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Abstract

This work addresses the impact of surface tension forces on the dynamics of an inertia-driven capillary
rise of a gas-liquid interface. Several experimental campaigns were conducted, cross-checking the im-
pact of surface tension forces on different geometries. The experimental campaigns used three different
facilities. The first facility carried out sessile droplet tests to obtain the angle of contact between a liquid
interface and a solid surface. In static conditions, the ”static contact angle” is a property of the fluid/solid
combination, which in this work concerned HFE7200 (hydrofluoroether) and quartz surfaces. The second
facility is a quasi-capillary U-tube set-up where tests on the interface deformation following a pressure
step were performed in a separate experimental campaign. The results from the latter were compared
with the ones obtained by the third facility studied in this work, hence requiring the characterization of
the optical distortion in cylindrical tubes and the development of a corrective routine. The third facility
concerns two parallel plates in close vicinity where a gas-liquid interface is forced to rise by means of a
pressure step. The facility allowed to test integral models developed for capillary tubes to explore the pos-
sibility of measuring the impact of surface tension and the role of the contact angle on the inertia-driven
capillary rise between the parallel plates.
Keywords: Capillary Flow, Contact Angle, Optical Distortion

1. Introduction
The contact angle is a boundary condition for the
shape of any liquid-gas interface in contact with a
solid surface. It represents an important parameter
to model the capillary pressure drop at the interface
and plays an important role in the motion of the
interface in capillary-dominated applications such
as coatings, powder processing, and fuel injector
manufacturing [2] [31] [22].

In static conditions, as is the case of a ses-
sile droplet, the equilibrium contact angle, θY oung,
is given by Young’s relation γSV − γSL =
γcos(θY oung), where γSV and γSL are the solid-
vapor and solid-liquid interface energies respec-
tively and γ is the surface tension. θY oung varies
largely depending on the characteristics of the
substrate and the atmosphere surrounding the
droplet. Consequently experiments on sessile
droplets characterize only the static contact angle
θS .

Figure 1: Visualisation of the static contact angle of a generic
droplet [14]

When the line of contact with the solid surface
moves, the angle is called dynamic (θD), and it be-
comes a function of the velocity and the accelera-
tion of the contact line. [14]

Traditional models for the surface tension forces
at the interface and the dynamic contact angle
have characterised mainly small test-case appli-
cations dominated by capillary and viscous forces
[17] [26] [25]. However, emerging technologies for
space applications require a deeper understand-
ing of free interface flows driven by the balance of
capillary and inertial forces. These types of flow
play an essential role in orbital manoeuvres where
the liquids stored within the spacecraft tanks are
not bounded by gravity. In these circumstances,
the liquid sloshing motion occurs at low Bond num-
bers, and the resulting flow is capillary dominated,
i.e. the dominant forces are surface tension mech-
anisms, which condition the interface’s response
to the accelerations imposed on the tank. For ex-
ample, [20] considered the performance of Ariane
5’s A5ME upper stage, where the controller strug-
gled to cope with the time dependant inertia ten-
sor due to the sloshing motion under a slew ma-
noeuvre, which led to a high number of thrust ac-
tivations. The authors observed that better control
and understanding of this phenomena would lead
to quicker manoeuvres, settling times and higher
fuel efficiency in these spacecraft.
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At the von Karman Institute, the impact of sur-
face tension and the response of liquid interfaces
to step acceleration impulses is currently studied in
the framework of Project Slosh II, where the main
focus is on the sloshing of cryogenic liquids and
Project Minerva where the impact of inertial forces
on the modelling of the fluid/surface interaction is
assessed for coating applications.

In this project, we studied the impact of surface
tension forces in a 2D facility where the motion of
a liquid interface is pressure driven between a nar-
row channel. The target fluid is HFE7200, a syn-
thetic fluid mimicking the properties of cryogenic
propellant (e.g. liquid oxygen). We extend the for-
mulation of capillary-driven flows for the case of
a forced pressure rise and evaluate the impact of
contact angle term on the interface rise. The dy-
namic contact angle is assessed using direct inter-
face extrapolation techniques and indirect methods
based on the model for the interface rise. This data
is compared with interface observations with ses-
sile droplets and the case of an axially-symmetric
meniscus in cylindrical channels (U-tube facility).
The dynamic contact angle experimental results
are compared both with traditional dynamic contact
angle correlations and new correlations developed
over the course of Project Slosh II and more specif-
ically, Domenico Fiorini’s Phd work conducted at
the von Karman Institute in collaboration with KU
Leuven University [10].

2. Modeling of the interface shape and
its motion

2.1. Interface shape model
2.1.1 Sessile droplet

We conducted a sessile droplet test campaign to
determine the static contact angle for HFE7200.
This technique consists in recording a video of a
drop of liquid on a quartz plate and then selecting
the contact angle by fitting the droplet surface with
a physical model of the interface that depends on
the contact angle. The physical model considered
was based on a static force balance [6]. The forces
considered are the hydro-static pressure difference
across the droplet surface and surface tension and
the balance reads:

ρgz = σ∇⃗.n⃗ (1)

In 1, ρ is the density of the fluid, g is the gravi-
tational acceleration, σ is the surface tension and
n⃗ represents a normal unitary vector to its sur-
face. Thus, considering the coordinate system for
the droplet represented in figure 2 and its axially-
symmetric properties, the curvature term in equa-
tion 1 can be obtained and that results in equation
2.

Figure 2: Coordinate system droplet [9]: h - coordinate for the
distance between the liquid/gas interface and the solid surface;
r - radial coordinate; θ - axial coordinate; R - radius of the
droplet; H - height of the droplet

hrr =
h

l2c
(1 + h2

r)
3/2 − hr

r
(2)

In equation 2, lc =
√

σ
ρg is defined as the cap-

illary length typical of the fluid and the subscripts
denote the order of the derivative of the interface
height with respect to r. This equation can be
solved by imposing Neumann type boundary con-
ditions as expressed in equation 3. Hence, we cal-
culated the static contact angle by fitting the exper-
imental points of the surface with equation 2, using
the contact angle as a free parameter of the re-
gression, which is elaborated further on in section
4. [3] {

hr = 0, r = 0
hr = −tan(θstatic), r = R

(3)

2.1.2 Symmetric meniscus

The same procedure is applied to the meniscus in
the quasi-capillary U-tube, which has the coordi-
nate system described in figure 3.

Figure 3: Coordinate system for the quasi-capillary U-tube
interface (cylindrical coordinates): h is the coordinate for the
height of a generic point with respect to the lowest point in the
meniscus; r is the radial coordinate; θ is the axial coordinate

In this case the boundary conditions are in 4,
where the hr represents the spatial derivative with
respect to r and ri represents the inner tube radius.{

hr = 0, r = 0
hr = 1/tan(θstatic), r = ri

(4)
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The quasi-capillary parallel plates use a Carte-
sian coordinate system to describe the bi-
dimensional approximation of the interface, which
results in a different equation to describe its inter-
face and boundary conditions to match it, as seen
in equations 5 and 6, where w corresponds to the
width of the channel.

hxx =
h

l2c
(1 + h2

x)
3/2 (5)

{
hx = 0, x = 0

hx = 1/tan(θstatic), x = w/2
(6)

The coordinate system used to derive this equa-
tion is described in figure 4.

Figure 4: Coordinate system for the quasi-capillary parallel
plates interface (bi-dimensional interface - fully developed flow
along the length of the length of the channel): h is the coordi-
nate for the height of a generic point with respect to the lowest
point in the meniscus; x is the distance to the centre of the
channel

2.2. Forced rise model
The dynamic contact angle characterization takes
place in a facility constituted by a narrow channel
closed at the lateral ends and inserted in a closed
bath. We induced the liquid rise in the channel
by controlling the pressure of the gas phase in the
bath via an electronic valve. The rise of the liquid
interface is modelled with an integral model based
on the force balance on the control volume limited
by the dashed lines in figure 5 and on prevailing
capillary flow models. [17]

Figure 5: Model for the quasi-capillary parallel plates: x is the
coordinate for the width of the channel; h is the coordinate that
accounts for the distance from the bottom of the channel; ϵ ac-
counts for the difference between the surface of the liquid and
the entrance to the channel

We based the integral model for the rise of the
interface on the Lucas-Rideal-Washburn equation
[7] [29] described by 7:

dl

dt
=

1

8µl
[∆P ′ − ρgl]r2o (7)

In equation 7, l refers to the length of the liquid
column within the capillary tube; µ is the fluid vis-
cosity; ∆P ′ is the capillary pressure, and ro is the
tube radius. This equation has a singularity at the
initial stage of the liquid rise in the channel, where
it results in an infinite velocity and acceleration, i.e.
for l → 0, dl

dt → ∞ . This is the effect of the quasi-
steady state approximation used to derive it.

Equation 7 has been improved by many au-
thors to include a better description of the phe-
nomena. [17] [26] The added mass term (h +
(added mass))ḧ accounts for the deviation from
the hydro-static pressure on the tube entrance with
an effective increase in the liquid column inertia
and prevents the rise of the singularity at the tube
entrance. A second important addition concerns
the pressure loss due to the sudden contraction,
which is modelled in equation 8 for the case of
capillary tubes. This equation is known as the Ha-
genbach and Couette correction. [4] As an initial
approximation, the Hagenbach and Couette coeffi-
cient values used are given in Levine’s equation,
respectively KH = 7

3 and KC = 4. These val-
ues also correspond to the correlations developed
in later works such as [8]. We discuss this assump-
tion for the case of the 2D channel in section 5.

∆pcontraction
ρv2/2

= KH +
KC

Re
(8)

The complete model for the interface motion in
the 2D paralllel plates channel reads as:

(h+
73

60

δ

2
)ḧ =

∆p+ ρgϵ

ρ
+

2σcos(θ)
ρδ

− gh− 12µ

ρδ2
hḣ

−1

2
(KH ḣ | ḣ | +µKC

δρ
ḣ)

(9)

The added mass term and the Hagenbach
and Couette correction coefficients are compared
against the experimental data in section 5.

3. Analysis of axial-symmetric menis-
cus and correction for optical distor-
tions in cylindrical tubes

One of the objectives of this experimental cam-
paign was to compare the results obtained in the
quasi-capillary parallel plates facility with the re-
sults obtained from the facility consisting of a cylin-
drical transparent tube U-shaped, referred to as
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a quasi-capillary U-tube since the tube radius is
close to the capillary length of HFE7200 ri ≈ 4lc.

During the U-tube experiments, we observed
the meniscus movement inside the quasi-capillary
U-tube by a camera perpendicular to the quasi-
capillary U-tube. The interface was illuminated
by a uniform, diffused light source on the oppo-
site side of the camera. This technique results in
the blacked-out area on the image, which corre-
sponds to the meniscus’ shadow. The shadow of
the meniscus is cast onto the tube wall and dis-
torted by its curvature and the different refractive
indexes of HFE, quartz and air.

The interface shape is reconstructed by detect-
ing the edge of the shadow. First, however, it is im-
perative to correct the optical distortion to retrieve
the actual shape of the meniscus. The optical dis-
tortion can be computed by means of ray-tracing
techniques as illustrated in [5] and in [18].

The path of a generic light ray going through a
transverse section of the quasi-capillary U-tube is
traced from the light source, represented on the left
side of figure 6, to the camera, which is on the right
side.

Figure 6: Generic light ray passing through a transversal sec-
tion of cylindrical tube, where the corresponding refraction and
camera angles are represented, figure from [5]

If we consider the camera sensor as a single
point, it is possible to associate each light ray with
its angle relative to the camera axis, Ω. Thus,
through Snell’s Law, each of these angles has a
set of accompanying refraction angles(δ, γ, α and
β), unique to each value of Ω.

The positions of points A and B are related
through the refraction angles, distance from the
camera sensor and the tube dimensions to obtain
the length of segment BM as represented in figure
7. The length of segment BM represents the dis-
tance between points A and B projected onto the
plane of the camera sensor.

Figure 7: Geometric construct relating points A and B (0 repre-
sents the center of tube) with their projection onto the camera’s
aperture plane, figure from [5]

Then, considering both triangles formed in this
geometrical construct and the sine law, one can ex-
tract the distance AB and then easily project it onto
BM , which will be the distance projected onto the
camera plane sensor, as explained in equations 10
and 11.

AB = Ro
sin(θA − θB)

sin(180− β)
(10)

BM = ABsin(θA − θB) (11)

The correction is applied to each point along the
surface of the tube. First, the distance between
points B and M must be calculated for each point
along the meniscus surface, as described in equa-
tion 11. Then, each meniscus point is shifted hori-
zontally by adding this quantity to its horizontal co-
ordinate.

For example, considering a generic point along
the meniscus of coordinates (xi, yi), where xi is
its horizontal coordinate and yi is its vertical co-
ordinate, the corrected position of this point will be
given by (xf , yf ), where xf = xi+BM and yf = yi.

This will result in a shift of all the points on the
meniscus to the centre of the tube, as seen on fig-
ure 8 and predicted by [5].

Figure 8: Effect of the correction on the meniscus, figure from
[5]
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The validation of the correction algorithm is dis-
played against the experimental data obtained in
the U-tube setup in section 5.

4. Experimental test cases
4.1. Sessile droplet
The sessile droplet setup aimed to obtain the value
of the static contact angle for the combination of
HFE7200 and quartz substrate using the method
described in references [31], [12] and [14]. The
facility has four main components.

• A spark series SP-1200M-CXP4 high-speed
industrial camera coupled to a Nikon-Mirror
105 mm 1:2.8 objective. The images captured
by the camera were fed into the GenICam soft-
ware, where the video file was assembled.

• A support for the quartz substrate where we
deposited the droplet. This support was
height adjustable and allowed better position-
ing within the picture frame.

• A diffused light source.

• A sterilized mono-use graduated syringe con-
taining the liquid and mounted on optical sup-
port to ensure that the liquid droplets were
placed in the imaging plane of the camera
and were consistent with the calibration for the
scaling of the images.

We analysed the pictures using image process-
ing techniques implemented in a Python environ-
ment. The images were imported using OpenCV
library and de-noised using a non-local mean filter.
Then, the edges of the interface are detected us-
ing the approach described in [1], which consists
in computing the image gradient through a convo-
lution with Sobel-like kernel shown in 12 and iden-
tifying the peak gradient value using the find peaks
function from the Scipy library.

Kernel =

−E
C
E

 (12a)

E =

1 2 1
1 2 1
1 2 1

 (12b)

C =

0 −1 0
0 0 0
0 1 0

 (12c)

Once the edges are detected, a fit is performed
to the detected points of the droplet surface, with
the surface’s contact angle being the free param-
eter of the regression, as described in the previ-
ous section. We use the curve fit function from

the Scipy library to minimise the non-linear least
squares difference between the detected points
and the solution of equation 2 to obtain the best
contact angle for the experimental points.

4.2. 2D parallel plates
For the bi-dimensional quasi-capillary parallel
plates, the set-up consisted of a channel section
through which the liquid rises and a liquid reser-
voir. The channel section consists of two parallel
quartz plates with a distance of 5mm and closed
at both ends. The liquid rises into the channel
from a reservoir where the plates were submerged
by about 6mm. Then, we pressurised this reser-
voir to propel the fluid through the channel. The
pressure was released to the reservoir via an elec-
tronically operated pressure valve. The pressure
release time is recorded in a Labview routine, as
well as the pressure values from pressure sensors
located within the reservoir. The algorithm also
records the camera start time, allowing to synchro-
nise the images with the sensor data. The images
are acquired with the same high-resolution camera
described in the section 4.1 coupled with a Nikon-
Mirror 105 mm 1:2.8 objective augmented with one
magnification ring Nikon PK-13 27.5.

We observed the meniscus using the ”Level De-
tection and Recording” technique [27]. This tech-
nique consisted in seeding HFE7200 with fluores-
cent particles of Pyrromethene 75820-500MG with
a concentration of 6mg/L. When hit by the green
laser light, the particles emit fluorescent light to-
ward the camera and show the shape of the menis-
cus in the plane of the laser. The laser sheet is pro-
duced by coupling a continuous green laser source
with a concave and cylindrical lens. The concave
lens was responsible for focusing the laser beam,
and the cylindrical lens turned it into a laser sheet.
The laser sheet impacts the liquid interface from a
plane perpendicular to the 2D channel plates and
the plane of the camera, as illustrated by figure 9.

Figure 9: Laser sheet exciting Pyrromethene particles near the
meniscus

These images were processed using the algo-
rithm described in the previous section. This al-
gorithm involves de-noising the images; applying a
directional recontrasting filter which enhances the
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intensity of the meniscus interface; detecting the
edges using the gradient generated by the Sobel-
like kernel [19] described in equation 12 and, fi-
nally, fitting equation 5 to the experimental points
using the method described in sub-section 4.1.

We synchronised the interface shape and posi-
tion data with the sensor data collected through the
Labview routine, allowing us to label each image
with the corresponding time stamp based on the
starting time of the experiment, which corresponds
to the pressure release.

For these experiments, four pressure points
with reservoir over-pressures of 1510Pa, 1650Pa,
1850Pa and 1900Pa with three test runs each to
ensure repeatability are considered.

4.3. U-tube setup
The U-tube is held vertically by a specially de-
signed support. We uncovered the tube entrance
to allow us to access the interior of the tube to
place a grid with predetermined dimensions. The
grid pattern enabled us to test the effects of optical
distortion. A Python algorithm detected the verti-
cal grid lines, and their position was corrected us-
ing the formulas for the optical correction shown in
section 3.

The images are processed similarly to the previ-
ous two sections. However, the vertical lines were
detected by searching for the local minima in the
intensity of the image. The grid lines match the lo-
cal minima for each horizontal line.

5. Results
5.1. Experiments with sessile droplets
The objective of the sessile droplet campaign was
to obtain the static contact angle for HFE7200 over
a quartz surface. These experiments are quite
challenging due to the high volatility of HFE7200
and the extremely small contact angle to be ob-
served. A droplet of HFE7200 quickly forms a thin
film over the quartz plate and the droplet spreads
unevenly over the surface. Figure 10 shows com-
paratively the large difference between a droplet
of HFE7200 (on the right) and a droplet of water
(on the left) on the same quartz surface. The latter
forms a perfectly circular drop and shows a well de-
fined point of contact with the solid surface. This is
supported by the fact that sessile droplet technique
are rarely used to observe contact angles below
15◦ [31] [12].

Figure 10: Captured image of a droplet of water and a droplet
of HFE7200, where it is possible to see that the higher contact
angle of water allows makes for a more clearly defined droplet

To capture images of a droplet of HFE7200 such

as that seen in figure 10, the acquisition of the im-
ages needs to be fast, since the droplet evaporates
very quickly, and requires to place the droplet con-
sistently in the same place to avoid time lost focus-
ing on the image and re-calibrating as described in
sub-section 4.1.

The sessile droplet test yields a static contact an-
gle of 6.23◦ for HFE7200 with a standard deviation
of 3.53◦ over 20 different images. This uncertainty
is higher than the generally accepted 2◦ encoun-
tered in sessile droplet tests.[31]

5.2. Static contact angle comparison with axial-
symmetric meniscus

5.2.1 Characterization of optical distortion in cylin-
drical tube

To compare the results of the sessile droplet test
campaign with contact angle measurements made
in the quasi-capillary U-tube, it is necessary to cor-
rect the images of the latter for the optical distor-
tion. To characterize the optical distortion, we con-
sidered equation 11 and measured the parameters
L and Θ0, the distance from the camera to the cen-
tre of the tube and the camera misalignment angle
respectively. Both parameters are intrinsically diffi-
cult to measure by traditional means given the high
uncertainty on the position of the center of the shut-
ter. This process was improved by the introduction
of an inverse method to estimate the above men-
tioned parameters.

The values of L and Θ0 were obtained by com-
paring the corrected points to the positions of the
grid lines printed in a transparent plastic film, which
is inserted in the cylindrical tube in such a way that
it adheres to the inner tube surface. Thus, the grid
lines’ positions are known and the values of L and
Θ0 optimized to retrieve the physical positions of
the lines printed on the plastic film.

Figure 11: Distortion Results for Optimization of the L and Θ0,
where a section of the U-tube is displayed

Figure 11 represents a section of the U-Tube fa-
cility, where the algorithm has been applied. The
white dots correspond to the algorithms’ detection
of the vertical grid lines which are distorted by cur-
vature of the tube walls. The dashed yellow line
marks the centre of the U-Tube and the two blue
lines represent the inner tube walls. The green
vertical lines correspond to the position of the ver-
tical grid lines, if no distortion took place. The red
dots represent the corrected position of each of the
white dots. The arrows connecting each white dot
with a red one help visualise the correction applied.
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The points where the optical correction has been
applied (in red) do not coincide with the green verti-
cal lines, that represent the positions of the vertical
grid lines if no optical distortion took place. This
is due to the improper calculation of the position of
the green lines. To generate them, the centre of the
tube is considered to be unaffected by optical dis-
tortion and as a first approximation the camera mis-
alignment is assumed to be null. In this case, the
position of the true grid lines is obtained by consid-
ering the inner radius of the tube and the arc length
between each of the vertical lines, which was im-
posed by the grid’s design to be 0.2mm long. Fig-
ure 12 shows the plot of the magnitude of the cor-
rection for several different camera misalignment
angles and allows us to see the impact of this ap-
proximation.

Figure 12: Influence of Θ0 on the magnitude correction dis-
played for three different values of this variable

Figure 12 shows that for Θ0 ̸= 0, the correction is
not zero at the centre of the image. In this case the
method becomes inaccurate and a new approach
must be implemented in the inverse method. In this
case the horizontal lines on the grid were consid-
ered. Since the grid wraps around the inner diam-
eter, the length of each horizontal line corresponds
to the inner diameter. Thus, by applying the cor-
rection to the outer points of the horizontal grid line
(red), the corrected position coincide with the in-
ner tube walls (vertical blue lines in figure 13). The
true position of the inner walls is obtained using the
calibration for the image scaling (see equation 13).

To perform this optimization only two points are
available and given that the main difficulty in the
experimental campaign was the measurement of
the camera misalignment angle, only this parame-
ter was optimised, keeping L = 39cm as distance
between the centre of the tube and the camera as
measured during the experimental campaign. The
optimization led to a Θ0 = 0.77◦.

Figure 13: Figure with the detected horizontal line and the inner
tube walls

{
xfirstWall = (Router −Rinner) ∗ pix2mm
xsecondWall = (Router +Rinner) ∗ pix2mm

(13)

Figure 13 shows a new approach to evaluate
the error associated with this method by compar-
ing the length of the red line after the correction
with the inner tube diameter given by the image
calibration (distance between the blue lines). For
the method applied here, this difference amounted
to 4.64%. This error is slightly higher 3% which was
the uncertainty obtained in [5]. This difference is
attributed to lack of adherence of the grid to the
tube walls and to the uncertainty on the distance
to the tube, for future works the latter could be im-
proved by using a laser distance measure.

5.2.2 Axial symmetric meniscus analysis

The optical correction of the previous section is ap-
plied to a set of quasi-capillary U-tube images as
shown in figure 14.

Figure 14: Figure with the detected meniscus interface in blue
and the correction for the optical distortion of these points in
orange

Figure 14 shows in blue the detected interface
points and in orange the points corrected for the
optical distortion. As expected, the interface points
are shifted towards the center of the channel, in
line with the predictions displayed in figure 13. The
magnitude of the correction increases towards the
edges of channel and it is very small at its center.
As for the sessile droplet campaign, the contact an-
gle is obtained through an optimisation procedure
to match the experimental points with the solution
to equation 2. The contact angles obtained went
from 34.05◦ for the raw interface points to 8.55◦ for
the case of the interface corrected for the optical
distortion, emphasising the importance of correct-
ing the data from this experimental set-up.
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5.2.3 Static contact angle comparison across the
three test-cases

The static contact angle in the 2D parallel plates
setup is computed using the same approach de-
scribed in the previous section, without the need to
apply an optical correction due to the flat quartz
walls in the front of the facility. We can now
compare the static contact angle of both the ses-
sile droplet and axial-symmetric meniscus config-
urations with the results obtained from the quasi-
capillary parallel plates. In the latter, the con-
tact angle measurement for images in static con-
ditions led to an average static contact angle of
26.75 ◦ ±4.67◦. This is far different from the val-
ues obtained for the sessile droplet test and the
quasi-capillary U-tube.

The contact angle should be independent of ge-
ometry, according to [15]. However, this is ap-
parently not verified in the case of the 2D paral-
lel plate facility. The difference between the axial-
symmetric interfaces and the quasi-capillary paral-
lel plates might be due to the detection of the in-
terface. The resolution in the interface detection is
very relevant for the measurement, given the de-
gree of uncertainty associated with the wall posi-
tioning and the meniscus illumination near it which
is also hard to account for. That might be responsi-
ble for this difference, since most likely the steepest
part of the meniscus curvature is not visible in the
images collected by means of ”Level Detection and
Recording” technique as can be seen in figure 15.

Figure 15: Figure collected using the ”Level Detection and
Recording” technique

5.3. Inertia-driven interface motion
In this section, the dynamic contribution to the con-
tact angle is analysed by studying the motion of
a 2D gas-liquid interface in a rectangular channel
with width close to the capillary length of the test-
fluid. The dynamic contact angle is measured with
the technique described in sub-section 4.1 and
compared with classic dynamic contact angle cor-
relations.

The Hoffman-Tanner correlation [13] is the sim-
plest correlation, which has also theoretical valida-
tion for the case of a steadily moving advancing

contact line [28] and has been used as a basis to
develop several other correlations [16]. The corre-
lation establishes a linear relation between θ3D and
the capillary number, Ca.

θ3d − θ3s = aCa (14)

The capillary number corresponds to the non-
dimensional contact line velocity and is defined as
Ca = µ

σV . It relates the effect of the viscous forces
with the effect of the surface tension forces. Con-
stant a in 14 is within the interval [10-100] and
needs to be found for the specific system under
analysis. For this experimental campaign, this con-
stant is calculated by minimising the difference be-
tween the experimental data and the proposed cor-
relations. We achieved this by minimising a cost
function that outputs the minimum square differ-
ence between the experimental data and the model
solution.

Figure 16 plots the experimental dynamic con-
tact angle (dots) and the prediction based on Hoff-
man’s correlation (solid line) against the capillary
number.

Figure 16: Experimental data for the contact angle plotted
against time and the prediction by Hoffman-Tanner’s correlation

In figure 16, the Hoffman-Tanner correlation pre-
dicts well the initial stages of the contact angle mo-
tion. After the initial descent, the experimental con-
tact angle oscillates around the equilibrium posi-
tion and shows multiple values for a given capil-
lary number. Correlation 14 depends only on the
capillary number and cannot account for these os-
cillations either over-estimating the dynamic con-
tact angle in a receding contact line case or under-
predicting the contact angle in the case of an ad-
vancing contact line.

Compared to the case considered in [13], the
test-case analyzed here has several additional fea-
tures. Two characteristics of the flow are consid-
ered as the reason for the mismatch: the cyclic be-
haviour of the history of the contact line and its ac-
celeration. Reference [10] suggests the introduc-
tion of an unsteady term accounting for the rate of
change of the dynamic contact angle and an addi-
tional term accounting for the dependency on the
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acceleration of the contact line. This results in the
following ordinary differential equation.

αΘ̇′ +Θ′ = aCa + bA (15)

In equation 15, A is the normalized contact line
acceleration (i.e. it is divided by the gravitational
acceeration) and Θ′ = θ3D − θ3S . Equation 15 has
also an analytical solution that is displayed in equa-
tion 16.

Θ′(t) =
1

α
e−

t
α (a

∫ t

0

Ca(t′)e
t′
α dt′ + b

∫ t

0

A(t′)e
t′
α dt′)

(16)
Equation 16 shows that the full history of the

capillary number and acceleration play a role in the
determination of the dynamic contact angle. In ad-
dition to this, the solution also has a decay factor
which would be responsible for an exponential de-
cay of any disturbance in the meniscus shape, in
agreement with the results of reference [23]. Fig-
ure 17 shows the comparison of the experimen-
tal contact angle with the prediction of equation 16
with the parameters optimized with the same pro-
cedure indicated above. The results of the opti-
mization are indicated in table 1.

Figure 17: Figure displaying the results for the correlation pro-
posed by Domenico Fiorini. On the left side the correlation pre-
dictions and experimental data for the contact angle are plotter
against time and on the right side they are plotted against the
capillary number

α a b

0.15 26.42 3.92

Table 1: Table with the optimised coefficients of equation 15

Figure 17 shows that the correlation is able to
follow the orbits of the (unsteady) dynamic contact
angle, with most oscillations falling within the un-
certainty in the contact angle measurement.

The same coefficients of table 1 were tested
against the data of the remaining pressure points
with the same results.

Thus, equation 16 is considered an effective rep-
resentation of the dynamic contact angle for this
system. Now, the impact of the dynamic contact

angle on the motion of the interface is evaluated as
well as the possibility of obtaining the coefficients
of the dynamic contact angle correlation not by fit-
ting equation 16 to the experimental contact angle
data but instead by solving equation 9, equipped
with 15. The philosophy of this procedure falls aims
to measure the dynamic contact angle without re-
quiring the accurate visualization of the interface
shape near to the contact line, which easily leads
to possible high errors in the contact angle quantifi-
cation as hypothesized in the static contact angle
quantification.

To implement this method both equations 9 and
15 were coupled into a system of ordinary differ-
ential equations described in 17 and the contact
angle correlation’s coefficients are optimised using
the experimental height data. ḣ = v

v̇ = f(h, v, θ′)

θ̇′ = f(θ′, v, v̇)

(17)

To achieve this, the model must predict accu-
rately the motion. The system in equation 17 is
solved using the initial conditions corresponding to
the initial experimental point recorded, i.e. the first
appearance of the meniscus within the field of view
of the camera. The initial height is obtained from
the experimental data and the interface velocity is
considered as the average velocity given by ratio
between the initial height and the corresponding
time stamp. Figure 18 shows the comparison of the
experimental interface height with the solution of
equation 9. The model equation has both a higher
frequency and a lower damping ratio than the ex-
perimental data.

Figure 18: Plot of the model equation using the coefficients
from the literature against the experimental data

Equation 9 has similarities to well-known sec-
ond order systems such as the spring mass model
where the natural frequency of the motion is given
by equation 18. [11] [30]

ωn =

√
k

m
(18)

Thus, through the ratio of the frequencies of the
experimental data and the model, a new added
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mass term of 27.7 × δ
2 [mm] is obtained, with the

final value that resulted from the optimisation pro-
cedure being 50× δ

2 [mm]. Both terms represent a
large increase in the coefficient that multiplies the
characteristic width of the set-up, i.e. half the width
of the channel. In reference [17], the characteristic
width considered for the capillary tube is its radius
and it is multiplied by 73

60 . However, in this reference
creeping flow is considered and, thus, the range
of Reynolds number considered is much smaller
than the one obtained for the experimental data of
Re ≃ 200, which would imply a significant differ-
ence in the phenomena description. Furthermore,
the geometry described in [17] is a axial-symmetric
which is not the case for the experimental set-up
used. All in all, this results in the increase of the
influence of the flow within the channel on the sur-
rounding reservoir which leads to a higher added
mass coefficient to make up for that difference.

Figure 18 also shows that the model predicts
a lower damping ratio than the experiment data.
Hence, the dissipative term is compiled in equa-
tion 19 and the impact of each of the three terms is
evaluated.

Dissipative Terms =

[
12µ

ρδ2
h+

KH ḣ

2
+

µKC

2δρ

]
ḣ

(19)
The average height is h̄ = 50mm, the chan-

nel thickness is δ = 5mm and an average verti-
cal velocity of ḣ = 2mm/s. For the present fluid
properties and coefficients given in the literature,
KH = 7/3 and KC = 4, the Hagenbach-Couette
correction represents about 20% of the total mag-
nitude of the dissipative terms. However, if we con-
sider the first oscillation of the liquid column where
the vertical velocities are on average ḣ = 200mm/s,
the Hagenbach-Couette correction assumes 95%
of the total magnitude of the dissipative terms.
So, we conducted an optimisation procedure for
the Hagenbach-Couette coefficients based on the
varying impact this correction has throughout the
motion. This led us to KH = 1000 and KC = 17.6
which were used to generate the plot in figure 19.

Figure 19: Plot of the optimised model equation predictions and
the experimental data against time

Figure 19 shows the comparison of the experi-
mental results with the model equation 9 including
the optimised Hagenbach and Couette correction
as well as the optimised added mass term. The co-
efficients obtained for the Hagenbach and Couette
correction were quite different from the ones given
in the literature for liquid rise in capillary tubes.
In these experiments, the rise of the liquid is uni-
directional, meaning that the height of the liquid
column continually increases within the tube and
no oscillations or downwards flow are observed.
This presents a challenge for the prevailing mod-
els for capillary flow since the pressure loss term
will have to be different for the times when liquid is
going upward and downwards, since the flow char-
acteristics at the entrance of the tube changes be-
tween those instances.

Moreover, in equation 19 the velocity profile has
been simplified using the assumption of a steady
Couette flow profile [24] . To better model this ve-
locity profile and obtain a more representative vis-
cous term, the model necessitates the inclusion of
unsteady terms for the velocity profile. This is cor-
roborated by the velocity profiles shown by PIV ex-
periments done at the von Karman Institute for the
same test-case [21].

Finally, the model’s sensitivity to the surface ten-
sion term and the dynamic contact angle is anal-
ysed. Figure 20 shows the magnitude of the differ-
ent forces of the model in equation 9, where each
term has been computed using the experimental
data.

Figure 20: Plot of the forces produced by each term in the
model equation as the height change they would produce in the
liquid column

Each term in figure 20 is divided by ρ × g × δ,
making each term a geodetic pressure term. The
main forces at play here are pressure and grav-
ity, which both have identical modulus but differ-
ent behaviours and would produce the same height
change.

It is also interesting to note the role pressure
plays on the dissipative term used in the model
equation as can be observed in figure 21.
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Figure 21: Plot of the pressure evolution in the reservoir against
and dissipative term against time

The pressure term is also closely related with
the dissipative term, with the velocity of the menis-
cus being mostly proportional to the pressure in the
reservoir.

Figure 20 shows that the magnitude of the sur-
face tension term is small compared to the other
forces and the variation in contact angle would ap-
parently produce a variation in the column height
of only about 0.01mm. To reinforce the idea that
the contact angle plays very little role in this motion
the model was solved for both the coefficients ob-
tained by the previous optimization of the correla-
tion for the dynamic contact angle and coefficients
that were an order of magnitude higher. These re-
sults were plotted against the experimental data in
figure 22.

Figure 22: Plot of the experimental data against model predic-
tions using the dynamic contact angle correlation coefficients
obtained in the optimisation process and a random set of coef-
ficients for this correlation

In figure 22 is possible to see that both solutions
overlap almost perfectly, meaning that the model is
not yet sensitive to major changes in the contact
angle. It is also worth noting that the model is still
not able to capture some of the frequencies in the
later stages of the motion where three dimensional
effects such as vibration modes in the longitudinal
direction of the channel might be considerable.

6. Conclusion
In this experimental work, a detailed analysis of
the contact angle formed by a gas-liquid interface
with a solid surface was conducted. The con-

tact angle in static conditions is a property of the
fluid/substrate and should be independent of the
specific geometry in use [15], while the dynamic
contact angle depends on the kinematics of the
flow.

For the static characterization three different
test-case were compared: sessile droplet, circu-
lar tube, 2D parallel plates channel. The second
geometry required correction for the optical distor-
tions. The optical distortions were corrected us-
ing the algorithm proposed by [5], which involves
measuring accurately the angle of misalignment
of the camera Θ0. An inverse method was em-
ployed to obtain the value for the parameter and im-
prove accuracy. Using this method, the images of
a meniscus were corrected in a cylindrical channel
and compared against the sessile droplet test cam-
paign and quasi-capillary 2D parallel plates. The
static contact angle obtained from the latter facil-
ity was largely different from the two other cases,
this is attributed to the poor meniscus illumination
near the wall obtained by the ”Level Detection and
Recording” technique.

The tests were extended to the 2D parallel plate
setup to for dynamic conditions, characterizing the
dynamic contact angle of a moving interface using
a physical quasi-static model to fit of the interface
shape. The results were compared with empirical
contact angle correlations accounting for the accel-
eration of the contact line and its history and their
impact on a integral model for the rise of the inter-
face in the 2D channel was tested. This aimed to
replace the need for an accurate observation of the
interface to measure the contact angle.

The empirical correlations accounted for the ac-
celeration of the contact line and in doing so it de-
scribed well the dynamic contact angle, while this is
not the case for traditional correlations accounting
only for the contact line velocity. On the other hand,
the integral model for the interface rise based on
the prevailing models for capillary flow within the
quasi-capillary parallel plates struggled to describe
the phenomena accurately. This implied the model
not being sensitive enough to the surface tension
term to allow the implementation of a method that
optimises the coefficients for the dynamic contact
angle correlation using only the history of the inter-
face motion.

Thus, future work should focus on improving the
model to make this possible. This could possibly
be done by including terms, which account for the
unsteady behaviour of the motion of the interface
and a model that accounts for the varying condi-
tions in the tube entrance. In addition to this, better
detection near the walls using the LEDar method
is required to verify the dependence of the static
contact angle on the solid/fluid combination alone.
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[14] K. J. Huhtamäki T., Tian X. Surface-wetting
characterization using contact-angle mea-
surements. Nature Protocols, 13:17, 2018.

[15] T.-S. Jiang, O. Soo-Gun, and J. C. Slattery.
Correlation for dynamic contact angle. Jour-
nal of Colloid and Interface Science, 69(1):4,
1979.

[16] S. F. Kistler. The hydrodynamics of wetting.
Wettability, 1993.

[17] S. Levine, J. Lowndes, E. J. Watson, and
G. Neale. A theory of capillary rise of a liquid
in a vertical cylindrical tube and in a parallel-
plate channel: Washburn equation modified to
account for the meniscus with slippage at the
contact line. Journal of Colloid and Interface
Science, 73(1):15, 1980.

[18] M. Lowe and P. Kutt. Refraction through
cylindrical tubes. Experiments in Fluids,
13(5):315–320, 1992.

[19] M. A. Mendez, L. Németh, and J. M. Buch-
lin. Measurement of Liquid Film Thickness
via Light Absorption and Laser Tomography.
In European Physical Journal Web of Con-
ferences, volume 114 of European Physical
Journal Web of Conferences, 2016.

[20] F. D. R. Philipp Behruzi and F. Cirillo. Coupling
sloshing, GNC and rigid body motions during
ballistic flight phases.

[21] M. Ratz. Experimental analysis of contact
line dynamics using optical techniques and in-
verse methods. Master’s thesis, Technische
Fakultät Praktikumsarbeit Universität, 2021.

[22] A. Rudawska and E. Jacniacka. Analysis for
determining surface free energy uncertainty
by the owen–wendt method. International
Journal of Adhesion Adhesives, (29):6, 2009.

[23] J. Snoeijer, B. Andreotti, G. Delon, and
M. Fermigier. Relaxation of a dewetting con-
tact line part 1: A full-scale hydrodynamic cal-
culation. Journal of Fluid Mechanics, 579, 06
2007.

[24] E. M. Sparrow, S. H. Lin, and T. S. Lundgren.
Flow development in the hydrodynamic en-
trance region of tubes and ducts. The Physics
of Fluids, 7(3):338–347, 1964.

[25] M. Stange, M. Dreyer, and H. Rath. Capil-
lary driven flow in circular cylindrical tubes.
Physics of Fluids, 15, 08 2003.

12



[26] J. Szekely, A. Neumann, and Y. Chuang. The
rate of capillary penetration and the applicabil-
ity of the washburn equation. Journal of Col-
loid and Interface Science, 35(2):5, 1971.

[27] B. Toth, J. Anthoine, and J. Steelant. Cryo-
genic sloshing investigation by means of non-
intrusive measurement techniques. page 14,
2016.

[28] O. V. Voinov. Hydrodynamics of wetting. Fluid
Dynamics, (11):7, 1976.

[29] E. W. Washburn. The dynamics of capillary
flow. Phys. Rev., 17:10, Mar 1921.

[30] B. Yang. Theory of vibration — fundamentals.
In S. Braun, editor, Encyclopedia of Vibration,
pages 1290–1299. Elsevier, Oxford, 2001.

[31] Y. Yuan and T. R. Lee. Contact angle and
wetting properties. In Surface Science Tech-
niques, Springer Series in Surface Sciences.
Springer Berlin, Heidelberg, 2013.

13


