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Abstract

This work presents the development of a model to analyse the dynamic instability of composite plates,
including sandwich plates. Two models to analyse isotropic, orthotropic and laminated composite plates were
developed in Matlab. These models are based on the first-order shear deformation theory (FSDT) and the
higher-order shear deformation theory (HSDT). These formulations are then used to model a sandwich plate.
Using a mixed layer-wise approach, the core is modelled with the HSDT and the face sheets use the FSDT.
The finite element model applies an eight-node serendipity quadratic element. A free vibration analysis was
performed in order to validate the formulation of the mass and stiffness matrices. Later on, the dynamic
instability regions for isotropic, orthotropic, laminated composite and sandwich plates is studied. A special
case of sandwich plates, when its core is made of viscoelastic materials, is, also, study.
Keywords: Sandwich Plates, Laminated Composite Plates, Dynamic Instability, FSDT, HSDT

1. Introduction

Composite materials are obtained by combining two or
more materials that together provide properties that
are normally not achieved individually, at a reasonable
cost [1]. A sandwich panel is a composite material con-
sisting of two thin laminate skins and a lightweight,
thick core structure. Despite the thickness of the core,
sandwich composites are lightweight and have rela-
tively high flexural strength [2]. Then sandwich plates
are increasingly utilised in the construction of different
structures in multiple engineering applications, due to
their high strength and stiffness, low weight, high dura-
bility and ease of manufacturing [3].

It is possible to improve even more the properties
of sandwich plates making the core with a viscoelastic
material. Usually this material is a damping mate-
rial that presents great stress recovery, relaxation and
creep. That means that when the applied stress is re-
moved, some of the stresses created in the material
during the recovery period are eliminated immediately
and the residual stress slowly tends to zero. This tech-
nique is interesting for different aspects, such as, vibra-
tion and noise control, due to their ability to dissipate
energy [4].

Structural members of any engineering application
are subjected to different kinds of loads and excita-
tions, sometimes those loads can be dynamic, periodic
or not, and is essentially to study their effects on the
structural behaviour. Some combination of loads can
lead to dynamic instability. So it is fundamental to
study the static and dynamic stability behaviour of the
structural members in the design of their components

[5].

The finite element models to be used and developed
in this work are based on the models developed by
Araújo et al. [6] for dynamic analysis and extended to
buckling analysis by Tomé [7].

2. Development of Plates Elements

A laminate is an assembly of more than one lamina
stacked in order to obtain a structure with the desired
thickness and stiffness. While, a lamina or ply is a
sheet of composite material. Each lamina can be made
of an isotropic or orthotropic material.

An orthotropic material has three mutually orthog-
onal planes of material symmetry.

If the coordinate planes are chosen parallel to the
three orthogonal planes of symmetry, that is, the prin-
cipal material directions (x1, x2), the stress-strain re-
lations can be given by:
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An isotropic material presents an infinite number of
planes of material symmetry, which means that each
material property is independent of the direction. The
properties are related as following:

G =
E

2 (1 + ν)
(2)
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2.1. Laminate Theories
Equivalente single layer (ESL) theories reduce a 3D
problem to a 2D problem by making suitable assump-
tions regarding the kinematics of deformation or the
stress state through the thickness. This will allow to
reduce the computational effort and the complexity of
the problem without losing relevant accuracy. This
happens because by taking into account the Carte-
sian coordinate system at the mid-surface of the entire
structure, models based on similar single layer plate
theories are created, and the deformation of the plate
is described in terms of the characteristics of this ref-
erence plane. Because of this, the overall number of
degrees of freedom is independent of the number of
plies. HSDT and FSDT are the ESL theories that are
going to be used in this work.

Regarding the displacement field, the FSDT consid-
ers: u (x, y, z, t) = u0 (x, y, t) + zθx (x, y, t) (3a)

v (x, y, z, t) = v0 (x, y, t) + zθy (x, y, t) (3b)

w (x, y, z, t) = w0 (x, y, t) (3c)

where θx and θy are the rotation of a transverse nor-
mal about the y and x axis, respectively.

For the HSDT the displacement field is written as:

u (x, y, z, t) = u0 (x, y, t) + zθx (x, y, t) + z2u∗
0 (x, y, t) + z3θ∗x (x, y, t) (4a)

v (x, y, z, t) = v0 (x, y, t) + zθy (x, y, t) + z2v∗0 (x, y, t) + z3θ∗y (x, y, t) (4b)

w (x, y, z, t) = w0 (x, y, t) + zθz (x, y, t) + z2w∗
0 (x, y, t) (4c)

where u∗
0, v∗0 , w∗

0 , θ∗x, θ∗y and θz are higher order
terms in the series expansion to be determined.

2.2. Finite Element Model
Two finite element models (FEM) are developed, since
this work focus on two models for laminate theories.
The models presented use an eight-node serendipity
quadratic element. Each node has 5 and 11 degrees of
freedom for the FSDT and HSDT, respectively. The
shape functions for each element are given by equation
(5), where ξ and η are the natural coordinates of the
element.
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Mass Matrix
The mass matrix can be obtained by:

[Me] =

∫
A

[N ]
T

[P ] [N ] dA (6)

where A is the in-plane area of the plate and [P ] is
obtained by:

[P ] =

∫ h/2

−h/2

ρ[Z]T [Z] dz (7)

where [Z] depends on which model is being used, and
is given by:

[Z]FSDT =

1 0 0 z 0
0 1 0 0 z
0 0 1 0 0

 (8a)

[Z]HSDT =

1 0 0 z 0 0 z2 0 0 z3 0
0 1 0 0 z 0 0 z2 0 0 z3

0 0 1 0 0 z 0 0 z2 0 0

 (8b)

Changing coordinates from (x, y) to the natural co-
ordinates (ξ, η) the element mass matrix is given by:

[Me] =

∫ +1

−1

∫ +1

−1

(
[N ]T [P ][N ]

)
det(J) dξ dη (9)

Linear Stiffness Matrix

The element linear stiffness matrix [Ke] is obtained
by:

[Ke] =

∫ +1

−1

∫ +1

−1

([Bm]
T

[Dm] [Bm] +

[Bm]
T

[Dc] [Bb] + [Bb]
T

[Dc] [Bm] + [Bb]
T

[Dc] [Bb]

+ [Bs]
T

[Ds] [Bs]) det(J) dξ dη (10)

Geometric Stiffness Matrix

The element geometric stiffness matrix [Ke
G] can be

calculated by:

[Ke
G] =

∫ +1

−1

∫ +1

−1

(
[G]

T
[τ ] [G]

)
det (J) dξ dη (11)

2.3. Vibration Analysis

Performing the eigenvalue problem shown on equation
(12), on a structure, the free vibration frequencies can
be obtained. Where ω is the free vibration frequency.∣∣[K] − ω2[M ]

∣∣ = 0 (12)

The boundary conditions that the plates were under
during all analysis in this work were the same for all
the models presented. The plates are simply supported
in all the four edges.

A vibration analysis was performed in an isotropic
square plate with only a ply, with a = b = 0.3m, thick-
ness of 0.003m and ν = 0.25. The results obtained for
the first mode (1,1) are shown in Table 1. Important to
mention that the results presented are non dimensional

given by ω̄ = ωa2
√

ρh
D with D = Eh3

12(1−ν2) .

The theoretical results presented were calculated by
[8]:

ω =

√
D

ρh

[(m
a

)2

+
(n
b

)2
]
π2 (13)
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Table 1: Non dimensional free vibration frequency re-
sults for an isotropic square plate

N ×N
ω̄

FSDT
ω̄

HSDT
ω̄

Theoretical
Relative error

(FSDT)
Relative error

(HSDT)

2x2 33.1171 33.7461 19.739 67.775% 70.962%
5x5 19.7615 19.7662 19.739 0.114% 0.138%

10x10 19.7328 19.7329 19.739 0.031% 0.031%
15x15 19.7325 19.7325 19.739 0.033% 0.033%
20x20 19.7324 19.7324 19.739 0.033% 0.033%

Table 1 shows that the results obtained, for both
FSDT and HSDT, converge after a mesh size of 10×10.
After convergence is accomplished, the relative error
of the free vibration frequencies, for both FSDT and
HSDT models, are lower than 1% for all modes studied.

From this analysis it is possible to validate the for-
mulations done for the mass matrix and linear stiffness
matrix, for both FSDT and HSDT models.

3. Dynamic Instability Analysis
To find the regions of dynamic instability of a structure
it is useful to use the theory of systems of Mathieu-
Hill differential equations with periodic coefficients.
Analysing the structures studied in this work its equa-
tions of motions can be presented in the Mathieu-Hill
equation form as following:

[M ]{ẍ} + [K]{x} − P (t)[KG]{x} = 0 (14)

where [M ], [K] and [KG] are, respectively, the mass
matrix, the stiffness matrix and the geometric stiffness
matrix. P (t) is the periodic force that can be presented
as P (t) = PS + Pd cos(θt). PS is the static component
and Pd is the dynamic component of the applied load.

The method suggested by Bolotin [9] was used to de-
termine the regions of dynamic instability. The bound-
aries between the dynamic stability and instability re-
gions are characterised by periodic solutions with pe-
riod T and 2T in equation (14). These solutions can be
expanded into Fourier series. Periodic solutions with
period 2T and T in equation (14) present, respectively,
the form shown on equations (15) and (16).

x(t) =

∞∑
k=1,3,5

ak sin
kθt

2
+ bk cos

kθt

2
(15)

x(t) = b0 +

∞∑
k=2,4,6

ak sin
kθt

2
+ bk cos

kθt

2
(16)

Substituting (15) or (16) in equation (14) and equat-
ing the coefficients of identical sin kθt

2 and cos kθt
2 a sys-

tem of linear homogeneous algebraic equations are ob-
tained with infinite equations and infinite unknowns ak
and bk. The system of linear homogeneous equations
has non-zero solutions only if the determinant of the
coefficients of the system is equal to zero. The equa-
tions of boundary frequencies are then obtained from
the condition that equation (14) presents periodic solu-
tions if the obtained determinants of the homogeneous
systems are zero.

Equation (17) is the equation of boundary frequen-
cies that allows to find the regions of instability which
boundaries are the periodic solutions with a period 2T.
For the regions of instability bounded by the periodic
solutions with a period T, the equations of boundary
frequencies are equations (18a) and (18b), where θ is
the frequency of the external load and [I] is the identity
matrix.∣∣∣∣∣∣∣∣∣

[I] − (PS ± Pd

2 )[K]−1[KG] − θ2

4 [K]−1[M ] −Pd

2 [K]−1[KG] 0 ...

−Pd

2 [K]−1[KG] [I] − PS [K]−1[KG] − 9θ2

4 [K]−1[M ] −Pd

2 [K]−1[KG] ...

0 −Pd

2 [K]−1[KG] [I] − PS [K]−1[KG] − 25θ2

4 [K]−1[M ] ...
... ... ... ...

∣∣∣∣∣∣∣∣∣ = 0 (17)

∣∣∣∣∣∣∣∣
[I] − PS [K]−1[KG] − θ2[K]−1[M ] −Pd

2 [K]−1[KG] 0 ...

−Pd

2 [K]−1[KG] [I] − PS [K]−1[KG] − 4θ2[K]−1[M ] −Pd

2 [K]−1[KG] ...

0 −Pd

2 [K]−1[KG] [I] − PS [K]−1[KG] − 9θ2[K]−1[M ] ...
... ... ... ...

∣∣∣∣∣∣∣∣ = 0 (18a)

∣∣∣∣∣∣∣∣∣∣
[I] − PS [K]−1[KG] −Pd

2 [K]−1[KG] 0 0 ...

−Pd[K]−1[KG] [I] − PS [K]−1[KG] − θ2[K]−1[M ] −Pd

2 [K]−1[KG] 0 ...

0 −Pd

2 [K]−1[KG] [I] − PS [K]−1[KG] − 4θ2[K]−1[M ] −Pd

2 [K]−1[KG] ...

0 0 −Pd

2 [K]−1[KG] [I] − PS [K]−1[KG] − 9θ2[K]−1[M ] ...
... ... ... ... ...

∣∣∣∣∣∣∣∣∣∣
= 0 (18b)

From these equations, the equations to calculate the
different regions of dynamic instability for the different
approximations are obtained.

The boundaries for the first region of instability with
first order approximation are obtained by solving equa-
tion (19). The second order approximation for the
boundaries for the same region is given by equation
(20).

[I] − (PS ± Pd

2
)[K]−1[KG] − θ2

4
[K]−1[M ] = 0 (19)∣∣∣∣∣[I] − (PS ± Pd

2 )[K]−1[KG] −Pd

2 [K]−1[KG]

−Pd

2 [K]−1[KG] [I] − PS [K]−1[KG] − 9θ2
1

4 [K]−1[M ]

∣∣∣∣∣−
θ22

∣∣∣∣ 14 [K]−1[M ] 0
0 0

∣∣∣∣ = 0 (20)
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The boundaries for the second region of instability
with first approximation are given by equations (21)
and the second approximation for the second region of
instability can be obtained from equations (22).

[I] − PS [K]−1[KG] − θ2[K]−1[[M ] = 0 (21)

∣∣∣∣[I] − PS [K]−1[KG] −Pd

2 [K]−1[KG]

−Pd

2 [K]−1[KG] [I] − PS [K]−1[KG] − 4θ21[K]−1[M ]

∣∣∣∣−
θ22

∣∣∣∣[K]−1[M ] 0
0 0

∣∣∣∣ = 0 (22a)

∣∣∣∣[I] − PS [K]−1[KG] −Pd

2 [K]−1[KG]
−Pd[K]−1[KG] [I] − PS [K]−1[KG]

∣∣∣∣−
θ2

∣∣∣∣0 0
0 [K]−1[M ]

∣∣∣∣ = 0 (22b)

It is easy to realise that these equations can be solved
as eigenvalue problems.

3.1. Results
3.1.1 Isotropic Plate

A analysis of the dynamic instability of an isotropic
square plate with Young’s modulus of 70GPa, ρ =
1543Kg/m, ν = 0.25, thickness of 3mm and a ratio
a/h = 100 was performed.

In Figure 1 the results for the first region of insta-
bility are presented as a plot of frequency (θ) against
β, that is the dynamic load factor used to obtained Pd

as a function of the buckling load (Pd = βNcr).

Figure 1: Dynamic instability region for an isotropic
plate

To better understand the dynamic instability region
and to verify the reliability of those regions, a direct
integration using Newmark’s Method was performed.
The time increment used is ∆t = 9× 10−5s. An initial
displacement of 0.0012m was imposed to the w0 degree
of freedom on the central node of the plate. The load
cases studied are the ones represented in Figure 1. The
results for the different points are depicted in Figures
2(a-f).

(a) Point A (b) Point B

(c) Point C (d) Point D

(e) Point E (f) Point F

Figure 2: Displacement vs Time diagrams

Figures 2, besides allowing to understand better how
the dynamic instability region is translated in the plate
behaviour, it also shows that the boundaries obtained
are quite good. Points F and E that are in the sta-
ble area present, in Figures 2(e) and (f), respectively,
a stable behaviour since the amplitude of the displace-
ment is the same trough time. On the other hand, Fig-
ures 2(b) and (d) show that the points B and D are,
clearly unstable. Both diagrams present an increasing
of the amplitude of the displacement with time, which
is an unstable behaviour. Finally, Points A and C that
are both in the boundary between the stable and un-
stable region present different behaviours. Figure 2(a)
shows that the amplitude of motion is constant. Al-
though, Figure 2(c) depicts a beat-frequency oscilla-
tion. This phenomenon happens when the plate vi-
brates with two different frequencies that interfere with
each other. The oscillation amplitudes add or subtract
themselves as a result of this discrepancy in vibrational
frequencies due to a time variable phase difference be-
tween the components of the motion, and the resulting
oscillation amplitude takes values between the sum and
the difference between the corresponding amplitudes.

Adding equation (20) to the computational process
the second approximation for the first region of dy-
namic instability is obtained. Evolving the analyse,
and, also, adding equations (21) and (22), the first and
second approximation for the second region of insta-
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bility are obtained. Both approximations for the first
and second region are shown in Figure (3).

Figure 3: First and second approximation of the first
and second dynamic instability region for an isotropic
plate

3.1.2 Orthotropic Plate

In the study of the dynamic instability of an or-
thotropic plate the ply studied was a square plate with
a/h = 100 and a = b = 1m. The material properties
are E1 = 173GPa, E2 = 33.1GPa, G12 = 9.38GPa,
ν = 0.25 and density of 1000Kg/m3.

The results obtained for the principal region of dy-
namic instability, as a plot of frequency θ against the
dynamic load factor β, are shown in Figure 4(a) and
4(b) for the FSDT and HSDT model, respectively.

The dimensions of the plate will affect deeply the
location of the dynamic instability region. One impor-
tant factor that will have an impact is the thickness
of the plate. In order to analyse its impact a dynamic
instability analysis was performed for the orthotropic
plate already studied with different ratios b/h. The
results obtained are presented in Figure 5. These re-
sults allow to conclude that the ratio b/h has a great
impact on the location of the principal dynamic insta-
bility region. The increase of b/h, meaning the de-
crease of the thickness, shifts the principal dynamic
instability region to the left. So thicker plates have the
instability regions in a zone of higher frequencies. The
results, also, shows that the difference is considerable
since the difference on the frequencies of the boundaries
are, sometimes, of some thousand rad/s.

(a) using FSDT model

(b) using HSDT model

Figure 4: First and second approximation to principal
region of dynamic instability for a square orthotropic
plate

Figure 5: First dynamic instability region for different
values of b/h

3.1.3 Laminated Composite Plates

In this section, a four layer cross-ply laminated plate
is analysed. Each ply has the same thickness and is
a square plate with a [0◦/90◦/90◦/0◦] lay up, a ratio
of a/h = 25 and a = 10in= 0.254m. Each ply was
made of the same orthotropic material, which have the
following mechanical properties: E2 = 106lb/in2 =
6.8948GPa, E1 = 40E2, G12/E2 = G13/E2 = 0.6,
G23/E2 = 0.5, ν12 = 0.25 and ρ = 1lbs2/in4 =
1.06864 × 107Kg/m3.
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Figure 6(a) and 6(b) depict, both approximations, of
the principal dynamic instability region for the FSDT
and HSDT model, respectively. The results are plotted
as frequency θ (rad/s) against the dynamic load factor
β.

(a) using FSDT model

(b) using HSDT model

Figure 6: First and second approximation to principal
region of dynamic instability for a four layered cross-
ply laminated plate

In order to understand how the ratio a/b affects the
dynamic instability of a composite laminated plate a
parametric study was performed. Analysing the same
laminated composite plate already used in this section,
but varying its relation a/b, the principal dynamic in-
stability regions presented in Figure 7, were obtained.

This parametric study show how the ratio a/b af-
fects the dynamic instability region of a composite lam-
inated plate. The results presented in Figure 7 permit
to conclude that the increase of a/b shifts the dynamic
instability zone to the right, meaning to a zone with
higher frequencies. The difference becomes less signif-
icant for higher ratios a/b and vice versa. The width
of the region tends to decrease with the increase of a/b
and, consequently, the area of the unstable dynamic
region decreases with the increase of a/b.

Figure 7: First dynamic instability region for different
values of a/b

Figures 4 and 6 shows that both theories, FSDT and
HSDT, presented really similar results for the frequen-
cies of the boundaries of the instability dynamic region.
It is even possible to say that, in general, the results
are the same for both theories. Since FSDT needs a
smaller computational effort it was the theory used to
perform the parametric analysis presented.

4. Sandwich Plates
4.1. Sandwich Plates
A sandwich panel generally consists of two thin but
stiff face sheets or skins separated by a light-weight and
thick but low modulus core [10]. The face sheets are
usually laminated composite materials, but, can also
be made of metallic materials. Moreover, the core is
usually made of a light-weight material, such as, a foam
polymer or a honeycomb material. The main objective
of the core, in a sandwich plate, is to reduce the weight
of the structure while producing a high resistance to
transverse loads or damping unwanted vibrations.

4.1.1 Numerical Model

The model formulates the sandwich panel as two lam-
inated composite plates (e1, e2) and an elastic core (c)
between them. Figure 8 is a visual representation of
the model developed. The two laminated composite
layers (e1, e2) are modelled using the first shear defor-
mation theory, while the core (c) is modelled with the
higher-order shear deformation theory.

Adapting equations (3) for the laminated composite
plates (e1, e2), the displacement field for these layers
is given, in the general form, by equations (23), where
i = e1, e2 and zi is obtained by equation (24).

Figure 8: Sandwich plate model

6



ui (x, y, z, t) = ui
0 (x, y, t) + (z − zi) θ

i
x (x, y, t) (23a)

vi (x, y, z, t) = vi0 (x, y, t) + (z − zi) θ
i
y (x, y, t) (23b)

wi (x, y, z, t) = wi
0 (x, y, t) (23c)

ze1 =
hc

2
+

he1

2
, ze2 = −hc

2
− he2

2
(24)

Since the core is modelled with the HSDT, the dis-
placement field is given adapting equation (4) and can
be written as:

uc (x, y, z, t) = uc
0 (x, y, t) + zθcx (x, y, t) +

z2u∗c
0 (x, y, t) + z3θ∗cx (x, y, t) (25a)

vc (x, y, z, t) = vc0 (x, y, t) + zθcy (x, y, t) +

z2v∗c0 (x, y, t) + z3θ∗cy (x, y, t) (25b)

wc (x, y, z, t) = wc
0 (x, y, t) + zθcz (x, y, t) +

z2w∗c
0 (x, y, t) (25c)

4.1.2 Dynamic Instability Analysis

A plate that consists of laminated cross ply face sheets
and an isotropic core with a [0◦/90◦/core/90◦/0◦] lay
up is analysed. Each of the face sheet plies is assumed
to be the same thickness, the ratio between the thick-
ness of the core and the total thickness (hc/h) is taken
to be 0.8, being the total thickness 1mm, and the ratio
a/h is 10. The properties of the materials used for the
face sheets and the core are the following:

• Face sheets: E1 = 276GPa, E2 = G12 = G13 =
G23 = 10.34GPa, ν12 = 0.22 and ρ = 681.8Kg/m3;

• E1 = E2 = 0.5776GPa, G12 = G13 = 0.1079GPa,
G23 = 0.22215GPa, ν12 = 0.0025 and ρ =
1000Kg/m3.

Figure 9 depicts the first and second approximations
for both, the first and second dynamic instability re-
gions, for the plate under analysis.

Figure 9: First and second approximation of the first
and second dynamic instability region for a symmetric
sandwich plate

The core and its dimensions is a relevant part of a
sandwich plate and it will have an important impact
on the mechanical behaviour of the plate. In order to
study the influence of the thickness of the core on the
dynamic instability of a sandwich plate, the principal
dynamic instability region was obtained, for the sand-
wich plate already studied in this section, for different
values of hc/h. Figure 10 depicts the results obtained.
These results shows that the decrease of the ratio hc/h
shifts the principal dynamic instability region to the
right. This means that sandwich plates with thicker
cores will have the principal dynamic instability region
for lower frequencies and vice versa.

Figure 10: First dynamic instability region for different
values of hc/h

4.2. Sandwich Plates with Viscoelastic Core
Viscoelastic materials are frequently employed as core
materials where damping is a major concern because
they undergo significant deformations under external
pressure and have the capacity to absorb and dissipate
energy. They have characteristics of both viscous and
elastic materials. The damping effect can be added to
the model in different ways. In this work it is going to
be used two different types of damping, proportional
damping and hysteretic damping, using complex vari-
ables.

4.2.1 Numerical Model

Proportional Damping
To the equation of motion of a plate, already shown

on equation (14), can be added a damping term and it
would be given by:

[M ]{ẍ} + [C]{ẋ} + [K]{x} − P (t)[KG]{x} = 0 (26)

where [C] is the damping matrix in the form [C] =
α[M ]+β[K] but, during the development of this work,
β = 0 was considered. If the damping coefficient (ϵ) is
given by ϵ = α/2, equation 26 present the form show
in equation 27, when the solutions wanted are in the
form x = e−ϵtu(t) and eϵt is not singular.

[K]−1[M ]{ü} + {[I] − [K]−1[M ]ϵ2−
[Ps + Pdϕ(t)] [K]−1[KG]}{u} = 0 (27)

7



The boundary frequency equations can be found by
looking for periodic solutions, such as the Fourier series
represented by equations (15) and (16), which, when
inserted into equation (26), offer two linear homoge-

neous systems with approximate solutions. Equation
(28) presents the system to obtained solutions with a
period of 2T.

∣∣∣∣∣[I] − (PS + Pd

2 )[K]−1[KG] − θ2

4 [K]−1[M ] −θ[K]−1[M ]ϵ

θ[K]−1[M ]ϵ [I] − (PS + Pd

2 )[K]−1[KG] − θ2

4 [K]−1[M ]

∣∣∣∣∣ = 0 (28)

Hysteretic Damping

As already mentioned, the hysteretic damping can
be added to the system through the use of complex
variable. The shear modulus of viscoelastic materials
is expressed in complex form as G = G′ + iG′′, where
G’ and G” are the real part and imaginary part of the
complex modulus and are measures of the total energy
stored and dissipated, respectively.

In this work to modelled a sandwich plate with vis-
coelastic core was used the model already presented
in section 4.1.1, giving complex values for the Young’s
modulus. Then E can be written as:

Ec = E′ + ηE′i (29)

where η is the material loss factor. The analysis per-
formed was done using the exactly same model pre-
sented in sections 3 to obtained the dynamic instability
regions. The results obtained from the eigenvalue prob-
lems will be, obviously, complex and it will be needed
to calculated their modulus to obtained the final result.

For sandwich plates with a viscoelastic core the vi-
bration characteristics are usually associated with the
modal loss factor. The measure of the vibratory energy
absorbed by the structure is represented by the modal
loss factors, which are the normalised imaginary por-
tions of the bending stiffness. The modal loss factor
can be calculated by:

ηi =
ωI

ωR
(30)

where i indicates the mode, ωI is the imaginary com-
ponent of ω and ωR is the real part.

4.2.2 Dynamic Instability

To analyse the effects of adding a viscoelastic core
to a sandwich plate the same plate was studied for
both methods. The plate under analysis is a square,
three layered sandwich plate with a [0◦/core/0◦] lay-
up, thickness of 1mm and a/h = 100. The mechanical
properties of the isotropic materials that the face sheet
and the core are made of are the following:

• Face sheets: Ef = 66GPa, ν12 = 0.33 and ρf =
2680Kg/m3;

• Core: Ec = 5.2 + x5.2iMPa, ν12 = 0.3 and ρc =
1015Kg/m3.

Proportional Damping

Figure 11 depicts the principal dynamic instability
region for the sandwich plate with α = 0, meaning
that it should behave like a system without damping,
therefore without a viscoelastic core. Whereas, Figure
12 presents the same region for a sandwich plate with
a viscoelastic core with α = 50.

In order to analyse the effect that damping has on
the behaviour of the plate over time a direct integra-
tion using Newmark’s Method was performed. The
time increment used was ∆t = 0.00008s and an initial
displacement of 0.0004m was imposed to the w0 degree
of freedom on the central node of the plate. A group
of the same load cases were studied for both plates to
better compare the damping effect on different regions.
Figures 13(a-d) depict the time vs. displacement dia-
grams for the load cases for α = 0 and Figures 14(a-d)
for α = 50.

Figures 13(a-d) and 14(a-d) are a good way to check
the reliability of the regions obtained. Figures 13 de-
pict the expected diagrams for a system with no damp-
ing where the points outside the dynamic instability
region will show a stable behaviour in which the am-
plitude keeps the same over time, and the points inside
the unstable region present an increase of the ampli-
tude with time. Relevant to mention, that this in-
crease becomes more sensitive when the point is further
away from the boundaries. On the other side, Figures
14 depict a very different behaviour. Figures 14(a),
14(b) and 14(c) are characterised by a displacement
function whose amplitude decreases exponentially with
time. Since the point C’ is in the boundary between
regions or really close to it, it shows a softer damping
where the decrease of amplitude is slower than the oth-
ers. Figure 14(d) shows a typical unstable behaviour
which was the expected result since point D’ is in the
unstable region.
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Figure 11: Principal dynamic instability region for α =
0

Figure 12: Principal dynamic instability region for α =
50

(a) Point A (b) Point B

(c) Point C (d) Point D

Figure 13: Displacement vs Time diagrams of a sand-
wich plate with viscoelastic core with α = 0

(a) Point A’ (b) Point B’

(c) Point C’ (d) Point D’

Figure 14: Displacement vs Time diagrams of a sand-
wich plate with viscoelastic core with α = 50

To study the effect of α on the mechanical behaviour
and, consequently, on the dynamic instability regions
of a sandwich plate with a viscoelastic core, a dynamic
instability analysis to plates with different values of α
were performed. The results can be seen in Figure 15
which depicts the different dynamic instability princi-
pal regions.

Figure 15: Principal dynamic instability region of a
sandwich plate with viscoelastic core for different α

Hysteretic Damping

A dynamic stability analysis,using the hysteretic
damping model, was performed on the sandwich plate
with a viscoelastic core. Figure 16 depicts the principal
dynamic instability region for multiple values of η.
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Figure 16: Principal dynamic instability region of a
sandwich plate with viscoelastic core for different η

From the results presented, it is possible to conclude
that adding a viscoelastic core to a sandwich plate
will add damping to the system. Damping will trans-
form the dynamic instability region. The minimum
will present a round shape instead of a peak and that
minimum is for a dynamic force applied to the system
bigger than 0.

5. Conclusions

The work developed in this thesis allowed to enlarge
the computationally efficient finite element models al-
ready developed in Matlab by Tomé[7]. It added two
more analysis, a free vibration analysis and a dynamic
instability analysis, with and without damping.

The numerical model used to study the dynamic
instability of the structures analysed was developed.
This model was applied to isotropic, orthotropic and
laminated composite plates. Different studies were
made, showing how various parameters might affect
the dynamic instability of the plates analysed. These
parametric studies covered the changes in parameters
like the ratios b/h and a/b.

The sandwich plate model was formulated with the
face sheets based on the FSDT and the core based on
the HSDT. The dynamic instability model was, also,
applied to a sandwich plate. The results obtained val-
idate, once again, the models used and that the gener-
ated Matlab code is working as planned and delivering
satisfactory results. One more parametric study was
performed. This time was to analyse the impact that
the thickness of the core has in the dynamic answer of
the system. Two different models to add the damping
from the viscoelastic core to the sandwich plate sys-
tem were developed, one with proportional damping
and the other with hysterical damping. The results
obtained were in accordance with what was expected.

Developments and extensions of the present work can
be done trough multiple ways. Some relevant ideas, but
not exclusively, are adding piezoelectric sensors and
actuators to the model and studied their effect in the

dynamic instability or validate the results obtained in
the present work trough experimental studies.
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