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Abstract

One of the most appealing renewable energy power sources is the wind. The greatest challenge of this
growing sector is monitoring the condition of the wind turbine structures. They are vulnerable to damage and
deterioration, because they operate under large mechanical and aerodynamic loads and extreme environmental
conditions. Developing Structural Health Monitoring (SHM) strategies is crucial to ensure that damages are
detected effectively. In this thesis, three Machine Learning (ML) damage detection methodologies are tested:
Multivariate Gaussian Anomaly Detection (MGAD), Principal Component Analysis (PCA) and Anomaly De-
tection Autoencoder (ADAE). These techniques were implemented to recognize deviating patterns from the
healthy state to the damaged state of a structure. The data was acquired experimentally from a Glass-Fiber
Reinforced Polymer (GFRP) scaled blade and features were extracted, such as modal parameters, Frequency
Response Functions (FRFs) and acceleration time signals. In response to the data scarcity barrier imposed
by the experimental data on the potential of ML algorithms, the second part of this thesis turns to the Finite
Element Method (FEM). For the use of simulation data to be successfully applied to real situations, it needs
to be a reliable representation of reality. One way of accomplishing this is by developing model updating
strategies. Making use of a Finite Element (FE) model of the blade studied before, its parameters are tuned

in order to reduce the differences in the experimental response data and the predicted by the FE model
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1. Introduction

Wind is one of the most appealing renewable energy
power sources, and it is becoming a more and more
relevant source of energy production [1]. It happens
often that the best locations for generating wind power
are remote, where Wind Turbine (WT) structures are
exposed to extreme settings. Therefore it is common
that they sustain operational damage, thus the main-
tenance of these is crucial [2]. In order to optimize
these procedures, the development of Structural Health
Monitoring strategies help detect damage effectively.

Machine Learning (ML) algorithms are a good way
to automate damage detection procedures while also
improving accuracy [3]. In this thesis, using dynamic
analysis concepts certain data (modal parameters, Fre-
quency Response Functions, acceleration time signals)
were extracted from experimental vibration measure-
ments. Which served as features when testing different
ML methodologies for damage detection.

A common issue in most Artificial Intelligence ap-
proaches is the need for significant amounts of varied
training data. Experimental data from physical struc-
tures is not only impractical to collect it is also limited
in scenarios. This is where FEM comes in with the
possibility of generating a limitless number of training
examples, with any type of configuration and proper-
ties, capturing a wide range of operating conditions.
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In order to obtain a high-fidelity finite element model
its parameters can be tuned through model updating
strategies, with the objective of generating simulation
vibration response data as similar as possible to the
measured data [4]. A model updating strategy is pro-
posed in this study, correlating the simulation model
responses with the experimentally measured ones. In
search for making them as similar as possible, some
parameters of the finite element model are tuned.

2. Theoretical Background
2.1. Numerical Dynamic Analysis

In dynamic analysis, opposed to static analysis, dy-
namic loads are applied as a function of time, caus-
ing a time-varying response (displacements, velocities,
accelerations, forces and stresses). In this study, dy-
namic analysis was performed on the data gathered
from dynamic and structural simulations using the
Siemens Simcenter ™ 3D software, complemented with
the Simcenter™ NASTRAN®) as FEM solver [5].

2.1.1 Normal Modes Analysis

Generally, the first stage in dynamic analysis is the
normal modes analysis (SOL 103), which is a process
of studying a structure and estimating its modal pa-
rameters such as natural frequencies, damping ratios
and mode shapes. The equation of motion of a Multi-



ple Degree-of-Freedom (MDOF) system is given by the
following equilibrium equation:

[M]{i} + [CHa} + [K]z] = {F} (1)

Where [M] is the matrix of the total mass, [C] the
matrix of the total damping and [K] the matrix of the
total stiffness. Each displacement is represented by the
response vector z(t) and the excitation given to the sys-
tem is described by the forcing vector F(¢). One can
determine the natural frequencies and the mode shapes
of a structure, by analysing the oscillatory system’s
behavior when no external forces are applied. Analyti-
cally, this translates to solving the reduced form of the
equation of motion where the force vector is null, turn-
ing this into an eigenvalue problem. To solve Equation
1, a harmonic solution of the following form is assumed:

{z(t)} = {u} cos(wt — ¢) (2)

Where u is the modal vector, which describes the
spatial configuration of the system’s DOF at a partic-
ular circular natural frequency w and with a particular
phase shift ¢. When the assumed harmonic solution
is differentiated and substituted into the motion equa-
tion, for cos(wt — ¢) # 0, the following is obtained:

[1K] — w’[M]] {u} = 0

This equation is called the eigenproblem, which has
the eigenvalues (frequencies) and eigenvectors (vibra-
tion modes) as solutions. The non-trivial solution of
this equation, det [[K] —w?[M]] = 0, has a discrete
set of n solutions corresponding to the n normal vi-
bration modes. Each mode has its particular natural
frequency w; and mode shape u;.

2.1.2 Modal Frequency Response Analysis

Frequency response analysis is used to compute the
structural response to steady-state oscillatory stim-
ulation, where the excitation is explicitly defined in
the frequency domain. The modal frequency response
analysis (SOL 111), resorting to the aforementioned
eigenvalue analysis, utilizes the mode shapes of the
structure. The solution at a specific frequency is the
result of the summation of the individual modal re-
sponses.

In a modal solver the equation of motion (Equation
1) is solved with the same harmonic solution as be-
fore (Equation 2), but first the response is transformed
from physical coordinates, {u(w)}, to modal coordi-
nates, {n(w)} making use of mode shapes, [®D]:

{z(t)} = [@[{n(w)}e’*"
The i*" equation of motion can be written as a set
of single DOF systems in the uncoupled form:
—wPmini(w) + kini(w) = fi(w)

Where m; is the modal mass, k; the modal stiffness
and f; the modal force of the i*" mode.

2.1.3 Modal Transient Response Analysis

Transient response analysis is the most common ap-
proach when calculating forced dynamic response. The
goal is computing the behavior of a structure that has
been exposed to time-varying excitation. The transient
excitation is explicitly defined in the time domain, be-
ing that at each point in time, the structure’s total ap-
plied loads are known. The modal transient response
method solves the equation of motion in the modal
domain, therefore reducing largely the number of un-
knowns and computational effort, since the modal do-
main is then used to compute the solution for the time
domain. Rewriting the equations of motion (Equation
1) in the modal basis, so that they represent a collec-
tion of systems with a single DOF, in the time domain:

miji(t) + kini(t) = fi(t)

2.2. Experimental Modal Analysis

In order to use Experimental Modal Analysis (EMA),
it is required that both the input and the output forces
be known. With this data it is possible to calculate the
frequency domain ratio between the output and the
input, resulting in the FRFs. In Equation 3, [H(jw)]
is a matrix containing all the FRF's. So these functions
describe how the structure moves at each measurement
location per unit force at the input location [6]. The
basis of EMA is that FRFs can be written in terms of
modal parameters, therefore they can be extracted [7].

X(jw) = [H(jw)]F(jw) 3)

A modal parameter estimator computes the so called
stabilization diagram, which is a combined representa-
tion of the measurement data and the system poles
containing the modal parameter information [8]. In
the framework of this thesis, the acquired FRFs were
processed using Siemens Simcenter™ Testlab™ soft-
ware. The analysis of a stabilization diagram involves
the interactive selection of poles, these are calculated
by modal parameter estimation methods. The one used
for this study was the Polymax algorithm, also known
as the polyreference least squares complex frequency
domain method (p-LSCFD) [9]. After the pole selec-
tion, the algorithm estimates the modal parameters
[10].

2.3. Machine Learning

The ML algorithms used in this work were the Multi-
variate Gaussian Anomaly Detection (MGAD), Princi-
pal Component Analysis (PCA) and Anomaly Detec-
tion Autoencoder (ADAE).

2.3.1 Multivariate Gaussian Anomaly Detec-
tion

This algorithm fits a Multivariate Gaussian distribu-
tion to a healthy subset of features (Equation 4).

p(x, 1, X) = W exp (—5(z = p) Sz — ) (4)



Where 1 € RM is the mean vector of the feature’s
distribution and is defined as:

1 N
_1lv0
a2

And the covariance matrix (E € RMxM ) as:
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Then, an optimal threshold is calculated by a thresh-
old selection process to differentiate examples corre-
sponding to anomalies from ones expressing acceptable
values. The premise is that data from the damaged
structure will be outliers.

()

(6)

2.3.2 Principal Component Analysis

Principal Components (PCs) are a set of orthogonal
variables that are computed via PCA from the input
data and are able to statistically describe this data.
PCs may project the original data into a lower dimen-
sions orthogonal subspace, reducing highly dimensional
data to its essential components.

The PCA computation is based on Singular Value
Decomposition (SVD). The SVD of a data matrix
X € RVM | with N data examples and M normalized
features, is denoted as follows:

[U,S,VT] = svd(X)

Where U represents the left singular vectors, with
each row-vector representing a particular data example
and the newly calculated features, which are still not
scaled by the singular values; S contains the singular
values organized by importance; and V7 represents the
right singular vectors where each row-vector represents
the PCs or directions to project the data. By lowering
VT, as defined in Equation 7, it is possible to choose a
smaller set of k& PCs from the data.

vT

reduced —

VT :k,:) (7)

In this work, a subspace representation of the PCs
from a healthy structure is stored in a V7 € R*M,
which is later used to create a damage detection tool.
A new data matrix Y € R¥2>M containing N2 new
measurements and M features can be projected into
the previous PCs as follows:

}/reduced =Y x Vreduced

In Equation 8, Y is transformed through the sub-
space of the healthy structure’s PCs, using the same
matrix V7T to transform the data back to its original
dimension.

Yiransformed = Y reduced X vt (8)

reduced

However, if the structure has been altered as a re-
sult of damage, this transformation will not effectively
reconstruct the data. The Root Mean Square Error

(RMSE) is used to measure the discrepancy between
the original data matrix and the transformed data.
This reconstruction error (damage index) will be high,
if the structure has been altered as a result of damage.
If the error for a certain measurement is higher than
the selected threshold, it is classified as damaged.

2.3.3 Anomaly Detection Autoencoder

An Autoencoder (AE) is used to learn effective codings
from unlabeled data, making use of a smaller dimen-
sionality representation of the input. In the encoding
phase, the input vector y € RM is given to the al-
gorithm to map it into the code h. In the simplified
scenario, where there is one single hidden layer, this
process can be written as:

h=z2'(Why +b')

Where W' and b' are the weights and biases of the
encoding layer, respectively, and z' denotes the acti-
vation function, generally a nonlinearity. Through the
decoding stage, the output of the hidden layer h is re-
built to the original dimensions 3’, using the weights
and biases of the decoding layer, W?2 and b2, as well as

the activation function z2:

yl — Zl(WQh + b2)

This algorithm optimizes all weights and biases using
the backpropagation process, which aims to minimize
the following cost function E (Equation 9).

1 N M
E= N Z Z (Yrn — y;c,n)2

n=1m=1

9)

During training, the AEs learn how to recover a sub-
set of healthy input data from the encoding. When the
AE reconstructs data measured from a damaged blade
it is not effective, since the data can not be represented
from the same encoding learned. Similarly to the PCA
method, a damage index is defined by calculating the
RMSE difference between the reconstruction and the
input to determine whether the structure is damaged
or healthy.

3. Experimental Campaign

The measurements for this study were conducted in
two rounds of the experimental campaign. For each
round, vibration-based data, including acceleration
time-series and FRFs, were collected. On the first
stage, data of a blade in its healthy state was collected,
for the purpose of model updating. On the following
phase, the response of the blade in healthy and dam-
aged states was gathered, to be used at a later stage
to develop damage detection algorithms.

In spite of having different purposes, both experi-
mental campaigns were conducted very similarly, so
both setups are the same.

The experiments on the scaled Glass-Fiber Rein-
forced Polymer (GFRP) blade were carried out in
clamped-free boundary conditions, the blade was fixed
to an aluminium plate. The response of the system was



measured in terms of acceleration making use of of ten
accelerometers placed along the back of the blade. Six
uniaxial and four triaxial, therefore a total of eighteen
measured degrees-of-freedom (DOFs). All the data ac-
quisition was made using the Simcenter Testlab soft-

ware with the parameters found in Table 1 through a
Simcenter SCADAS.

Table 1: Testlab acquisition parameters

Bandwidth [Hz| 800
Spectral lines 2048
Acquisition time [s] 2.56
Estimator H1

Over the course of this thesis, for both the damage
detection techniques and the numerical simulation ap-
proach, the accelerometers are named according to the
number given to the position where they are placed
(Figure 1).

Figure 1: Ten locations of the accelerometers.

3.1. Measurements for Model Updating

The Simcenter 3D finite element model of the blade in
question is updated using response data collected from
experimentally testing the scaled blade. The data used
in this procedure must be very reliable, so an investi-
gation was performed to asses what excitation force
better excites this system. The two options in consid-
eration were modal hammer testing and modal shaker
testing. In order to choose between the two, first the
best material for the tip of the hammer was deter-
mined, followed by the appropriate signal for the shaker
to send to the blade. After reaching these conclusions,
a comparison between the best results from each of
the testing options was made, and the method which
produced the best results was selected. The quality in-
dicator functions used to compare the results were the
coherence, the Power Spectrum Deunsity (PSD) and the
Frequency Response Function (FRF).

For the modal hammer the choice was between rub-
ber, metal or plastic tip. After comparing the functions
it was concluded that the rubber tip is not able to ex-
cite the entire range of interest (800Hz) and that the
metal tip does not behave well for lower frequencies.
The material selected was the plastic.

When performing modal shaker testing, the choice
was between three types of excitation signals: periodic
chirp, continuous random and pseudo random. After
analysing the indicator functions of each signal, it was
visible that the periodic chirp signal provides more en-
ergy to the structure and the continuous random signal
is noisier. It was concluded that the periodic chirp sig-
nal was the strongest choice.

Ultimately, the only decision left was between modal
hammer testing with a plastic tip or modal shaker test-
ing with the periodic chirp signal. Looking at the qual-

ity indicator functions it was clear that the impact test-
ing does not excite the structure as accurately as the
modal shaker. Furthermore the modal shaker testing is
far more practical than the modal hammer testing from
an experimental standpoint. So, the best experimen-
tal data for model updating resulted from conducting
modal shaker tests employing a periodic chirp signal.
From this point forward, these are the measurements
being analysed.

The vibration data collected by the accelerometers
was processed in the Simcenter Testlab software and
the model parameters were estimated internally using
the Polymax algorithm as explained in Section 2.2.
The stabilization diagram obtained from this data is
in Figure 2, where the stable poles for the frequency
range 8-650Hz are already selected. Subsequently to
the stable pole selection, the algorithm’s estimated pa-
rameters are as indicated in Table 2

E65LA58CR0LREIBEEIRER P

Figure 2: Polymax stabilization diagram.

3.2. Measurements for Damage Detection

Within the scope of damage detection through Machine
Learning algorithms, there is a need for vibration re-
sponse data of the structure in its healthy and damaged
state. In order to obtain this experimental data, tests
were carried out with the scaled blade. The source of
the excitation force was the same modal shaker, how-
ever, two different signals were used: continuous ran-
dom signal and sine excitation signal. With intent to
simulate operational conditions of a wind turbine and
in the framework of fatigue testing, respectively.

Figure 3: Seven locations of the masses.

The damaged states were simulated by placing seven
nuts of different masses, one at a time, in seven differ-
ent locations of the front of the blade (Figure 3). As
shown in Table 3, the smallest damage used represents
0.063% of this mass and the largest one is 1.233%. By
varying these masses, the intent is to simulate various
damage scenarios and conclude on the sensitivity of the
algorithms tested in Section 4.



Table 2: Estimated modal parameters.

Natural 14.80 30.39 44.30 91.72 212.97 251.05 262.35 353.54 393.34 55272 611.04 640.76
Frequency (Hz)
Damping B
Ratio (%) 1.80 1.58 251 379 153 159  1.89 239 227 215 256

Table 3: Masses of the nuts used.

Relative

Mass [¢g] mass [%]
0.5 0.063%
0.7 0.088%
1 0.126%
2.1 0.264%
2.8 0.352%
4.7 0.591%
9.8 1.233%

4. Damage Detection

The purpose of this section is to assess damage detec-
tion methodologies, so, with the experimentally mea-
sured data, a variety of algorithms was tested: Multi-
variate Gaussian Anomaly Detection (MGAD), Princi-
pal Compenent Analysis (PCA) and Anomaly Detec-
tion Autoencoders (ADAE). In agreement to what was
explained in Section 3.2, these algorithms make use of
data generated from using continuous random and sine
signals. In the diagram of Figure 4, the methodologies
are summarized.

4.1. Multivariate Gaussian Anomaly Detection
4.1.1 Implementation

The MGAD makes use of the natural frequencies esti-
mated from each measurement to verify the structure’s
health. These features are estimated from the FRF
data collected during the experimental campaigns. The
FRFs are first put through the Polymax algorithm,
then an automated modal parameter selection algo-
rithm is used to select the stable poles and estimate
the modal parameters (natural frequencies, damping
ratios and mode shapes). Finally, using a reference
modeset, the estimated modal parameters undergo a
modal tracking process, pairing the reference and au-
tomatically selected modes.

Therefore, from the automated modal analysis tech-
nique the machine learning algorithm receives a dataset
containing the vectors of natural frequencies for each
experimental run described in Section 3.2. The full
dataset described is then divided into three different
data subsets. The training stage only makes use of the
healthy data, therefore, 70% of the undamaged runs
went into the training subset, the remaining were split
equally between the validation and the test subsets.
The damaged runs were divided evenly between the
validation and test subsets.

After the healthy natural frequencies are fitted into
a multivariate Gaussian distribution and the probabil-
ity density function defined, the optimal threshold is
selected. Lastly, the test subset is put through the al-
gorithm and the examples are classified as damaged or
undamaged.

Since the experimental testing was performed under
different circumstances, the complexity of the dataset
increases. Because the method used for the feature esti-
mation is automated and not manual, there is difficulty
in identifying a few natural frequencies. Consequently,
the damage detection algorithm receives a matrix with
missing features for some examples. A function was
developed that runs through the dataset and identi-
fies the possible combinations of missing features. The
algorithm then proceeds to operate normally, but ob-
taining results separately for each of those instances,
overcoming this problem.

4.1.2 Results

On the one hand, the experimental runs of the blade in
its healthy state present considerable frequency inter-
vals for some natural frequencies. On the other hand,
for lower magnitude damages, specially if placed closer
to the root, the results present negligible changes. Both
these factors contribute for the difficulty of the natu-
ral frequencies representing accurately the state of the
structure, which jeopardises the performance of the al-
gorithm.

The issues identified before are reflected on the ac-
curacy of the algorithm, which has a value of 77.9%.

The Receiver Operating Characteristic (ROC) curve
illustrates the search for the optimal threshold as a
function of the false positive rate (x axis) and the true
positive rate (y axis). When looking at the MGAD
ROC curve, in Figure 5, there is a rather high false
positive rate for the optimal threshold found, which
indicates that this algorithm is wrongly classifying a
large number of healthy examples as damaged.

ROC for Classification by MGAD

True positive rate
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Figure 5: MGAD ROC curve

4.2. Implementation of PCA and ADAE

The PCA and ADAE algorithms use FRFs and time-
series generated from using continuous random and
sine signals as input. On one hand, PCA was utilized
due to its ability to apply linear algebra operations
to find a reduced subspace capable of representing the
structural health of the blade. While the use of ADAE
tests the ability of a nonlinear algorithm with the same
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Figure 4: Methodologies developed for damage detection.

objective. The testing dataset is classified based on its
reconstruction error (damage index), if the error of a
certain point exceeds the established threshold, it is
classified as an anomaly. The underlying assumption
is that it will be difficult to successfully recover data
measured for the blade that contains structural changes
like damage.

Analogously to what was described for the imple-
mentation of MGAD in Section 4.1, training, valida-
tion, and test subsets were extracted from the complete
dataset using the same percentages.

4.2.1 Results PCA

When using data measured using the continuous ran-
dom excitation, the FRFs achieved an accuracy of
93.2% and the time-series an accuracy of 81.4%. Only
few FRF measurements were misclassified, mostly
damaged runs with the smaller magnitudes of damage
and placed closest to the root, which are the hardest
damages to detect. The performance of the algorithm
on the time signals was considerably lower, having mis-
classified all healthy measurements as damaged. The
PCA algorithm doesn’t work as well for the time-series
as it does for the FRFs. This makes sense from the
standpoint that the FRF vectors are representative of
the system, whereas the time-series, each feature is a
point in time of response to a random excitation, so
these values might have no connection between mea-
surements. Therefore, the reconstruction of the time
data is not that effective even from one healthy dataset
to another.

The results from the time-series response dataset to
a sine excitation reached an accuracy of 70.3%. Once
again, all healthy runs were classified as damaged. Sim-
ilarly to the continuous random time-series dataset, the
algorithm can’t learn how to represent the structure
from the data resulting from a sine excitation. Since
this is a signal which only excites one frequency, there
is not enough information in the response of the struc-
ture that could describe its state.

The Area Under Curve (AUC) is the area under a
ROC curve. The AUC is an overall summary of diag-
nostic accuracy. AUC equals 0.5 when the ROC curve
corresponds to random chance and 1.0 for perfect ac-

curacy. As seen in Figure 6 the value obtained from
implementing FRF data is very high, approximately
0.99, indicating the usefulness of this method for dam-
age detection. On the other hand, in Figure 7, the
AUC of the damage detection technique using time-
series data is low, around 0.58, not far from a random
chance classifier. The ROC curve from implementing
sine excitation data also takes an unfavorable shape
(Figure 8). Once again, the time data obtained an
AUC result similar to a random classifier, 0.54.

) 02 04 3
False Positive Rate

Figure 6: PCA continuous random FRFs ROC curve
Figure 7: PCA continuous random time-series ROC
curve
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Figure 8: PCA sine time-series ROC curve

4.2.2 Results ADAE

Regarding the responses from a continuous random
excitation, the FRF results obtained 93.2% accuracy



and the time-series 83.1% was recorded. The results
were extremely similar to the ones observed with the
PCA, only a few FRF measurements with less signifi-
cant damage were overlooked and all time signal data
was classified as damaged. An accuracy of 70.3% was
reached by the results from the time-series response
dataset to a sine excitation, being that all healthy mea-
surements were classified as damaged. The ROC curves
for each methodology was identical to the results of the
PCA.

Since the outcome was the same as using the PCA
algorithm, the ADAE corroborates the fact that this
time-series response data is not enough to represent
the structure’s state. Therefore, it is proven that using
this input data is not a good methodology.

5. Computational Simulations

To apply and develop more accurate and complex ma-
chine learning approaches for structural health moni-
toring, simulation data could be used. If the goal is
to use these damage detection techniques in real life
structures, the simulated data should be as accurate
as possible. For this, high fidelity models need to be
developed, here is where the search for model updat-
ing strategies comes in. There is a need to develop
these strategies to validate and update the models in
accordance with real data.

In this work, a model updating process was de-
veloped, where experimental data measured from the
physical GFRP scaled blade is compared to the data
generated from simulations with the FE model of the
blade. The finite element model of the blade undergoes
an updating process. First, introducing the appropri-
ate clamped boundary conditions, with the FE model
of the blade the vibration response was generated in
the time (SOL 112) and frequency (SOL 111) domain
modal response solvers from Simcenter 3D. These re-
sults were compared with the experimental measure-
ment results (Section 3.1) and the simulation model
was updated accordingly.

5.1. Simulation Baseline Model

The finite element model of the GFRP wind turbine
blade was produced by DTU, using their in-house
Blade Modelling Tool [11].

5.1.1 Modal Frequency Response Analysis

The modal frequency response analysis (SOL 111) com-
putes the structural response to an oscillatory excita-
tion explicitly defined in the frequency domain. An
excitation force applied on the node corresponding to
coordinates of the shaker cell, was added to the un-
damped structure by importing a .csv file of the force
magnitude in the frequency domain. This file results
from applying the Fourier transform function to the
signal used experimentally, measured with the sensors
in the cell of the shaker. The response of the blade was
requested to the SOL 111 in the form of acceleration
per forcing frequency, in the range 8 to 700Hz. The
output result’s format was a PUNCH file, containing
the requested acceleration information, for each node

with corresponding coordinates with an accelerometer
position. In postprocessing, a MATLAB®) script was
developed that read this file and saved the acceleration
information for each of the 18 DOFs.

After reading the predicted acceleration data, the
Frequency Response Functions were computed. Fig-
ure 9, shows the plot of the simulation FRF, for ac-
celerometer 3 measuring in the out-of-plane direction,
juxtaposed with the same FRF obtained experimen-
tally. The red curve has a very different shape from
the reference FRF, the experimental peaks are lower
and get wider throughout the range, while the simula-
tion resonances are higher in amplitude and narrower.
This is clearly characteristic of the contrast between a
damped and an undamped system. Therefore, to gen-
erate reliable simulation data, the damping effect needs
to be taken into account. The process of introducing
this information and the resulting FRFs are presented
in the upcoming Section 5.2.

c ison of FRFs for the DOF: Blade:3:-Y
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Figure 9: Baseline simulation FRF (in red) vs. exper-
imental FRF (in blue).

5.1.2 Modal Transient Response Analysis

Conducting a similar procedure for the time domain
simulations, the modal transient response analysis
(SOL 112) was performed. The excitation force was
applied in the same node, still to the undamped struc-
ture. However, the excitation force was defined in the
time domain, for each time-step instead of forcing fre-
quency.

The acceleration was plotted as a function of time.
In Figure 10, a comparison is made between the re-
sponse in the time domain of the reference structure
(in blue) and the finite element simulation (in red).
The two signals are strikingly different. While the res-
onance effects are clear in the experimental curve, the
simulation response is less transparent. This might re-
sult from the fact that the simulation model does not
account for damping, once again, the damping effects
are proven to be needed for an accurate representation
of this composite structure’s response. The technique
used for the addition of this information to the FE
model is explained in the following section 5.2.
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Figure 10: Baseline simulation acceleration time signal
(in red) vs. experimental time signal (in blue).

5.2. Introducing Damping

The modal response solvers have a unique function-
ality, where modal damping values can be introduced
and applied to each mode independently. In this study,
this tool was taken advantage of, by making use of the
modal damping ratios estimated from the experimental
data measured. The values in Table 2 are introduced
in the model.

5.2.1 Modal Frequency Response Analysis

The excitation force, in the frequency domain, was ap-
plied to the damped model of the blade and its accel-
eration response was saved for each DOF. Then, each
FRF was computed. Figure 11, shows the new simu-
lation FRF plot for the DOF being analyzed and its
experimental reference curve. The improvement of the
correlation between the two, when compared with the
undamped results in Figure 9, is evident.

Comparison of FRFs for the DOF: Blade:3:-Y

Reference FRF
Simulation FRF

0 100 200 300 400 500 600 700

Figure 11: Damped model simulation FRF (in red) vs.
experimental FRF (in blue).

5.2.2 Modal Transient Response Analysis

In the time domain analysis, the damped system re-
sponse was calculated for the same input force sce-
nario described previously. The response as acceler-
ation time signals for each DOF was compared with
the one obtained experimentally and showed a much
more similar curve, as seen in Figure 12. The reso-
nance peaks are now visible, happening approximately
on the same points in time and with similar amplitudes
at first.

- Comparison of Time signals for the DOF: Blade:2:-X

Reference FRF
——— Simulation FRF

0 0.5 1 15 2 25

Figure 12: Damped model simulation acceleration time
signal (in red) vs. experimental time signal (in blue).

5.3. Model Optimization
For the model updating process the software used
was Simcenter HEEDS. Considering that two different
types of data are being used to compare the measured
and the FE model’s predicted responses - the FRFs and
the time-series -, two independent studies were imple-
mented. One with the goal of minimizing the difference
between the FRFs and another that attempted to min-
imize the difference between the time domain accelera-
tion response data. For both these studies, 18 variables
were defined, these were each of the materials Young’s
modulus and mass density. The shell of the blade being
studied is made of fiberglass epoxy composite materials
(UD, BIAX, UNIAX), closer to the root, aluminium is
used for the clamping to the rotor and the shear web
of balsa wood is bonded to the shell with glue.

The responses to the optimization process were met-
rics defined to evaluate the correlation between the
experimental and simulation datasets. The similar-
ity metric used for the FRF data was the Frequency
Response Assurance Criterion (FRAC), which assesses
the correlation between the pairs of FRF vectors
(Equation 10).
it

91 lly®

When comparing the simulation acceleration time
signals with the ones obtained experimentally an error
metric was used (Equation 11), the Root Mean Square
Error (RMSE). For either study, the objective defined
was to minimize the corresponding difference between
responses.

(10)

S, Jut) — o]

RMSE = ~ (11)

To process the data and calculate these metrics two
MATLAB scripts were developed. To each HEEDS
project, the Simcenter 3D blade model was added as
the input file along with the MATLAB script as the
output file. Making use of a tool called ’Analysis Por-
tals’, HEEDS is able to access the values of the defined
variables in the model as well as the responses com-
puted in the scripts. Since these files are connected
within HEEDS, the search for the optimal design be-
gins. An iterative process is conducted, where, as the



values of the material properties are changing, the re-
sulting correlation metrics are extracted. The study
is complete when the number of designs tested corre-
sponds to defined number of evaluations desired. This
iteration process is schematized in the diagram of Fig-

ure 13.
Simulation Experimental
Optimization \_ /
Damping - Simcenter 3D " ’ ‘
Testlab

Updating

Figure 13: Model updating workflow between the three
software.

5.3.1 Modal Frequency Response Analysis

For the optimization study in the frequency domain,
using SOL 111, after searching for the best design, the
material properties that minimized the FRAC differ-
ence were returned by HEEDS. With the new set of
material properties applied on the model, SOL 111 sim-
ulation was ran and new set of FRFs was numerically
generated. An optimized FRF can be seen in Figure
14 as the red curve.

Comparison of FRFs for the DOF: Blade:3:-Y
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Figure 14: Updated model simulation FRF (in red) vs.
experimental FRF (in blue).

A more detailed assessment can be made of the FRF
data using the FRAC matrix. This metric correlates
the FRF vectors measured for each DOF, so the ma-
trix can illustrate the improvements. Figure 15 shows
the initial FRAC matrix correlating the reference FRFs
with the vectors generated with the initial undamped
baseline model (a) and with the FRFs predicted by the
updated model (b).

The optimized FRAC matrix shows significant im-
provement from the baseline. The initial matrix shows
no correlation between the FRF's, while, the optimized
has a few diagonal entries that appear to have found
correlation. Quantifying these changes resorting to the
RMSE, there was an overall improvement of 70.51% in
correlation.

© N o w =

HE 2

Rofornco FRF St

]
7 9 11 13 15 17
imuiaton FRF Set Simulation FRF Set

3 5 7 9 1 13 15 17 1.3 5
Simulation FRF Set

(a) Baseline. (b) Optimized.

Figure 15: FRAC matrix.

5.3.2 Modal Transient Response Analysis

After conducting the optimization in the time domain
(SOL 112), HEEDS returned the design which mini-
mized the RMSE between the time signals.

- Comparison of Time signals for the DOF: Blade:2:-X
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Figure 16: Updated model simulation acceleration time
signal (in red) vs. experimental acceleration time sig-
nal (in blue).

The evolution of the RMSE between the time-series
measured experimentally and generated by the FE
model is quantified as a 31.00% improvement, from
the baseline to the optimized model. This is notice-
able when Figures 10, 12 and 16 are compared.

6. Conclusions

In this thesis, through experimental procedures on a
scaled GFRP wind turbine blade, a data base was de-
veloped using three different excitation signals (contin-
uous random, sine and periodic chirp). These robust
response data enabled the implementation of different
methodologies for both damage detection and model
updating.

Three different anomaly detection algorithms were
tested, each with a distinct approach. The MGAD,
centred on the premise that a shift in natural fre-
quencies is indicative of damage. This premise was
confirmed, for multiple damage scenarios, although it
failed for some of the analyzed small scale damage sce-
narios. The natural frequencies proved not to be sen-
sible enough for the detection of these minor damages,
while also being subject to other parameters which
influenced these features and were not accounted for
(i.e. boundary conditions, temperature). The PCA
and ADAE algorithms are based on the abnormal re-
construction error of damaged data (damage index).
For this, a subspace of representation of healthy data
was learned and then used to reconstruct data back to



its original dimension. This methodology was imple-
mented using a linear algebra formulation by PCA and
using non-linear neural network encodings by ADAE.
The features used by both techniques were the vibra-
tion responses on two domains: time and frequency.
The FRF vectors were proven to be representative fea-
tures, showing clear variation for most damaged struc-
tures. The response time signals, from continuous ran-
dom and sine excitation, however, were not representa-
tive features of the structure’s state. The use of time-
series proved not to be a good methodology, so other
features might need to be extracted from this data, in
order for the algorithms to achieve success.

The FE model and simulation methodologies were
guided towards a reliable representation of the dynamic
behaviour of the real blade, using the physical struc-
ture’s response to a periodic chirp excitation signal.
The simulation vibration results were obtained for the
time (SOL 112) and frequency (SOL 111) domains,
considering the response of the FE model of the blade
with respect to an experimental excitation. The ini-
tial simulated results had a big discrepancy when com-
pared to the measured experimental data, mainly from
the FE model disregarding damping behavior by de-
fault. So modal damping estimated by Polymax from
the experimental data was input into the model. This
step turned out to be crucial for obtaining meaningful
simulation data. These results were further improved
by optimizing FRFs and time-series data using the op-
timization software HEEDS. The material properties
of the FE model were updated, so that the simulation
matched the experimental data, with correlation im-
provements up to 70% from the baseline.

6.1. Future Work

The methodologies developed in this thesis have a long
way to go before they can be implemented reliably. A
few steps can be taken to advance the applicability of
the suggested methods to operational conditions.

In damage detection, new features can be explored,
testing the same or new algorithms. Tackling the op-
erational context, instead of using FRFs, the Cross
Power Spectral Densities could be calculated. Further-
more, other data sources may be relevant for analysis
including surface velocity from a laser Doppler vibrom-
eter and displacements from digital image correlation.
More complex algorithms could be tested, in order to
explore and analyze data not only from an anomaly
detection point of view, but also for assessing and lo-
calizing damage.

In respect to model updating, different model vari-
ables could be tuned, for example the boundary condi-
tions. This could be done by performing the optimiza-
tion, while defining the stiffness of the boundary con-
dition as a variable. Different metrics can be defined
for the correlation of the data (Modal FRF Assurance
Criterion, Time Response Assurance Criterion). The
response of the FE model could also be generated while
simulating damage.

Ultimately, the future goal would be to combine the
two fields studied in this thesis. After gathering reliable
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simulation data from an updated FE model, apply it to
the damage detection algorithms as training examples.
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