detect_horizontal_line(image , [y_upper , y_lower ])

383

384 x1, y1 = points_extremities(line_x , line_y)

385

386 #LINE2

387 #search interval for the horizontal line

388 y_upper = 480

389 y_lower = 510

390

391 #search for line

392 line_x , line_y = detect_horizontal_line(image , [y_upper , y_lower ])

393

394 x2, y2 = points_extremities(line_x , line_y)

395

396 #LINE3

397 #search interval for the horizontal line

398 y_upper = 320

399 y_lower = 350

400

401 #search for line

402 line_x , line_y = detect_horizontal_line(image , [y_upper , y_lower ])

403

404 x3, y3 = points_extremities(line_x , line_y)

405

406 #%% OBTAINING REAL POSITIONS FOR THE CORRESPONDING LINE POINTS

407

408 #tube dimensions

409 R_o = 6

410 R_i = 4

411

412 #obtaining the pixel to mm ratio

413 pix2mm = 2*R_o/(crop_indx2 -crop_indx1)

414

415 #obtain positions of inner tube walls

416 x_real1 , x_real2 = real_positions(R_o , R_i , pix2mm)

417

418

419 #%%PLOT ANALYSIS AREA

420

421 plt.figure ()

422 plt.imshow(image , cmap = ’gray’)

423 plt.plot(x1 , y1 -5, color = ’red’, linestyle = ’solid’, linewidth = 5)

424 plt.plot([x_real1 , x_real1], [0, crop_indy2 -crop_indy1], color = ’blue’, linestyle = ’

solid’, linewidth = 2)

425 plt.plot([x_real2 , x_real2], [0, crop_indy2 -crop_indy1], color = ’blue’, linestyle = ’

solid’, linewidth = 2)

426 plt.ylim((y1[0]+100 , y1[0] -100))

427 plt.title(’Inner Diameter vs Distorted Inner Diameter ’)

428

429 #%% INVERSE METHOD TO OBTAIN L AND THETA_0

430

431 n_trials = 10

432

433 T = np.zeros(n_trials)

434

435 k = 0

436

437 while k < n_trials:

438

439 print(’Trial number: ’ + str(k+1))

440

441 #boundaries for L and Theta_0

442 upper_L = 41

443 lower_L = 37

444 upper_T0 = 10

445 lower_T0 = -10
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446

447 #random starting value within the range

448 L = ((upper_L -lower_L)/100)*randrange (100) + lower_L

449 T0 = ((upper_T0 -lower_T0)/100)*randrange (100) + lower_T0

450

451 x0 = (T0 ,)

452

453 #boundaries for optimization

454 bnds = ((lower_T0 , upper_T0),)

455

456 coordinates_points = np.array([x1])

457 tube_walls = np.array([x_real1 , x_real2 ])

458

459 solution = minimize(cost_function , x0, args = (coordinates_points , pix2mm , R_o , R_i

, L, tube_walls ,), method = ’Powell ’, options ={’maxiter ’ : 100000} , bounds = bnds)

460

461 T[k] = solution.x

462

463 k += 1

464

465 T_final = np.mean(T)

466 std = np.std(T)

467

468 print(’Theta will be: ’ + str(T_final) + ’ degrees with an uncertainty of ’ + str(std)

+ ’ degrees.’)

469

470 #plot camera misalignment angle

471 plt.figure ()

472 plt.hist(T, bins= ’auto’)

473 plt.title(’Histogram Camera Misalignment Angle’)

474

475 #%%APLLY CORRECTION AND CALCULATE UNCERTAINTY

476

477 x_corrected , ux_corr = corrected_position_uncertainty(x1, pix2mm , R_o , R_i , 39, T_final

)

478

479 #%% CALCULTATE ERROR IN DIAMETER

480

481 #true inner diameter

482 Di = 2*R_i

483

484 #corrected inner diameter

485 Dic = (x_corrected [1] - x_corrected [0])*pix2mm

486

487 #error for diameter

488 error_diameter = abs(((Di - Dic)/Di)*100)

489

490 print(’The error for the inner diameter is: ’ + str(error_diameter) + ’%.’)

491 #%%PLOT RESULTS

492

493 plt.figure ()

494 plt.imshow(image , cmap = ’gray’)

495 plt.scatter(x_corrected , y1 - 5, c=’orange ’,edgecolor =’orange ’,linewidth =0.5, s =30,

label = ’Corrected Points ’)

496 plt.scatter ([x_real1 , x_real2], y1 - 5, c=’red’,edgecolor =’red’,linewidth =0.5, s =30,

label = ’Inner Tube Wall’)

497 plt.scatter(x1, y1 - 5, c=’purple ’,edgecolor =’purple ’,linewidth =0.5, s =30, label = ’

Distorted Points ’)

498 plt.ylim((y1[0]+150 , y1[0] -150))

499 plt.legend ()

500

501 #plot uncertainty

502 k = 0

503

504 while k < len(ux_corr):

505

506 interval1 = (( x_corrected[k] - ux_corr[k]))
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507

508 interval2 = (( x_corrected[k] + ux_corr[k]))

509

510 plt.plot([interval1 , interval2], np.array ([y1[k],y1[k]]) - 5, color = ’orange ’,

linestyle = ’solid ’, linewidth = 1)

511

512 k += 1

9.2 Sessile Droplet Test Code

1

2 #%% NECESSARY LIBRARIES

3

4 import sys

5 sys.path.append(’../ libraries/’)

6 import numpy as np

7 import cv2

8 from matplotlib import pyplot as plt

9 from scipy.signal import savgol_filter

10 from scipy import ndimage , misc

11 import os

12 import sys

13 import time

14 from scipy.optimize import curve_fit

15 from scipy.interpolate import interp1d

16 from scipy.integrate import solve_bvp

17 from scipy.signal import find_peaks

18 from scipy.ndimage import median_filter

19

20 plt.close(’all’)

21

22 #%% STARTING RUN TIME

23 start = time.time()

24

25 #%% FIT CLASSES

26

27 class fitting_model ():

28 def __init__(self , model_name , algorithm , x, R):

29 self.x = x

30 self.opt_algorithm = algorithm

31 self.model_name = model_name

32 self.lc = 0.00095 #[m]

33 self.R = R

34 if model_name == "quasi -static -full":

35 R = self.R*0.001 #[m]

36 def func(x,yo ,xo,theta):

37 def DMS(x,h):

38 #diferential equation

39 return np.vstack ((h[1], h[0]/( self.lc**2) *(1+h[1]**2) **(3/2)+h[1]/x

))

40 def bc(ymR , ypR):

41 return np.array([ymR[1],ypR[1]-np.tan(theta)])

42 xx = np.linspace (1.e-8,R ,10000)

43 xx2 = np.linspace(-R,R ,1000000)

44 y_init = np.zeros((2,xx.size))

45 res = solve_bvp(DMS , bc, xx, y_init , max_nodes =1000000)

46 if res.success == True: self.success = res.success

47 else: print(res.message)

48 result = interp1d(xx2 *10**3+xo,yo+res.sol(abs(xx2))[0]*10**3 , kind = ’

cubic’,fill_value =’extrapolate ’)

49 return result(x)

50 self.BBm = [0, self.R - 0.01, np.radians (2)]

51 self.BBM = [0.03 , self.R + 0.01, np.radians (90)]
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52 self.func = func

53

54 def fitting_qsf(x_index , y_index , pix2mm , x, R):

55

56 """

57 This function fits the quasi -static model to the interface.

58

59 ---

60 Parameters:

61 x_index: x coordinates for the fit

62 y_index: y coordinates for the fit

63 pix2mm: pixel to mm ratio

64 x: vector spawning the full width of the image

65

66 """

67 #conversion of coordinates from pixel to mm

68 x_converted = x_index*pix2mm

69

70 y_converted = y_index*pix2mm

71

72 #fit using quasi -static curve

73 model_qsf = fitting_model(’quasi -static -full’, ’trf’, x_index , R)

74

75 coef_qsf , pcov_qsf = curve_fit(model_qsf.func , x_converted , y_converted , bounds = (

model_qsf.BBm , model_qsf.BBM))

76

77 # y_fit_qsf = model_qsf.func(x*pix2mm , coef_qsf [0], coef_qsf [1], coef_qsf [2],

coef_qsf [3])/pix2mm

78 y_fit_qsf = model_qsf.func(x*pix2mm , *coef_qsf)/pix2mm

79

80 theta = np.degrees(coef_qsf [2])

81

82 y0 = coef_qsf [0]/ pix2mm

83

84 x0 = coef_qsf [1]/ pix2mm

85

86 return y_fit_qsf , theta , y0 , x0

87

88 ######### - - - - -##########

89 def sortingvectors(x_index , y_index):

90

91 """

92 Sorts vector x_index and matches this with y_index

93

94 ---

95 Parameters:

96 x_index: vector to be sorted

97 y_index: vector to be matched

98 """

99 #sort points according to their position along the x axis

100

101 #creating the vectors that will be sorted

102 x_sorted = []

103 y_sorted = []

104

105

106 x_sorted , y_sorted = (list(t) for t in zip(* sorted(zip(x_index , y_index))))

107

108 x_sorted = np.array(x_sorted)

109

110 y_sorted = np.array(y_sorted)

111

112 return y_sorted , x_sorted

113

114 ######### - - - - -##########

115 def detect_edges_upper(image_ed , threshold):

116
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117 """

118 This function detects the edges on the image

119

120 ---

121 Parameters:

122 image_ed: matrix containing the image whose edges are to be detected

123 threshold: value for the high pass filter inferior to this are discarded

124 """

125

126 #initializing gradient matrix

127 gradient_peaks = np.zeros(image_ed.shape)

128

129 #assembling convolution kernel

130 E = np.array ([[1,2,1],

131 [1,2,1],

132 [1,2,1]])

133

134 C = np.array ([[0,-1,0],

135 [0,0,0],

136 [0,1,0]])

137

138 kernel_MM = np.vstack((-E, C, E))

139

140 #high pass filtering the recontrasted image

141 filtered_image = cv2.filter2D(image_ed ,-1, kernel_MM)

142

143 #finding the position of the edges

144 for column in range(image_ed.shape [1]):

145

146 peaks = []

147

148 peaks , _ = find_peaks (-1* filtered_image [:,column], height = threshold)

149

150 if len(peaks) > 1:

151 #so we always capture the top peaks

152 gradient_peaks[peaks[0], column] = 1

153 else:

154 gradient_peaks[peaks , column] = 1

155

156 y_peaks , x_peaks = np.where(gradient_peaks == 1)

157

158 #median filtering the points

159 y_median = median_filter(y_peaks , size = 10)

160

161 #sorting the vectors

162 y_final , x_final = sortingvectors(x_peaks , y_median)

163

164 return y_final , x_final

165

166 ######### - - - - -##########

167 def detect_edges_lower(image_ed , threshold):

168

169 """

170 This function detects the edges on the image

171

172 ---

173 Parameters:

174 image_ed: matrix containing the image whose edges are to be detected

175 threshold: value for the high pass filter inferior to this are discarded

176 """

177

178 #initializing gradient matrix

179 gradient_peaks = np.zeros(image_ed.shape)

180

181 #assembling convolution kernel

182 E = np.array ([[1,2,1],

183 [1,2,1],
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184 [1,2,1]])

185

186 C = np.array ([[0,-1,0],

187 [0,0,0],

188 [0,1,0]])

189

190 kernel_MM = np.vstack((-E, C, E))

191

192 #high pass filtering the recontrasted image

193 filtered_image = cv2.filter2D(image_ed ,-1, kernel_MM)

194

195 #finding the position of the edges

196 for column in range(image_ed.shape [1]):

197

198 peaks = []

199

200 peaks , _ = find_peaks (-1* filtered_image [:,column], height = threshold)

201

202 if len(peaks) > 1:

203 #so we always capture the top peaks

204 gradient_peaks[peaks[len(peaks) - 1], column] = 1

205 else:

206 gradient_peaks[peaks , column] = 1

207

208 y_peaks , x_peaks = np.where(gradient_peaks == 1)

209

210 #median filtering the points

211 y_median = median_filter(y_peaks , size = 10)

212

213 #sorting the vectors

214 y_final , x_final = sortingvectors(x_peaks , y_median)

215

216 return y_final , x_final

217 #%% IMAGE IMPORT

218

219 #path name

220 folder = "Trial_15"

221

222 testname = "test"

223

224 img_format = ".png"

225

226 name_path = folder + os.sep + testname

227

228 #crop coordinates (lower surface)

229 lower_indx1 = 1262

230 lower_indx2 = 2512

231 lower_indy1 = 1991

232 lower_indy2 = 2014

233

234 #crop coordinates (upper surface)

235 upper_indx1 = 1200

236 upper_indx2 = 2628

237 upper_indy1 = 1978

238 upper_indy2 = 2009

239

240 #image mask (image to be shown on plots)

241 image_cut_left = 1100

242 image_cut_right = 2700

243 image_cut_top = 1850

244 image_cut_bottom = 2050

245

246 #defining rotation angle (if necessary)

247

248 angle = 0

249

250 #number of images to be imported
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251

252 n_start = 480

253 n_finish = 490

254

255 pix2mm = 0.005

256 #check if the path to the image exists

257

258 if os.path.isfile(name_path + str(n_start) + img_format) is False: sys.exit(’The

selected experiment is not at the path indicated or either the path/name is wrong ’)

259

260 #creating 3D matrix to store the images

261

262

263 lib_selected = np.zeros(( image_cut_bottom -image_cut_top , image_cut_right -image_cut_left

, n_finish -n_start))

264 lib_lower = np.zeros(( lower_indy2 -lower_indy1 , lower_indx2 -lower_indx1 , n_finish -

n_start))

265 lib_upper = np.zeros(( upper_indy2 -upper_indy1 , upper_indx2 -upper_indx1 , n_finish -

n_start))

266

267 #importing all the images + cropping + denoising + rotation

268 i = 0

269

270 for k in range(n_start , n_finish):

271

272 image_path = name_path + str(k) #image file

273

274 image = cv2.imread(image_path + img_format ,0) # read the image

275

276 #image rotation

277 image_center = tuple(np.array(image.shape [1:: -1]) / 2)

278 rot_mat = cv2.getRotationMatrix2D(image_center , angle , 1.0)

279 img_rotated = cv2.warpAffine(image , rot_mat , image.shape [1::-1], flags=cv2.

INTER_LINEAR)

280

281 dst = cv2.medianBlur(img_rotated , 7)

282 selected_part = dst[image_cut_top:image_cut_bottom , image_cut_left:image_cut_right]

283 lower_surface = dst[lower_indy1:lower_indy2 ,lower_indx1:lower_indx2]

284 upper_surface = dst[upper_indy1:upper_indy2 ,upper_indx1:upper_indx2]

285

286 lib_selected [:, :, i] = selected_part #storing images to be displayed

287 lib_lower[:, :, i] = lower_surface

288 lib_upper[:, :, i] = upper_surface

289

290 print(str(i+1) + " image(s) processed")

291

292 i += 1

293

294

295 #averaging image to be displayed

296 display_image = np.mean(lib_selected , axis =2)

297

298 #lower surface image

299 lower_image = np.mean(lib_lower , axis =2)

300

301 #upper surface image

302 upper_image = np.mean(lib_upper , axis =2)

303 #%% DETECT EDGES LOWER SURFACE

304

305 ##defining parameters for detection

306 threshold = 50

307

308 #detecting the edges of the droplet

309 y_edge_lower , x_edge_lower = detect_edges_lower(lower_image , threshold)

310

311 #%% DETECT EDGES UPPER SURFACE

312
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313 ##defining parameters for detection

314 threshold = 80

315

316 #detecting the edges of the droplet

317 y_edge_upper , x_edge_upper = detect_edges_upper(upper_image , threshold)

318

319 #%%PLOT AREA DETECTED SURFACES

320

321 #display offset (lower edges)

322 offset_horizontal_lower = lower_indx1 - image_cut_left

323 offset_vertical_lower = lower_indy1 - image_cut_top

324

325 #display offset (upper edges)

326 offset_horizontal_upper = upper_indx1 - image_cut_left

327 offset_vertical_upper = upper_indy1 - image_cut_top

328

329 #plot

330 plt.figure ()

331 #image displayed (!= image analysed , smaller area)

332 plt.imshow(display_image , cmap = ’gray’)

333 #detected points

334 plt.scatter (( x_edge_lower + offset_horizontal_lower), (y_edge_lower +

offset_vertical_lower), c=’blue’,edgecolor = ’blue’,linewidth =0.5, s =5)

335 plt.scatter (( x_edge_upper + offset_horizontal_upper), (y_edge_upper +

offset_vertical_upper), c=’red’,edgecolor = ’red’,linewidth =0.5, s =5)

336 plt.title(’Surfaces detected for the surface of the droplet ’)

337

338 #%%FIT FOR THE LOWER SURFACE

339

340 #calculate parameters

341 R_lower = 0.5*( lower_indx2 - lower_indx1)*pix2mm #[mm]

342 x_lower = np.linspace(0, lower_image.shape [1]-1, lower_image.shape[1], dtype=int)

343

344 #Static fit

345 y_fit_qsf_lower , theta_lower , y0 , x0 = fitting_qsf(x_edge_lower , y_edge_lower , pix2mm ,

x_lower , R_lower)

346

347 print(’The static contact angle for the lower surface: ’ + str(theta_lower) + ’ degrees

.’)

348

349 #%%PLOT FIT FOR THE LOWER SURFACE

350

351 plt.figure ()

352 plt.imshow(display_image , cmap = ’gray’)

353 plt.plot(( x_lower + offset_horizontal_lower), (y_fit_qsf_lower + offset_vertical_lower)

, color = ’orange ’, linestyle = ’solid’, linewidth = 1.5)

354 plt.title(’Fit for the lower surface ’)

355

356 #%%FIT FOR UPPER SURFACE

357

358 #calculate parameters

359 R_upper = 0.5*( upper_indx2 - upper_indx1)*pix2mm #[mm]

360 x_upper = np.linspace(0, upper_image.shape [1]-1, upper_image.shape[1], dtype=int)

361

362 #Static fit

363 y_fit_qsf_upper , theta_upper , y0 , x0 = fitting_qsf(x_edge_upper , y_edge_upper , pix2mm ,

x_upper , R_upper)

364

365 print(’The static contact angle for the upper surface: ’ + str(theta_upper) + ’ degrees

.’)

366

367 #%%PLOT FIT FOR THE UPPER SURFACE

368

369 plt.figure ()

370 plt.imshow(display_image , cmap = ’gray’)

371 plt.plot(( x_upper + offset_horizontal_upper), (y_fit_qsf_upper + offset_vertical_upper)

, color = ’purple ’, linestyle = ’solid’, linewidth = 1.5)
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372 plt.title(’Fit for the upper surface ’)

9.3 Inverse Method Code

1

2 #%% IMPORTED LIBRARIES

3

4 import sys #for clearing variables

5 sys.path.append(’../ libraries/’)

6 import numpy as np

7 import cv2 #for image processing

8 from matplotlib import pyplot as plt #for ploting

9 import os #for getting data paths

10 import time #for setting run time

11 from scipy.interpolate import interp1d #for interpolating

12 from scipy import integrate #for solving ode

13 from scipy.optimize import minimize #for optimizing

14 import scipy.signal as sci #for filtering pressure

15 from collections.abc import Iterable

16 from scipy import interpolate as interp

17

18 plt.close(’all’)

19

20 #%% DEFINE FUNCTIONS

21

22 ######### - - - - -##########

23 #function that finds the closest value index

24 def find_closest_value_index(vector , value):

25

26 """

27 Finds index of the cell with the closest value to "value".

28

29 ---

30 Parameters:

31 vector: array to be searched

32 value: value to look for

33

34 """

35

36 difference = abs(np.array(vector) - value)

37

38 index = int(np.argmin(difference))

39

40 return index

41

42 ######### - - - - -##########

43 #low pass filter

44 def filter_signal(signal , cutoff_frequency):

45

46 windows = sci.firwin(numtaps = signal.shape [0]//10 , cutoff = cutoff_frequency ,\

47 window=’hamming ’, fs = 500)

48 # filter the signal

49 example_filtered = sci.filtfilt(b = windows , a = [1], x = signal ,

50 padlen = 10, padtype = ’even’)

51 # get the index at which to clip again

52 clip_index = signal.shape [0]

53 clipped_signal = example_filtered [: clip_index]

54 return clipped_signal

55

56 ######### - - - - -##########

57 def calculate_eq_height(t, pressure , theta_S , parameter_array):

58

59 delta = parameter_array [1]
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60 rho = parameter_array [2]

61 sigma = parameter_array [4]

62 g = parameter_array [5]

63 epsilon = parameter_array [6]

64

65 pressure_term = pressure(t[len(t) -1]) + rho*g*epsilon

66

67 surface_tension_term = (2/ delta)*sigma*np.cos(theta_S)

68

69 h_eq = (1/( rho*g))*( pressure_term+surface_tension_term) #[m]

70

71 return h_eq *1000 #[mm]

72

73 ######### - - - - -##########

74 #model equation with coefficients ready to be optimized

75 def model_equation(y, t, coeff_dca , pressure , parameter_array ,):

76

77 #break down parameter array

78 k = parameter_array [0]

79 delta = parameter_array [1]

80 rho = parameter_array [2]

81 mu = parameter_array [3]

82 sigma = parameter_array [4]

83 g = parameter_array [5]

84 epsilon = parameter_array [6]

85 K_h = parameter_array [7]

86 K_c = parameter_array [8]

87

88 #break down coefficients

89 alpha = coeff_dca [0]

90 a = coeff_dca [1]

91 b = coeff_dca [2]

92

93 #define a static contact angle

94 theta_s = np.radians (31.75)

95

96 #break down y vector

97 h = y[0] #interface position

98 v = y[1] #interface velocity

99 theta = y[2] #custom dynamic contact angle (theta = theta_d **3- theta_s **3)

100

101 #BREAKING DOWN THE SYSTEM OF EQUATIONS INTO TERMS

102

103 #FIRST TERM TO INTEGRATE (velocity)

104 dh_dt = v

105

106 #SECOND TERM TO INTEGRATE (acceleration)

107 inertial_term = (h + k*(delta /2))

108

109 pressure_term = (pressure(t) + rho*g*epsilon)/rho

110

111 #extracting the dynamic contact angle

112 theta_d = np.clip(theta+theta_s **3, 1e-10, (2*np.pi)**3) **(1/3)

113

114 surface_tension_term = (2* sigma*np.cos(theta_d))/(rho*delta)

115

116 weight_term = h*g

117

118 viscous_term = (12*mu*h*v)/(rho*delta **2)

119

120 dissipative_term = 0.5*( K_h*v*abs(v) + (mu*K_c*v)/( delta*rho))

121

122 dv_dt = (1/ inertial_term) * (pressure_term + surface_tension_term - weight_term -

viscous_term - dissipative_term)

123

124 #THIRD TERM TO INTEGRATE (rate of change of contact angle)

125
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126 dtheta_dt = (1/ alpha)*(-theta+a*(v*Ca_factor)+b*dv_dt/g)

127

128 return (dh_dt , dv_dt , dtheta_dt)

129

130 ######### - - - - -##########

131 #function that assembles both the model and the correlation for the dynamic contact

angle

132 def solve_model(t, pressure , parameter_array , coeff , y0):

133

134 #solving model equation

135 y_solution = integrate.odeint(model_equation , y0 , t, args=(coeff , pressure ,

parameter_array ,), mxstep =500000)

136

137 #getting h

138 h_model = y_solution [:, 0]*1000 #[mm]

139

140 #getting dynamic contact angle

141 theta = y_solution [:, 2]

142 theta_s = np.radians (31.75)

143 theta_d = np.degrees(np.clip(theta+theta_s **3, 1e-10, (2*np.pi)**3) **(1/3)) # [

degrees]

144

145 return h_model , theta_d

146

147 ######### - - - - -##########

148 #cost function for optimization of the coefficients

149 def cost_function(coeff , h_exp , t, pressure , parameter_array , y0):

150

151 #solving model

152 h_ode , theta_d = solve_model(t, pressure , parameter_array , coeff , y0)

153

154 #calculate error

155 ERROR = np.linalg.norm(( h_ode [:] - h_exp [:]))

156

157 print(’Difference between experimental and model data: ’ + str(ERROR))

158

159 return ERROR

160

161

162 #%% IMPORT DATA AND TREAT DATA

163

164 #path to files

165 path = ’data.npz’

166

167 #loading npz file

168 data = np.load(path)

169

170 #assigning variables

171 t = data[’time’]

172 h_average = data[’height ’]

173 pressure_temp = data[’pressure ’]

174

175 #making a time dependant pressure

176 time_pressure = np.linspace(0, t[len(t) -1], len(pressure_temp))

177 pressure = interp1d(time_pressure , pressure_temp , axis=0, fill_value="extrapolate")

178

179 #%% DEFINING IMPORTANT PARAMETERS

180

181 #inertia factor

182 k = 73/60

183

184 #Hagenbach coefficient

185 K_h = 7/3

186

187 #Couette coefficient

188 K_c = 4

189
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190 #channel width

191 delta = 0.005 #[m]

192

193 #HFE density

194 rho = 1431.6644463636364 #[kg/m3]

195

196 #HFE friction coefficient

197 mu = 0.0006889890816381588 #[m2/s]

198

199 #HFE surface tension

200 sigma = 0.013974441375291385 #[N/m]

201

202 #gravitational acceleration

203 g = 9.81 #[m/s2]

204

205 #hydrostatic pressure offset

206 epsilon = 0.006 #[m]

207

208 #factor to turn velocity into capillary number

209 Ca_factor = mu/sigma

210

211

212 #defining parameter array

213 parameter_array = [k, delta , rho , mu , sigma , g, epsilon , Ca_factor , K_h , K_c]

214

215 #%% CORRECTING EXPERIMENTAL HEIGHT

216

217 pix2mm = 0.007299

218

219 aux = np.linspace(0, len(h_average) - 1, len(h_average))

220 index = find_closest_value_index(aux , 0.9* len(h_average))

221

222 h_eq = calculate_eq_height(t, pressure , np.radians (31.75) , parameter_array)

223

224 h_exp = -1*( h_average - np.mean(h_average[index:len(h_average) -1]))*pix2mm + h_eq

225

226 #%% DERIVING OTHER VARIABLES

227

228 velocity_temp = np.gradient(h_exp , t)*0.001

229 acceleration_temp = np.gradient(velocity_temp , t)

230

231 #adapting making variables time dependant

232 velocity = interp.interp1d(t, velocity_temp , axis=0, fill_value="extrapolate")

233 acceleration = interp.interp1d(t, acceleration_temp , axis=0, fill_value="extrapolate")

234

235 #%%SOLVE EQUATION WITHOUT OPTIMIZING THE COEFFICIENTS

236

237 print(’Solving equation for predetermined coefficients ’)

238

239 #coefficients for the correlation

240 coeff = np.array ([0.149695 , 26.4747 , 3.92117])

241

242 #defining initial conditions

243 y0 = [h_exp [0]*0.001 , velocity(t[0]), (np.radians (52)**3-np.radians (31.75) **3)]

244

245 h_model , theta_d = solve_model(t, pressure , parameter_array , coeff , y0) #[mm] and [

degrees]

246

247 #%% DISPLAY RESULTS

248

249 plt.figure ()

250 plt.plot(t, h_exp , color = ’purple ’, linestyle = ’solid’, linewidth = 2, label = ’

Experimental Data’)

251 plt.plot(t, h_model , color = ’orange ’, linestyle = ’solid’, linewidth = 2, label = ’

Model’)

252 plt.legend ()

253 plt.title(’Experimental Data vs Model (non -optimized coefficients)’)
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254

255 plt.figure ()

256 plt.plot(t, theta_d , color = ’purple ’, linestyle = ’solid’, linewidth = 2)

257 plt.title(’Solution for theta (non -optimized coefficients)’)

258

259 print(’Finished solving equation for predetermined coefficients ’)

260

261 #%%SOLVE EQUATION WITH COEFFICIENT OPTIMIZATION

262

263 print(’Optimizing coefficients for the model’)

264

265 #boundaries for the coefficients in the optimization procedure

266 b0 = (1e-02, 1)

267 b1 = (0, 30)

268 b2 = (0, 5)

269

270 bnds = (b0, b1, b2)

271

272 #starting values for the optimization (values from theta optimization)

273 x0 = [0.149695 , 26.4747 , 3.92117]

274

275 #run the optimization

276 solution = minimize(cost_function , x0 , args = (h_exp , t, pressure , parameter_array , y0

,), method = ’Powell ’, options ={’disp’: True , ’ftol’:0.0000001 , ’maxiter ’:10},

bounds = bnds)

277

278 #storing the coefficients

279 alpha = solution.x[0]

280 a = solution.x[1]

281 b = solution.x[2]

282 optimized_coeff = [alpha , a, b]

283

284 #getting the model data

285 h_optimized , theta_d_optimized = solve_model(t, pressure , parameter_array ,

optimized_coeff , y0)

286

287 #%% DISPLAY RESULTS

288

289 plt.figure ()

290 plt.plot(t, h_exp , color = ’yellow ’, linestyle = ’solid’, linewidth = 2, label = ’

Experimental Data’)

291 plt.plot(t, h_optimized , color = ’blue’, linestyle = ’solid’, linewidth = 2, label = ’

Model’)

292 plt.legend ()

293 plt.title(’Experimental Data vs Model’)

294

295 plt.figure ()

296 plt.plot(t, theta_d_optimized , color = ’purple ’, linestyle = ’solid ’, linewidth = 2)

297 plt.title(’Solution for theta’)

298

299 print(’Finished optimizing coefficients for the model’)
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