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Resumo

Placas laminadas em compósito e placas sandwich apresentam melhores propriedades quando

comparadas com estruturas semelhantes. Elas são usadas para uma ampla gama de indústrias e

aplicações, por esse motivo, é relevante estudar os seus comportamentos e respostas mecânicas. Ha-

bitualmente, estas estruturas estão sujeitas a diferentes tipos de cargas, tanto estáticas como dinâmicas.

Assim sendo, é, também, importante estudar o seu comportamento dinâmico e melhorar o processo de

design de forma a evitar o colapso das estruturas.

Neste trabalho, foram desenvolvidos, em Matlab, dois modelos para analisar placas isotrópicas, or-

totrópicas e laminadas em compósito. Estes modelos têm por base a teoria de deformação de primeira

ordem (FSDT) e a teoria de deformação de ordem superior (HSDT). Estas formulações são, posterior-

mente, usadas para modelar uma placa sandwich. Usando uma abordagem mista, o núcleo é modelado

com HSDT e as faces usam FSDT. O método de elementos finitos aplicado usa elementos quadráticos

de oito nós.

Uma análise de vibrações naturais foi efetuada com o intuito de validar as formulações das matrizes

de massa e de rigidez. Posteriormente, foi efetuado o estudo das regiões de instabilidade dinâmica

de placas isotrópicas, ortotrópicas, laminadas em compósito e sandwich. Ao longo destas análises

e estudos os resultados foram validados com resultados presentes na literatura. O caso especial, de

placas sandwich com núcleo viscoelástico foi, também, estudado.

Palavras-chave: Placas Sandwich, Placas Laminadas em Compósito, Instabilidade dinâmica,

FSDT, HSDT
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Abstract

Laminated composite plates and sandwich plates present better properties when compared to other

similar structures. They are used in a wide range of industries and applications but, to do so, it is

important to study their mechanical behaviour. These structures are usually under different kinds of

loads, static or dynamic. For that reason it is important to study their dynamic behaviour to improve the

design process and avoid failure.

In the present work two models to analyse isotropic, orthotropic and laminated composite plates

were developed in Matlab. These models are based on the first-order shear deformation theory (FSDT)

and the higer-order shear deformation theory (HSDT). These formulations are then used to model a

sandwich plate. Using a mixed layer-wise approach, the core is modelled with the HSDT and the face

sheets use the FSDT. The finite element model applies an eight-node serendipity quadratic element.

A free vibration analysis was performed in order to validate the formulation of the mass and stiffness

matrices. Later on, the dynamic instability regions for isotropic, orthotropic, laminated composite and

sandwich plates is studied. Through these analyses the results were validated with the ones present in

the literature. A special case of sandwich plates, when the core is made of viscoelastic materials, is,

also, studied.

Keywords: Sandwich Plates, Laminated Composite Plates, Dynamic Instability, FSDT, HSDT
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Chapter 1

Introduction

1.1 Motivation

Composite materials are obtained by combining two or more materials that together provide proper-

ties that are normally not achieved individually, at a reasonable cost [1]. Composite materials allow the

designers and engineers to achieve element structures with the most possible appropriate characteris-

tics for their applicability. Because of that, and even though they are complex materials that require the

research of multiple scientific fields to their development, they are widely used. Composite plates are

a type of composite structure. When made of layers of various materials and geometric characteristics

they are called laminated plates.

A sandwich panel is a composite material consisting of two thin laminate skins and a lightweight,

thick core structure. Despite the thickness of the core, sandwich composites are lightweight and have

relatively high flexural strength [2]. Sandwich plates are increasingly utilised in the construction of differ-

ent structures in multiple engineering applications, due to their high strength and stiffness, low weight,

high durability and ease of manufacturing [3]. They are commonly used in construction of many com-

ponents in automotive, aerospace, aeronautic, naval and building structures [4]. Their advantages, the

development of new materials and the necessity of high performance under static, dynamic, and thermal

loads guarantee that the sandwich structures will be in demand for many years [5].

(a) Aerospace[6] (b) Shipbuilding[7] (c) Automotive[8]

Figure 1.1: Examples of composite laminate materials used in various industries

It is possible to create sandwich structures with a viscoelastic core. Usually the material used as core

1



is a damping material that presents great stress recovery, relaxation and creep. That means that when

the applied stress is removed, some of the stresses created in the material during the recovery period

are eliminated immediately and the residual stress slowly tends to zero. This technique is interesting for

different aspects, such as, vibration and noise control, due to their ability to dissipate energy [9]. Since,

adding this type of core on a sandwich plate changes its properties, it will affect the way that the structure

reacts to different kinds of loads. For that reason it is interesting to analyse this kind of structures when

studying sandwich plates. It will be possible to achieve better materials and improve the performance of

the structural component. In fact, the use of this kind of materials in different industries is increasing.

Figure 1.2: Viscoelastic Core [10]

Structural members of any engineering application are subjected to different kinds of loads and

excitations. Some of these loads are static loads which permits to study the structural components

behaviour with different methods in the scope of static analysis. But sometimes structures are subjected

to dynamic loads, that can be periodic or not, and it is essential to study their effects on the structural

behaviour. Some combination of loads can lead to dynamic instability. So it is fundamental to study

the static and dynamic stability behaviour of the structural members in the design of their components

[11]. Since many of these structures are made of sandwich plates, it is important to study the dynamic

instability of this kind of materials in order to better understand their applicability and avoid catastrophic

failures. With a better knowledge of the behaviour of as many different structures and materials as

possible the better, since it will allow to do a smarter, more sustainable and safer application of materials

and structures in the different industries.

1.2 State of the Art

The study of the dynamic instability on structures started long ago. At the beginning, the structures

analysed were simpler than composite laminated plates or sandwich plates. Briseghella et al. [12]

applied the finite element method to the definition of dynamic stability of mechanical systems previously

developed by V. V. Bolotin [13]. They studied an Euler’s beam and were able to achieve the Mathieu-Hill

equation, which governs the dynamic stability problems, after some algebra and reasonable hypothesis.

In the last years a lot has been done in the field of dynamic stability of elastic structures. With that in

mind, Mascolo [14] presented a survey of a few current research hot topics. It tries to compile the most

important current events and global trends, as well as to outline any potential difficulties in the future.

2



Isotropic, Orthotropic and Laminated Composite Plates

For the investigation of the dynamic instability of composite laminated rectangular plates and pris-

matic plate structures, a B-spline finite strip method (FSM) has been developed by Wang and Dawe [15].

Their method has per base the FSDT and the set of Mathieu equations are established using Lagrange’s

formulation. The boundary frequencies of the instability regions are determined resorting to the method

presented by Bolotin [13].

Chen et al. [16], also, based their study of the dynamic stability of laminated composite plates

under arbitrary periodic loads on the FSDT. The same approach using the Bolotin’s method to solve the

Mathieu-Hill equations to obtain the dynamic instability boundaries was implemented.

Ramachandra and Panda [11] developed a study of the dynamic instability of composite plates under

uniform, linear and parabolic dynamic in-plane loads. To start, the Ritz method was used to solve the

plate membrane problem. The equations defining the plate instability boundaries are then developed

utilising Hamilton’s variational principle using the assessed stress distribution within the plate. The

partial differential equations are converted into a set of Mathieu equations using Galerkin’s approach.

The boundaries of the instability region are obtained resorting, once again, to the Bolotin’s method.

Loja et al. [17] proceed to a dynamic instability study of isotropic, orthotropic and composite lami-

nated plates. Bolotin’s approach was used to resolve the dynamic instability issue. Using the Rayleigh-

Ritz approach, the system matrices were constructed while taking into account the use of orthogonal

polynomials created for each set of boundary conditions. Before obtaining their dynamic results, they

verified their model with vibration and buckling analysis. Later on, Loja and Barbosa [18] studied the

free vibration and dynamic instability behaviours of a special type of composite materials, functionally

graded plates, which are defined by a mixture of materials’ phases that changes continually. In order to

handle the problem of free vibrations, the traditional plate theory and Rayleigh-Ritz approach were con-

sidered. The Mathieu-Hill equation related to the dynamic instability problem was solved using Bolotin’s

approach.

Darabi and Ganesan performed a nonlinear dynamic instability analysis of laminated composite

plates under both static and periodic loads. By using Galerkin’s method, equations of motion with

von Kármán-type nonlinearity were solved. The amplitudes of both stable and unstable solutions for

steady-state vibrations, for thin plates, were obtained by applying Bolotin’s approach to the governing

system of nonlinear Mathieu-Hill equations [19]. Using a similar method, they also analysed the dynamic

instability of internally-thickness-tapered composite plates. The non-linear von Kármán strains resulting

from significant deflections and curvatures were contemplated. In order to satisfy the spatial depen-

dence in the partial differential equation of motion and create a set of non-linear Mathieu-Hill equations,

the moment-equilibrium equation of motion was then solved using the generic Galerkin method. The

dynamically instability amplitudes of the steady-state vibrations were derived by using, once again, the

Bolotin’s approach on these equations [20].

In Ramana Reddy et al. [21] the dynamic instability regions are obtained utilising the energy ap-

proach using a single term precise trigonometric admissible function to represent the lateral deflection.

Recently, Mondal and Ramachandra [22] developed a study where they add damping to a dynamic
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stability analysis of composite plates. The dynamic instability of damped laminated composite plates

with embedded delaminations was investigated using a layerwise finite element model based on the

B-spline function.

Sandwich Plates

A study of the free vibrations of, not only isotropic, orthotropic, laminated, but also, sandwich plates

was performed by Nayak et al. [23]. They implemented two assumed strain finite element formulations

of Reddy’s higher-order theory.

Using a similar strategy as the majority of studies already mentioned for the isotropic, orthotropic

and laminated composite plates, Kao et al. [24] analysed the dynamic instability of foam-filled sandwich

plates with stiff composite laminated faces. The Galerkin approach combined with a reduced eigenfunc-

tions transformation was used to establish the governing equations. Based on Bolotin’s method, the

equations of motion of the Mathieu type were constructed and utilised to identify the zones of dynamic

instability. The plate theory used was the Reissner–Mindlin theory.

Applying the same method to obtain the frequencies of the boundaries of the dynamic instability

regions as [24], Sankar et al. [25] studied sandwich plates with carbon nanotube (CNT) reinforced face

sheets. This work, modelled the plates resorting to the FSDT and HSDT.

Sahoo and Singh [26, 27] developed two studies of the dynamic stability of laminated composite

and sandwich plates. In both studies, they, also, used the Bolotin’s method to obtain the dynamic

instability regions. The first study is based on a modern theory, called inverse trigonometric zigzag

theory. The model eliminates the requirement for a shear correction factor, resulting in transverse shear

stress continuity at layer interfaces as well as traction-free boundary conditions on the plate surfaces.

An effective C0 continuous, eight noded, isoparametric element with seven field variables was used

[26]. The second study is based on an inverse hyperbolic zigzag theory developed by themselves. This

model, also, satisfies the interlaminar continuity conditions at the layer interfaces and the traction-free

boundary conditions on the plate’s surface, eliminating the need for a shear correction factor. For the

standard discretization of the plate structure, a C0 continuous isoparametric serendipity element with

seven field variables was used [27].

Sandwich Plates with Viscoelastic Core

A study on free vibration of three layered sandwich plates with a viscoelastic core was performed by

Permoon and Farsadi [9]. In the development of this work Lagrange’s equation was used to create the

governing equations of motion, which were then solved using the Rayleigh-Ritz technique. The optimal

viscoelastic model was chosen for the free vibration analysis of sandwich plates after the coefficients of

the fractional and classical viscoelastic models were calculated in the first stage of the analysis using the

curve fitting method on existing experimental data. For fitting smooth curves to experimental data, the

least squares method was used. The outcomes demonstrated that the fractional Zener model provides

the best curve fit to the experimental data [9].
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For the vibration and parametric instability studies of a sandwich plate with functionally graded ma-

terial constraining layer, a finite element model was created by Joseph and Mohanty [28]. The top and

bottom layer displacements were thought of as being linear functions of the lateral and transverse dis-

placements of the viscoelastic core layer. The FSDT was employed to account for the transverse shear

of the face layers, and in addition to shear deformation of the core, the analysis also took into account

the impacts of transverse and longitudinal deformations. This model is able to be applied to plates with

thick and thin core layer.

Ojha and Dwivedy [29] performed an analysis on a three-layered sandwich plate with a viscoelastic

core made of leptadenia pyrotechnica rheological elastomer (LPRE). A parametrically stimulated sys-

tem was used in the finite element method (FEM) to generate the governing equation of motion. The

sandwich plate’s instability zones were discovered utilising the modified Hsu approach. Experimental

results were used to estimate the newly created LPRE core’s shear storage modulus and loss modulus.

It is relevant to mention that sandwich plates can be modelled using different methods. From the

works presented it is possible to conclude that most of them resorted to equivalent single layer (ESL)

theories. These theories do not take into account the transverse compressibility into the core during the

dynamic analysis. To overcome that problem, layer-wise theories of sandwich plates have been devel-

oped. For instance, Li [30] worked in a layer-wise theory for laminated composite structures, including

sandwich plates, and Moreira and Rodrigues [31] proposed a layerwise theory for sandwich plates with

thin soft core. Layerwise theories, a quasi-3-dimensional technique, is becoming more and more popu-

lar since it is more accurate than most ESL theories and computationally less expensive than 3D-based

displacement FEMs [30]. However, layer-wise theories demand that the unknown displacement compo-

nents be taken at every layer interface, which means that the formulation’s number of unknowns grows

as the number of layers does, necessitating a significant amount of computational work. With the dy-

namic instability analyses, also, requiring some computational effort, literature becomes quite scarce

when dealing with layer-wise theories in sandwich plates to analyse their dynamic instability.

1.3 Objectives, Deliverables and Additional Notes

This work is derived as an extension of Tomé [32]. Actually, the finite element models to be used and

developed in this work are based on the models developed by Araújo et al. [33] for dynamic analysis

and extended to buckling analysis by Tomé [32]. Tomé [32] presents a static and buckling analysis of

isotropic, orthotopric, laminated and sandwich plates using a finite element model written in Matlab. In

fact, this work uses as base Tomé’s [32] Matlab formulations. These are adapted and developed in order

to achieve the goals of the present work.

With that said, the objective of the present work is to perform a new analysis, a dynamic analysis, to

isotropic, orthotropic, laminated and sandwich plates. The dynamic analysis should be able to provide

the regions of dynamic instability. In order to perform the dynamic analysis this work needs to build the

mass matrix of the systems studied and add it to the matrices already formulated by Tomé [32]. For the

sake of improving the reliability of the results presented, a vibration analysis is performed to compare
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the results obtained for the natural frequencies to the theoretical values and then, possibly, validate the

formulation of the mass matrix.

This work also intends to do a dynamic analysis and obtain the regions of instability of sandwich

plates with viscoelastic cores. At the end, it aims to be able to draw conclusions about the dynamic

instability of the different composite structures studied.

1.4 Thesis Outline

This work presents 5 chapters. The first one is dedicated to the introduction. This chapter includes

the motivation behind the study of sandwich plates and their dynamic behaviour, followed by the state

of the art and its objectives and deliverables. In the state of art section a review of the work developed

before in the dynamic instability analysis of isotropic, orthotropic, laminated composite and sandwich

plates is presented. At last, the expected goals for the scope of this work are stated.

Chapter 2, presents the multiple models used to formulate the structures under study, including the

finite element model and the laminate theories. A vibration analysis in order to validate part of the

models presented is performed on isotropic and orthotropic plates.

The dynamic analysis is covered in Chapter 3. The numerical model used to compute the results

is presented. Once the analysis is done, the results obtained to the different structures analysed are

displayed and studied.

In Chapter 4, the models presented in Chapter 2 are combined in order to formulate a model that can

translate the behaviour of sandwich plates. A vibration analysis is also performed in these structures to

validate the model. The model developed in Chapter 3 is applied to these plates and a dynamic stability

analysis is performed. Subsequently, a viscoelastic core is added to the sandwich plate. The adaptions

needed to be done to the model used before are also presented. Afterwards, a dynamic stability analysis

is performed to the new structure and the results are presented and studied.

Finally, the last chapter covers the conclusions, where the achievements of this work are reviewed.

In addition, some guidelines for future works regarding the study of both sandwich plates and dynamic

analysis are given.
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Chapter 2

Development of Plate Elements

In this chapter the finite element models used to formulate the different structures that are going to

be studied in this work is presented.

First, two different finite element models for laminated composited plates, based on two different

laminated theories, are presented. A vibration analysis is conducted in order to obtain the fundamental

natural frequency. The results are then compared to the ones found in the literature to validate the

models presented.

2.1 Laminated Composite Plates

A laminate is an assembly of more than one lamina stacked in order to obtain a structure with the

desired thickness and stiffness, in which a lamina or ply is a sheet of composite material.

The layers used to build a laminate are usually fiber-reinforced laminae, which consist in many fibers

embedded in a matrix material. The type of fiber used will affect the properties of the material, and those

properties will also be direction-dependent. Then they need to be studied and produced having in the

mind the load directions they will be under. To increase toughness coupling agents can be added as

well as fillers that will improve the bonding between the fibers and the matrix material.

On the other hand, to achieve the desired structural stiffness and strength, plies can be stacked into

laminated composites in a way to combine the best aspects of the constituent layers. This process is

called lamination. The majority of laminated composites consist of unidirectional fiber-reinforced lam-

inae, which can be stacked in a way that each lamina is oriented in the same or different directions.

The term lamination scheme or stacking sequence consists on the sequence of various orientations of a

fiber-reinforced composite layer in a laminate. A representation of lamination can be seen in Figure 2.1.

So, one of the advantages of composite materials is the possibility to structure and orient layers in

a certain sequence. This advantage becomes really important when it is possible to match the layers

orientation with the applied load, presenting better mechanical reactions to that load.
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Figure 2.1: Laminate with plies with different directions

2.1.1 Constitutive Equation of a Lamina

In this section the formulations used to study a lamina will be presented. These formulations will be,

later, put together to formulate models that enable the study of laminated plates.

To formulate the constitutive equation of a lamina it is assumed that [34]:

1. a lamina is a continuum;

2. a lamina behaves as a linear elastic material.

The first assumption comes from considering the macromechanical behaviour of a lamina. On the

other hand, the second assumption implies that the generalised Hooke’s law is valid. The generalised

Hooke’s law for an anisotropic material under isothermal condition, in a contracted notation, is written

as:

σi = Cijεj (2.1)

where σi are the stress components, εj are the strain components and Cij are the material coefficients,

all referred to an orthogonal Cartesian coordinate system (x1, x2, x3) fixed in the body, Figure 2.2.

Figure 2.2: Coordinate system of a laminate composite ply [34]

In the case that one wants to develop micromechanical constitutive models for inelastic behaviour

of a lamina, both assumptions can be removed. From a macromechanical point of view, a composite

lamina behaves as an orthotropic material.
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Orthotropic Plate

An orthotropic material has three mutually orthogonal planes of material symmetry.

If the coordinate planes are chosen parallel to the three orthogonal planes of symmetry, that is, the

principal material directions (x1, x2), the stress-strain relations can be given by:



σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ε11

ε22

ε33

ε23

ε13

ε12


=



1
E1

−ν21

E2
−ν31

E3
0 0 0

−ν12

E1

1
E2

−ν32

E3
0 0 0

−ν13

E1
−ν23

E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12



−1

ε11

ε22

ε33

ε23

ε13

ε12


(2.2)

where [C] is the stiffness matrix in the principal directions (x1, x2), which is the inverse of the compliance

matrix [S].

The global stress-strain relations can be written as:



σxx

σyy

σzz

σyz

σxz

σzy


=



C̄11 C̄12 C̄13 0 0 C̄16

C̄21 C̄22 C̄23 0 0 C̄26

C̄31 C̄32 C̄33 0 0 C̄36

0 0 0 C̄44 C̄45 0

0 0 0 C̄54 C̄55 0

C̄61 C̄62 C̄63 0 0 C̄66





εxx

εyy

εzz

2εyz

2εxz

2εxy


(2.3)

where C̄ij are the transformed elastic coefficients in global coordinates and can be obtained by:

[
C̄
]
= [T1] [C] [T1]

T (2.4)

where
[
C̄
]

is the elastic stiffness matrix in the coordinates (x, y, z) and [T1] is the rotation transformation

matrix that can be written as:

[
T1

]
=



cos2 θ sin2 θ 0 0 0 −2 sin θ cos θ

sin2 θ cos2 θ 0 0 0 2 sin θ cos θ

0 0 1 0 0 0

0 0 cos θ sin θ 0 0

0 0 − sin θ cos θ 0 0

sin θ cos θ − sin θ cos θ 0 0 0 cos2 θ − sin2 θ


(2.5)

During the analysis of laminated composites materials it is generally possible to consider σ33 = 0, as

in a plane stress-reduced state. According to this hypothesis, the constitutive equations in the principal

directions (x1, x2) can be given by:

9





σ11

σ22

σ23

σ13

σ12


=



Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66





ε11

ε22

ε23

ε13

ε12


=



E1

1−ν12ν21

E1ν21

1−ν12ν21
0 0 0

E1ν21

1−ν12ν21

E2

1−ν12ν21
0 0 0

0 0 G23 0 0

0 0 0 G13 0

0 0 0 0 G12





ε11

ε22

ε23

ε13

ε12


(2.6)

where Qij are the components of the plane stress-reduced stiffness.

The plane stress-reduced constitutive equations in global coordinates (x, y) can be written as:



σxx

σyy

σyz

σxz

σxy


=



Q̄11 Q̄12 0 0 0

Q̄21 Q̄22 0 0 0

0 0 Q̄44 0 0

0 0 0 Q̄55 0

0 0 0 0 Q̄66





εxx

εyy

εyz

εxz

εxy


(2.7)

In this case,
[
Q̄
]
, which is the reduced stiffness matrix in global coordinates (x, y) can be given by:

[
Q̄
]
= [T2] [Q] [T2]

T (2.8)

where [T2] is the rotation transformation matrix for the stress-reduce state and can be written as:

[
T2

]
=



cos2 θ sin2 θ 0 0 −2 sin θ cos θ

sin2 θ cos2 θ 0 0 2 sin θ cos θ

0 0 cos θ sin θ 0

0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 cos2 θ − sin2 θ


(2.9)

Isotropic Plate

An isotropic material presents an infinite number of planes of material symmetry, which means that

each material property is independent of the direction. This can be mathematically translated into:

E = E1 = E2 = E3 (2.10a)

ν = ν12 = ν13 = ν23 (2.10b)

G = G12 = G13 = G23 (2.10c)

And these properties are related as follows:

G =
E

2 (1 + ν)
(2.11)
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So, the stress-strain relations for an isotropic material are obtained by:



σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C 0 0

0 0 0 0 C 0

0 0 0 0 0 C





ε11

ε22

ε33

ε23

ε13

ε12


(2.12)

where C = (C11 − C12) /2.

2.2 Laminated Plate Theories

Since composite laminates present planar dimensions up to two orders of magnitude larger than

their thickness, and can be used in applications that require membrane and bending strengths they

can be treated as plate elements. Therefore there are plenty of different approaches to describe the

behaviour of composite plates. The ones used in this work are ESL plate theories. These theories

reduce a 3D problem to a 2D problem by making suitable assumptions regarding the kinematics of

deformation or the stress state through the thickness. This allows to reduce the computational effort and

the complexity of the problem without losing relevant accuracy. This happens because by taking into

account the Cartesian coordinate system at the mid-surface of the entire structure, models based on

similar single layer plate theories are created, and the deformation of the plate is described in terms of

the characteristics of this reference plane. Because of this, the overall number of degrees of freedom is

independent of the number of plies.

The ESL theories consider the form of the displacement field or stress field as a linear combination

of unknown functions and the thickness coordinate, which can be mathematically translated into [34]:

φi (x, y, z, t) =

N∑
j=0

(z)jφj
i (x, y, t) (2.13)

where φi is the ith component of displacement or stress, t denotes the time, (x, y) the in-plane coordi-

nates, z is the thickness and φj
i are the functions to be determined. For φi being the displacements, the

equations governing φj
i are given by the principle of virtual displacements:

0 =

∫ T

0

(δU + δV − δK) dt (2.14)

The CLPT, the FSDT and the HSDT are some ESL theories that are already well developed and

studied presenting good results. The three theories will be presented, but only the FSDT and HSDT will

be more detailed, since they are the ones that will be applied to develop the models used to study the

structures analysed in this work.
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2.2.1 Classical Laminate Plate Theory (CLPT)

In the classical laminate plate theory the following assumptions are made [34]:

1. Straight lines perpendicular to the midsurface (i.e., transverse normals) before deformation remain

straight after deformation.

2. The transverse normals do not experience elongation (i.e., they are inextensible, εzz = 0).

3. The transverse normals rotate such that they remain perpendicular to the midsurface after defor-

mation.

A visual representation of these assumptions can be seen in Figure 2.3.

Figure 2.3: Deformation of a transverse normal according to the CLPT [34]

In the CLPT the displacement field is given by:

u (x, y, z, t) = u0 (x, y, t)− z
∂w0

∂x
(2.15a)

v (x, y, z, t) = v0 (x, y, t)− z
∂w0

∂y
(2.15b)

w (x, y, z, t) = w0 (x, y, t) (2.15c)

where u, v and w are the components of the resultant displacement field and (u0, v0, w0) are the dis-

placements of a material point (x, y, 0) in (x, y, z) coordinate directions.

Since this theory is not used in the present work to develop the models for the structures studied, it

will not be presented more detailed information regarding it.

2.2.2 First-Order Shear Deformation Theory (FSDT)

For the first-order shear deformation theory the last assumption made for the previous theory is

relaxed. Then the assumptions used in this theory are the following:

1. Straight lines perpendicular to the midsurface (i.e., transverse normals) before deformation remain

straight after deformation.

2. The transverse normals do not experience elongation, this means that they are inextensible.

A visual representation of the impact of these assumptions on the deformation of a transverse normal

can be seen in Figure 2.4.
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Figure 2.4: Deformation of a transverse normal according to the FSDT [35]

Regarding the displacement field, the FSDT considers:

u (x, y, z, t) = u0 (x, y, t) + zθx (x, y, t) (2.16a)

v (x, y, z, t) = v0 (x, y, t) + zθy (x, y, t) (2.16b)

w (x, y, z, t) = w0 (x, y, t) (2.16c)

where θx and θy are the rotation of a transverse normal about the y and x axis, respectively.

The linear and non linear strain-displacement relations are given by:

ε = εL + εNL (2.17)

Where the εL are given by:

εLxx = ∂u
∂x

εLyy = ∂v
∂y

εLzz = ∂w
∂z

εLxy = 1
2

[
∂u
∂y + ∂w

∂x

]
εLyz = 1

2

[
∂v
∂z + ∂w

∂y

]
εLxz = 1

2

[
∂u
∂z + ∂v

∂x

]
(2.18)

And εNL are given by:

εNL
xx = 1

2

[(
∂u
∂x

)2
+
(
∂v
∂x

)2
+
(
∂w
∂x

)2]
εNL
yy = 1

2

[(
∂u
∂y

)2
+
(

∂v
∂y

)2
+
(

∂w
∂y

)2]
εNL
zz = 1

2

[(
∂u
∂z

)2
+
(
∂v
∂z

)2
+
(
∂w
∂z

)2]
εNL
xy = 1

2

[
∂u
∂x

∂u
∂y + ∂v

∂x
∂v
∂y + ∂w

∂x
∂w
∂y

]
εNL
yz = 1

2

[
∂u
∂y

∂u
∂z + ∂v

∂y
∂v
∂z + ∂w

∂y
∂w
∂z

]
εNL
xz = 1

2

[
∂u
∂x

∂u
∂z + ∂v

∂x
∂v
∂z + ∂w

∂x
∂w
∂z

]
(2.19)

Substituting equations (2.16) into equation (2.18), the non zero linear strain terms are given by:
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εLxx = ∂u0

∂x + z ∂θx
∂x = ε

(0)
xx + zκ

(1)
xx

εLyy = ∂v0
∂y + z

∂θy
∂y = ε

(0)
yy + zκ

(1)
yy

γL
xy = ∂u0

∂y
∂v0
∂x + z

(
∂θx
∂y +

∂θy
∂x

)
= γ

(0)
xy + zκ

(1)
xy

γL
yz = θy +

∂w0

∂y = γ
(0)
yz

γL
xz = θx + ∂w0

∂x = γ
(0)
xz

(2.20)

where ε
(0)
xx , ε

(0)
yy , γ

(0)
xy , γ

(0)
xz and γ

(0)
yz represent the mid-surface strains and κ

(1)
xx , κ

(1)
yy and κ

(1)
xy are the

curvatures. The following vectors group these variables regarding their contribution to membrane (m),

coupling (c), bending (b) and shear (s).

{εm} =


ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

 , {εb} =


κ
(1)
xx

κ
(1)
yy

κ
(1)
xy

 {εs} =

γ
(0)
yz

γ
(0)
xz

 , (2.21)

The constitutive matrix of the laminate [D] is given by:

[D] =


[Dm] [Dc] 0

[Dc] [Db] 0

0 0 [Ds]

 (2.22)

In the FSDT the matrices [Dm], [Dc], [Db] and [Ds] are obtained by:

[Dm] =

NL∑
k=1

Q̄
(k)
ij H1, [Dc] =

NL∑
k=1

Q̄
(k)
ij H2, [Db] =

NL∑
k=1

Q̄
(k)
ij H3, [Ds] =

NL∑
k=1

Q̄
(k)
lmH1 (2.23)

where NL is the number of layers of the composite laminated plate, i, j ∈ {1, 2, 6}, l,m ∈ {4, 5} and H

is given by:

Hn =
1

n

(
znk − znk+1

)
(2.24)

2.2.3 Higher-Order Shear Deformation Theory (HSDT)

The higher-order shear deformation theory also relaxes the last two assumptions. The loosening of

the kinematic hypothesis makes it possible that straight normals to the middle plane before deformation

may become curves after deformation.

A visual representation of the HSDT can be seen in Figure 2.5.
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Figure 2.5: Deformation of a transverse normal according to the HSDT [35]

For the HSDT the displacement field is written as:

u (x, y, z, t) = u0 (x, y, t) + zθx (x, y, t) + z2u∗
0 (x, y, t) + z3θ∗x (x, y, t) (2.25a)

v (x, y, z, t) = v0 (x, y, t) + zθy (x, y, t) + z2v∗0 (x, y, t) + z3θ∗y (x, y, t) (2.25b)

w (x, y, z, t) = w0 (x, y, t) + zθz (x, y, t) + z2w∗
0 (x, y, t) (2.25c)

where u∗
0, v∗0 , w∗

0 , θ∗x, θ∗y and θz are higher order terms in the series expansion to be determined.

Doing the same that was done for FSDT, and substituting equation (2.25) into equation (2.18), the

linear strain terms associated with HSDT are written as:

εLxx =
∂u0

∂x
+ z

∂θx
∂x

+ z2
∂u∗

0

∂x
+ z3

∂θ∗x
∂x

= ε(0)xx + zκ(1)
xx + z2ε(2)xx + z3κ(3)

xx (2.26a)

εLyy =
∂v0
∂y

+ z
∂θy
∂y

+ z2
∂v∗0
∂y

+ z3
∂θ∗y
∂y

= ε(0)yy + zκ(1)
yy + z2ε(2)yy + z3κ(3)

yy (2.26b)

εLzz = θz + z2w∗
0 = ε(0)zz + zκ(1)

zz (2.26c)

γL
yz =

(
θy +

∂w0

∂y

)
+ z

(
2v∗0 +

∂θz
∂y

)
+ z2

(
3θ∗y +

∂w∗
0

∂y

)
= γ(0)

yz + zκ(1)
yz + z2γ(2)

yz (2.26d)

γL
xz =

(
θx +

∂w0

∂x

)
+ z

(
2u∗

0 +
∂θz
∂x

)
+ z2

(
3θ∗x +

∂w∗
0

∂x

)
= γ(0)

xz + zκ(1)
xz + z2γ(2)

xz (2.26e)

γL
xy =

(
∂u0

∂y
+

∂v0
∂x

)
+ z

(
∂θx
∂y

+
∂θy
∂x

)
+ z2

(
∂u∗

0

∂y
+

∂v∗0
∂x

)
+ z3

(
∂θ∗x
∂y

+
∂θ∗y
∂x

)
=

= γ(0)
xy + zκ(1)

xy + z2γ(2)
xy + z3κ(3)

xy (2.26f)

where ε
(0)
xx , ε(0)yy , ε(0)zz , γ(0)

xy , γ(0)
xz and γ

(0)
yz represent the mid-surface strains, κ(1)

xx , κ(1)
yy , κ(1)

zz , κ(1)
xy , κ(1)

xz and

κ
(1)
yz describe the curvatures associated with the first order terms in the series expansion, ε(2)xx , ε(2)yy , γ(2)

xy ,

γ
(2)
xz and γ

(2)
yz are the mid-surface strains associated with the second order terms and κ

(3)
xx , κ

(3)
yy and

κ
(3)
xy describe the curvatures associated with the third order terms. The following vectors group these

variables regarding their contribution to membrane (m), bending (b) and shear (s).
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{εm} =



ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

ε
(2)
xx

ε
(2)
yy

γ
(2)
xy

ε
(0)
zz



, {εb} =



κ
(1)
xx

κ
(1)
yy

κ
(1)
xy

κ
(3)
xx

κ
(3)
yy

κ
(3)
xy

κ
(1)
zz



{εs} =



γ
(0)
yz

γ
(0)
xz

γ
(2)
yz

γ
(2)
xz

κ
(1)
yz

κ
(1)
xz


, (2.27)

In the HSDT the matrices [Dm], [Dc], [Db] and [Ds], used to obtain the constitutive matrix of the

laminate [D] as shown in equation (2.22), are given by:

[Dm] =

NL∑
k=1


C̄

(k)
ij H1 C̄

(k)
ij H3 C̄

(k)
i3 H1

C̄
(k)
ij H3 C̄

(k)
ij H5 C̄

(k)
i3 H3

C̄
(k)
3j H1 C̄

(k)
3j H3 C̄

(k)
33 H1

 (2.28a)

[Db] =

NL∑
k=1


C̄

(k)
ij H3 C̄

(k)
ij H5 C̄

(k)
i3 H3

C̄
(k)
ij H5 C̄

(k)
ij H7 C̄

(k)
i3 H5

C̄
(k)
3j H3 C̄

(k)
3j H5 C̄

(k)
33 H3

 (2.28b)

[Dc] =

NL∑
k=1


C̄

(k)
ij H2 C̄

(k)
ij H4 C̄

(k)
i3 H2

C̄
(k)
ij H4 C̄

(k)
ij H6 C̄

(k)
i3 H4

C̄
(k)
3j H2 C̄

(k)
3j H4 C̄

(k)
33 H2

 (2.28c)

[Ds] =

NL∑
k=1


C̄

(k)
lm H1 C̄

(k)
lm H3 C̄

(k)
lm H2

C̄
(k)
lm H3 C̄

(k)
lm H5 C̄

(k)
lm H4

C̄
(k)
lm H2 C̄

(k)
lm H4 C̄

(k)
lm H3

 (2.28d)

where NL is the number of layers, i, j ∈ {1, 2, 6}, l,m ∈ {4, 5} and H is obtained as shown in equation

(2.24).

2.3 Finite Element Model

In this section the Finite Element Model (FEM) used to model the plates is presented. It is important

to mention that two FEMs are developed, since this work focus on two laminated plate theories. So, one

finite element model is based on the FSDT and the other on the HSDT. The models presented use an

eight-node serendipity quadratic element, whose representation can be seen on Figure 2.6. Each node

has 5 and 11 degrees of freedom for the FSDT and HSDT, respectively. The shape functions for each

element are given by equation (2.29), where ξ and η are the natural coordinates of the element.

Figure 2.6: Eight-node serendipity quadratic element
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{Ne} =



Ne
1

Ne
2

Ne
3

Ne
4

Ne
5

Ne
6

Ne
7

Ne
8



=



1
4 (1− ξ) (1− η) (−ξ − η − 1)

1
4 (1 + ξ) (1− η) (ξ − η − 1)

1
4 (1 + ξ) (1 + η) (ξ + η − 1)

1
4 (1− ξ) (1 + η) (−ξ + η − 1)

1
2

(
1− ξ2

)
(1− η)

1
2 (1 + ξ)

(
1− η2

)
1
2

(
1− ξ2

)
(1 + η)

1
2 (1− ξ)

(
1− η2

)



(2.29)

The displacement vector of each element can be expressed as a function of the element nodal

degrees of freedom:

{de} = {N}T {ae} =

8∑
i=1

{Ne
i }{dei} =

[
Ne

1 Ne
2 ... Ne

8

]


de1

de2

...

de8


(2.30)

where {dei} is the vector of nodal degrees of freedom of node i and is given, respectively, for FSDT and

HSDT model, by:

{dei}FSDT =
{
ue
0i ve0i we

0i θexi θeyi

}
(2.31a)

{dei}FSDT =
{
ue
0i ve0i we

0i θexi θeyi θezi u∗e
0i v∗e0i w∗e

0i θ∗exi θ∗eyi

}
(2.31b)

The equations of motion for the plate are obtained by applying the Hamilton’s principle given by:

δ

∫ t2

t1

Ldt = 0 (2.32)

where L is the Lagrangian of the system which can be calculated with the following equation:

L = T −Π (2.33)

where T represents the kinetic energy and Π is the total potential energy of the plate. The kinetic energy

is defined by:

T =
1

2

∫
V

ρ{u̇}T {u̇} dV (2.34)

where ρ is the density and u̇ represents the time derivative component of the displacement field vector,

which can be written as:

{u} = [Z]{d} (2.35)

where [Z] depends on which model is being used, and is given by:
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[Z]FSDT =


1 0 0 z 0

0 1 0 0 z

0 0 1 0 0

 (2.36a)

[Z]HSDT =


1 0 0 z 0 0 z2 0 0 z3 0

0 1 0 0 z 0 0 z2 0 0 z3

0 0 1 0 0 z 0 0 z2 0 0

 (2.36b)

{d} is the vector of the mechanical degrees of freedom and is:

{d}FSDT =
{
u0 v0 w0 θx θy

}T

(2.37a)

{d}HSDT =
{
u0 v0 w0 θx θy θz u∗

0 v∗0 w∗
0 θ∗x θ∗y

}T

(2.37b)

The potential energy Π is defined as:

Π =

NL∑
i=1

Ui −W (2.38)

where Ui and W are the strain energy of each layer i and the work done by externally applied loads,

respectively.

The strain energy of each layer is given by:

Ui =
1

2

∫
Vi

(
{σi}{εLi }+ {σ0

i }2{εNL
i }

)
dVi (2.39)

where Vi represents the volume domain of the plate i. {σi} and {σ0
i } are the stress and initial stress

vectors, {εLi } and {εNL
i } are the linear and non-linear strain vectors. For the element, equation (2.39)

can be written as:

Ue =
1

2

∫
Ae

∫
h

σijε
L
ij dz dA

e +
1

2

∫
Ae

∫
h

σ0
ij2ε

NL
ij dz dAe (2.40)

where Ae is the area of the element, h is the thickness of the layer and i, j = x, y, z.

The external work W can be calculated by:

W =

∫
V

{dT }{fb} dV +

∫
S

{dT }{fs} dS + {dT }{fc} (2.41)

where {fb}, {fs} and {fc} are, respectively, the vectors of body forces, surface tractions and concen-

trated forces. V and S represent volume and surface domains of the plate, respectively.

Mass Matrix

Integrating through the thickness the equation (2.34) can be written as:

∫
A

δ{d}T [P ]{d̈} dA (2.42)
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where A is the in-plane area of the plate and [P ] is obtained by:

[P ] =

∫ h/2

−h/2

ρ[Z]T [Z] dz (2.43)

Combining equation (2.42) with equations (2.30) the mass matrix can be obtained by:

[Me] =

∫
A

[N ]
T
[P ] [N ] dA (2.44)

Changing coordinates from (x, y) to the natural coordinates (ξ, η) the element mass matrix is given

by:

[Me] =

∫ +1

−1

∫ +1

−1

(
[N ]T [P ][N ]

)
det(J) dξ dη (2.45)

Linear Stiffness Matrix

Knowing the generalised displacement vector at all points within the element (dei ), the generalised

linear strain vector at any point is given by:

{εL} =

8∑
i=1

[Bi]{dei} (2.46)

where the corresponding approximation of membrane, bending and shear can be written as:

{εm} =

8∑
i=1

[Bm
i ]{dei} (2.47a)

{εb} =

8∑
i=1

[Bb
i ]{dei} (2.47b)

{εs} =

8∑
i=1

[Bs
i ]{dei} (2.47c)

Carrying on the integration in the thickness direction, and using equations (2.21) and (2.23) for the

FSDT and equations (2.27) and (2.28) for the HSDT, the first term of equation (2.40) can be written as

following:

1

2

∫
Ae

({εm}T [Dm]{εm}+ {εm}T [Dc]{εb}+ {εb}T [Dc]{εm}

+ {εb}T [Db]{εb}+ {εs}T [Ds]{εs}) dAe (2.48)

The internal linear strain energy expression in terms of the nodal displacements can be obtained

substituting equation (2.46) into equation (2.48).

Ue
1 =

1

2
{ae}T [Ke]{ae} (2.49)

Doing the same as before, and changing the coordinates from (x, y) to the natural coordinates (ξ, η)
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the element stiffness matrix can be obtained by:

[Ke] =

∫ +1

−1

∫ +1

−1

([Bm]
T
[Dm] [Bm] + [Bm]

T
[Dc] [Bb] + [Bb]

T
[Dc] [Bm]

+ [Bb]
T
[Dc] [Bb] + [Bs]

T
[Ds] [Bs]) det(J) dξ dη (2.50)

Geometric Stiffness Matrix

Proceeding to the integration in the thickness direction, the second term of equation (2.40) can be

expressed as:

1

2

∫
Ae

{G′}T [τ ] {G′} dAe (2.51)

where {G′} is an auxiliary vector given by:

{G
′
} =

8∑
i=1

[Gi]{dei} (2.52)

{G′}FSDT =
{
θx θy

∂u0

∂x
∂u0

∂y
∂v0
∂x

∂v0

∂y
∂w0

∂x
∂w0

∂y
∂θx
∂x

∂θx
∂y

∂θy
∂x

∂θy
∂y

}T

(2.53a)

{G′}HSDT = {θx θy θz 2u∗
0 2v∗0 2w∗

0 3θ∗x 3θ∗y
∂u0

∂x

∂u0

∂y

∂v0
∂x

∂v0
∂y

∂w0

∂x

∂w0

∂y

∂θx
∂x

∂θx
∂y

∂θy
∂x

∂θy
∂y

∂θz
∂x

∂θz
∂y

∂u∗
0

∂x

∂u∗
0

∂y

∂v∗0
∂x

∂v∗0
∂y

∂w∗
0

∂x

∂w∗
0

∂y

∂θ∗x
∂x

∂θ∗x
∂y

∂θ∗y
∂x

∂θ∗y
∂y

}T (2.53b)

The internal non-linear strain energy expression in terms of the nodal displacements can be obtained

substituting equation (2.52) into equation (2.51), which presents the following form:

Ue
2 =

1

2
{ae}T [Ke

G]{ae} (2.54)

Once again, changing the coordinates from (x, y) to the natural coordinates (ξ, η) the element geo-

metric stiffness matrix is given by:

[Ke
G] =

∫ +1

−1

∫ +1

−1

(
[G]

T
[τ ] [G]

)
det (J) dξ dη (2.55)

The initial stress state σ0, required to formulate [τ ], is computed with the displacement results ob-

tained from a static analysis, using the constitutive relations and the displacement fields of each theory.

The static analysis is done solving the following equation:

[Ke] {ae} = {F e} (2.56)

where {F e} is the force vector given by:
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{F e} =

∫ +1

−1

∫ +1

−1

(
{N}T {fb}eh+ {N}T {fs}e

)
det (J) dξ dη + {N}T {fc}e (2.57)

All the necessary integrations, to obtain the element matrices, are done numerically, using Gauss-

Lagrange numerical integration, and selective integration is employed in order to avoid shear locking.

For the membrane, bending, bending-membrane coupling terms of linear stiffness matrix, the geometric

stiffness matrix, the force vector and the mass matrix was performed a 3 × 3 Gauss point integration.

For the shear terms of the linear stiffness matrix and the post-stress computation a 2 × 2 Gauss point

integration was used.

2.4 Vibration Analysis

It is possible to obtain an eigenvalue problem from equation 2.58, assuming periodic solutions in the

form {u(x, y, t)} = {u(x, y)}eiωt, being {u} the displacement field vector.

[M ]{ü}+ [K]{u} = 0 (2.58)

Performing the eigenvalue problem shown on equation (2.59), on a structure, the free vibration fre-

quencies can be obtained. Where ω is the free vibration frequency. The square root of the eigenvalues

obtained are the free vibration frequencies for the different modes of vibration.

∣∣∣[K]− ω2[M ]

∣∣∣ = 0 (2.59)

The boundary conditions that the plates were under during this analysis were the same for all the

models presented. All the structures studied were simply supported in all the four edges as shown in

Figure 2.7. The details of the boundary conditions applied during this analysis can be seen on Table 2.1.

Figure 2.7: Boundary conditions

Table 2.1: Details of boundary conditions used for
the vibration analysis for FSDT and HSDT

FSDT

x = 0, a v0 = w0 = θy = 0
y = 0, b u0 = w0 = θx = 0

HSDT

x = 0, a v0 = w0 = θy = v∗0 = w∗
0 = θ∗y = θz = 0

y = 0, b u0 = w0 = θx = u∗
0 = w∗

0 = θ∗x = θz = 0

A vibration analysis was performed in an isotropic square plate with only a ply, with a = b = 0.3m,

thickness of 0.003m and ν = 0.25. The results obtained are shown in Table 2.2. It is important to mention

that the results presented are non dimensional given by:

ω̄ = ωa2
√

ρh

D
(2.60)
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with

D =
Eh3

12 (1− ν2)
(2.61)

The theoretical results presented were based on CLPT and calculated by [34]:

ω =

√
D

ρh

[(m
a

)2
+
(n
b

)2]
π2 (2.62)

Table 2.2: Non dimensional free vibration frequency results for an isotropic square plate (a/h = 100)

Mode N ×N
ω̄

FSDT

ω̄

HSDT

ω̄

Theoretical (CLPT)

Relative error

(FSDT)

Relative error

(HSDT)

(1,1) 2x2 33.1171 33.7461 19.739 67.775% 70.962%

5x5 19.7615 19.7662 19.739 0.114% 0.138%

10x10 19.7328 19.7329 19.739 0.031% 0.031%

15x15 19.7325 19.7325 19.739 0.033% 0.033%

20x20 19.7324 19.7324 19.739 0.033% 0.033%

(1,2) 2x2 310.6434 326.4562 49.348 529.495% 561.539%

5x5 49.8831 49.9607 49.348 1.084% 1.242%

10x10 49.3191 49.3194 49.348 0.0586% 0.058%

15x15 49.3080 49.3080 49.348 0.081% 0.081%

20x20 49.3063 49.3063 49.348 0.085% 0.085%

(2,1) 2x2 310.6434 327.2766 49.348 529.495% 563.201%

5x5 49.8831 49.9607 49.348 1.084% 1.242%

10x10 49.3191 49.3194 49.348 0.0586% 0.058%

15x15 49.3080 49.3080 49.348 0.081% 0.081%

20x20 49.3063 49.3063 49.348 0.085% 0.085%

(2,2) 2x2 306.7536 339.4727 78.957 288.507% 329.946%

5x5 85.9242 87.1351 78.957 8.824% 10.358%

10x10 78.8942 78.8989 78.957 0.079% 0.074%

15x15 78.8534 78.8536 78.957 0.131% 0.131%

20x20 78.8495 78.8495 78.957 0.136% 0.136%

(1,3) 2x2 668.9343 668.9343 98.696 577.772% 577.772%

5x5 102.5280 102.9198 98.696 3.883% 4.280%

10x10 98.6700 98.6715 98.696 0.026% 0.025%

15x15 98.5540 98.5541 98.696 0.144% 0.144%

20x20 98.5350 98.5350 98.696 0.163% 0.163%

Then an orthotropic square plate with only a ply, a = b = 0.03m and a/h = 10 was studied. The
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results of the vibration analysis are presented in Table 2.3. The theoretical results used were found in

[23] and were based on Reddy’s HSDT. For this analysis the non dimensional free vibration frequencies

are given by:

ω̄ = ωh

√
ρ

C11
(2.63)

where C11 is the elastic constant with the value of 159.85GPa[23].

Table 2.3: Non dimensional free vibration frequency results for an orthotropic square plate (a/h = 10)

Mode N ×N
ω̄

FSDT

ω̄

HSDT

ω̄

Theoretical (Reddy’s HSDT)

Relative error

(FSDT)

Relative error

(HSDT)

(1,1) 2x2 0.0488 0.0490 0.0474 2.954% 3,376%

5x5 0.0474 0.0474 0.0474 0% 0%

10x10 0.0474 0.0474 0.0474 0% 0%

15x15 0.0474 0.0474 0.0474 0% 0%

20x20 0.0474 0.0474 0.0474 0% 0%

(1,2) 2x2 0.1224 0.1250 0.1033 18.490% 21.007%

5x5 0.1035 0.1035 0.1033 0.194% 0.194%

10x10 0.1032 0.1032 0.1033 0.097% 0.097%

15x15 0.1032 0.1032 0.1033 0.097% 0.097%

20x20 0.1032 0.1032 0.1033 0.097% 0.097%

(2,1) 2x2 0.1453 0.1491 0.1188 22.306% 25.505%

5x5 0.1191 0.1192 0.1188 0.253% 0.337%

10x10 0.1187 0.1188 0.1188 0.084% 0%

15x15 0.1187 0.1188 0.1188 0.084% 0%

20x20 0.1187 0.1188 0.1188 0.084% 0%

(2,2) 2x2 0.3018 0.2190 0.1694 78.158% 29.280%

5x5 0.1699 0.1700 0.1694 0.295% 0.354%

10x10 0.1692 0.1693 0.1694 0.118% 0.059%

15x15 0.1692 0.1692 0.1694 0.118% 0.118%

20x20 0.1692 0.1692 0.1694 0.118% 0.118%

(1,3) 2x2 0.3276 0.3027 0.1888 73.517% 60.328%

5x5 0.1915 0.1916 0.1888 1.430% 1.483%

10x10 0.1886 0.1886 0.1888 0.106% 0.106%

15x15 0.1884 0.1885 0.1888 0.212% 0.159%

20x20 0.1884 0.1884 0.1888 0.212% 0.212%
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(a) Mode (1,1) (b) Mode (1,2) (c) Mode (2,1)

(d) Mode (2,2) (e) Mode (1,3)

Figure 2.8: Vibration Modes

The results presented on Tables 2.2 and 2.3 allow to study, not only, the convergence but also the

accuracy of the results obtained.

Table 2.2 shows that the results obtained, for both FSDT and HSDT, converge after a mesh size of

10× 10 for all the modes studied for the isotropic plate. Since the orthotropic plate is a thick plate, where

convergence is faster achieved, and the theoretical theory used is more suitable the results exhibited

on Table 2.3 show a perfect convergence achieved. For both models, this convergence is accomplished

after a mesh size of 5× 5 for mode (1,1) and after a mesh size of 10× 10 for all the other modes.

For the isotropic plate, after convergence is accomplished, the relative error of the free vibration

frequencies, for both FSDT and HSDT models, are lower than 1% for all modes studied. Analysing the

results obtained for the orthotropic plate, it is possible to say that, after convergence is achieved, the

relative error of the free vibration frequencies of the first three modes is lower than 0.1%, for both FSDT

and HSDT models. For the modes (2,2) and (1,3) the relative error is lower than 0.2%, for both models,

for a mesh size of 10× 10.

From this analysis it is possible to validate the formulations done for the mass matrix and linear stiff-

ness matrix, for both FSDT and HSDT models. As mention in section 1.3, in this work, the formulations

of the matrices K and KG are the ones done in [32] where they were already validated. Then, it is

possible now to use with confidence the models and formulations presented in this section to build more

models and/or make other analysis with them.
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Chapter 3

Dynamic Instability Analysis

In this chapter the numerical model to analyse the dynamic instability of structures is presented.

After joining this model with the theories and formulations presented in chapter 2 results for, both the

FSDT model and HSDT model, are presented.

3.1 Dynamic Instability

There is different physical explanations for the phenomenon of instability. An easy definition that can

be intuitively explained by the illustrative figures shown bellow is the energy method. This definition has

per base the Lagrange-Dirichlet theorem and states that the equilibrium of a conservative system will

be stable if and only if the total potential energy — the sum of the potential energies associated with

deformation and strain — takes a strict local minimum. In Figure 3.1 the ball represents the system

which is initially in equilibrium. Figure 3.1(a) represents a stable state of a system since a perturbation

will move the ball from its equilibrium position but it will roll back to its equilibrium position (position

of minimal potential energy). On the other side, in Figure 3.1(b) after a perturbation the ball will move

further away from its equilibrium position. Finally, Figure 3.1(c) depicts a neutral state since if the system

suffers a perturbation it will move in the plane assuming a new equilibrium state without any difference

in the energy state.

(a) Stable (b) Unstable (c) Neutral

Figure 3.1: Instability phenomenon

Another definition that is also widely used is based on the classical stability definition by Lyapunov,

which states that the fact that all solutions to the evolution equations governing the problem, starting
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from adjacent initial conditions, remain consistently close to this state is a necessary and sufficient

requirement for the stability of an equilibrium point.

In contrast to their static counterparts, dynamic instability events occur at a non-zero critical fre-

quency and entail all mechanical issues where the inclusion of time cannot be avoided. The most

common case of dynamic instability is when dynamic loads, including periodic loads, are applied to

mechanical structures.

3.2 Numerical Model

To find the regions of dynamic instability of a structure it is useful to use the theory of systems of

Mathieu-Hill differential equations with periodic coefficients. It is, for this reason, important to analyse the

conditions that the structure being studied is subjected to in order to be possible to include the equations

of motion in the class of Mathieu-Hill differential equations with periodic coefficients.

The structural systems that are being studied in this work the equations of motion that are Mathieu-

Hill equations can be presented in the following form:

[M ]{ẍ}+ [K]{x} − P (t)[KG]{x} = 0 (3.1a)

[K]−1[M ]{ẍ}+ [I]{x} − P (t)[K]−1[KG]{x} = 0 (3.1b)

[K]−1[M ]{ẍ}+
[
[I]− PS [K]−1[KG]− Pd[K]−1[KG] cos θt

]
{x} = 0 (3.1c)

where [M ], [K] and [KG] are, respectively, the mass matrix, the stiffness matrix and the geometric

stiffness matrix. P (t) is the periodic force that can be presented as P (t) = PS + Pd cos(θt). PS is the

static component and Pd is the dynamic component of the applied load. When Pd is different than zero

the load P will vary with time and the system can not be considered as static.

The method suggested by Bolotin [13] was used to determine the regions of dynamic instability. The

boundaries between the dynamic stability and instability regions are separated by periodic solutions with

period T and 2T in equation (3.1c), being T = 2π
θ . These solutions can be expanded into Fourier series.

Periodic solutions with period 2T and T in equation (3.1c) present, respectively, the following form:

x(t) =

∞∑
k=1,3,5

ak sin
kθt

2
+ bk cos

kθt

2
(period 2T ) (3.2)

x(t) = b0 +

∞∑
k=2,4,6

ak sin
kθt

2
+ bk cos

kθt

2
(period T ) (3.3)

To be precise, two solutions of identical periods bound the region of dynamic instability and two

solutions of different periods bound the region of dynamic stability. Substituting (3.2) or (3.3) in equation

(3.1c) and equating the coefficients of identical sin kθt
2 and cos kθt

2 a system of linear homogeneous

algebraic equations are obtained with infinite equations and infinite unknowns ak and bk. The system of

linear homogeneous equations has non-zero solutions only if the determinant of the coefficients of the
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system is equal to zero. The equations of critical frequencies are then obtained from the condition that

equation (3.1c) presents periodic solutions if the obtained determinants of the homogeneous systems

are zero.

The equation of boundary frequencies that allows to find the regions of instability which are bounded

by periodic solutions with a period 2T is:

∣∣∣∣∣∣∣∣∣∣∣∣

[I]− (PS ± Pd

2 )[K]−1[KG]− θ2

4 [K]−1[M ] −Pd

2 [K]−1[KG] 0 ...

−Pd

2 [K]−1[KG] [I]− PS [K]−1[KG]− 9θ2

4 [K]−1[M ] −Pd

2 [K]−1[KG] ...

0 −Pd

2 [K]−1[KG] [I]− PS [K]−1[KG]− 25θ2

4 [K]−1[M ] ...

... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.4)

For the regions of instability bounded by the periodic solutions with a period T, the equations of

boundary frequencies are:

∣∣∣∣∣∣∣∣∣∣∣∣

[I]− PS [K]−1[KG]− θ2[K]−1[M ] −Pd

2 [K]−1[KG] 0 ...

−Pd

2 [K]−1[KG] [I]− PS [K]−1[KG]− 4θ2[K]−1[M ] −Pd

2 [K]−1[KG] ...

0 −Pd

2 [K]−1[KG] [I]− PS [K]−1[KG]− 9θ2[K]−1[M ] ...

... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.5a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[I]− PS [K]−1[KG] −Pd

2 [K]−1[KG] 0 0 ...

−Pd[K]−1[KG] [I]− PS [K]−1[KG]− θ2[K]−1[M ] −Pd

2 [K]−1[KG] 0 ...

0 −Pd

2 [K]−1[KG] [I]− PS [K]−1[KG]− 4θ2[K]−1[M ] −Pd

2 [K]−1[KG] ...

0 0 −Pd

2 [K]−1[KG] [I]− PS [K]−1[KG]− 9θ2[K]−1[M ] ...

... ... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.5b)

where θ is the frequency of the external load and [I] is the identity matrix.

From these equations, the equations to calculate the different regions of dynamic instability for the

different approximations are obtained.

The boundaries for the principal/first region of instability with first order approximation are obtained

by solving equation (3.6) (i.e. determinant of first-order equal to zero), leading to θ1. The second order

approximation for the boundaries for the same region is given by equation (3.7) (i.e. determinant of

second-order equal to zero), leading to θ2.

[I]− (PS ± Pd

2
)[K]−1[KG]−

θ2

4
[K]−1[M ] = 0 (3.6)

∣∣∣∣∣∣[I]− (PS ± Pd

2 )[K]−1[KG] −Pd

2 [K]−1[KG]

−Pd

2 [K]−1[KG] [I]− PS [K]−1[KG]− 9θ2
1

4 [K]−1[M ]

∣∣∣∣∣∣− θ22

∣∣∣∣∣∣
1
4 [K]−1[M ] 0

0 0

∣∣∣∣∣∣ = 0 (3.7)

The first-order approximation for both boundaries (left and right) for the second region of instability,

leading to θ1, are given by:

∣∣∣[I]− PS [K]−1[KG]− θ2[K]−1[M ] = 0

∣∣∣ (3.8)
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The second approximation for the second region of instability can be obtained from:

∣∣∣∣∣∣[I]− PS [K]−1[KG] −Pd

2 [K]−1[KG]

−Pd[K]−1[KG] [I]− PS [K]−1[KG]

∣∣∣∣∣∣− θ2

∣∣∣∣∣∣0 0

0 [K]−1[M ]

∣∣∣∣∣∣ = 0 (3.9a)

∣∣∣∣∣∣[I]− PS [K]−1[KG] −Pd

2 [K]−1[KG]

−Pd

2 [K]−1[KG] [I]− PS [K]−1[KG]− 4θ21[K]−1[M ]

∣∣∣∣∣∣− θ22

∣∣∣∣∣∣[K]−1[M ] 0

0 0

∣∣∣∣∣∣ = 0 (3.9b)

It is easy to realise that these equations can be solved as eigenvalue problems.

3.3 Validation Case - Beam

First, the dynamic instability numerical model was applied to a beam, which is a simpler structure

to analyse. This exercise will be helpful to validate the model and if the results are good it will allow to

apply the model with confidence to more complex structures such as, isotropic, orthotropic, laminated

composite and sandwich plates.

The dynamic stability analysis is performed to a HEB 200 beam, represented in Figure 3.2, with a

length of 7m, E = 2.1×1011N/m2, J = 2003×10−8m4 and m = 61.3Kg/m, being P (t) = Ps+Pd cos θt with

Ps = 0. Due to its boundary condition the constrained degrees of freedoms are 1 and 9. It is employed

a finite element discretization with four Euler-Bernoulli beam elements without axial deformability.

Figure 3.2: Beam discretization [12]

Figure 3.3 depicts the first and second approximations for the first and second instability dynamic

regions of the beam under study.
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Figure 3.3: First and second approximation of the first and second dynamic instability region for the
beam

Table 3.1 presents the values of the excitation frequencies, for the corresponding dynamic load (Pd),

of the boundaries of the dynamic instability regions. θ1 are the values of the left boundary and θ2 the

ones of the right boundary. The table also shows the values presented in Briseghella et al. [12]. It is

relevant to mention that these values from literature were obtained from the graphs presented in [12]

which can involve some error and uncertainty in the values.

Table 3.1: Frequency (Hz) of the boundary of the instability regions for a beam

Pd(N)

Present Briseghella et al.[12]

Principal Region Second Region Principal Region Second Region

1st Approx. 2nd Approx 2nd Approx. 1st Approx. 2nd Approx 2nd Approx.

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

0 105.6 105.6 105.6 105.6 52.78 52.78 105.66 105.66 105.66 105.66 52.61 52.61

400000 92.26 117.3 92.83 117.6 49.75 53.35 92.26 117.47 92.98 117.77 49.53 52.83

800000 76.71 128.1 80.9 128.8 39.3 57.4 76.67 128.11 80.87 128.88 39.18 53.71

To better compare the results obtained with the ones present in the literature, Table 3.2 indicates the

relative deviations between both results.

Table 3.2: Relative deviations of frequency θ1 and θ2 (%)

Pd(N)

Principal Region Second Region

1st Approx. 2nd Approx. 2nd Approx.

θ1 θ2 θ1 θ2 θ1 θ2

0 0.06% 0.06% 0.06% 0.06% 0.32% 0.32%

400000 0% 0.14% 0.16% 0.14% 0.44% 0.98%

800000 0.05% 0.01% 0.04% 0.06% 0.31% 6.87%
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From Tables 3.1 and 3.2 it is possible to conclude that the results obtained in this work were in

accordance with the ones found in the literature. In fact, the majority of them are lower than 0.5% which

shows a great accuracy on the results obtained. Therefore this analysis validates the model proposed

to study the dynamic instability of structures.

3.4 Results

After presenting all the models and formulations, that were used in this work to study the dynamic

instability of isotropic, orthotropic, composite laminated and sandwich plates, it is, now, possible to

present the results obtained for the different plates under analysis. In section 2.4, it was shown that the

convergence is already accomplished for a mesh of 10x10. Therefore, that will be the mesh size used in

this section to compute the results for the dynamic instability analysis. Figure 3.4 depicts the boundary

conditions and the location of the uniaxial load applied to all the plates studied.

Figure 3.4: Plate Geometry

3.4.1 Isotropic Plate

The analysis of the dynamic instability of an isotropic square plate with Young’s modulus of 70GPa,

ρ = 1543Kg/m, ν = 0.25, thickness of 3mm and a ratio a/h = 100 was performed.

In Figure 3.5 the results for the first region of instability are presented as a plot of frequency (θ) against

β, that is the dynamic load factor used to obtained Pd as a function of the buckling load (Pd = βNcr).

The area in light blue, in Figure 3.5(b), is the instability region, so points in that area lead to a behaviour

of dynamic instability of the structure under study. The area outside is the stable region, which means

that any point in that area presents a stable behaviour.
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(a) Pointing out different instability regions (b) Principal Region

Figure 3.5: Dynamic instability region for an isotropic plate

Adding equation (3.7) to the computational process the second approximation for the principal region

of dynamic instability is obtained. Evolving the analysis, and, also, adding equations (3.8) and (3.9), the

first and second approximation for the second region of instability are obtained. Both approximations for

the first and second region are shown in Figure 3.6.

Figure 3.6: First and second approximation of the first and second dynamic instability region for an
isotropic plate

To better understand the dynamic instability region and to verify the reliability of those regions, a

direct integration using Newmark’s Method was performed. The time increment used is ∆t = 9× 10−5s.

An initial displacement of 0.0012m was imposed to the w0 degree of freedom on the central node of the

plate. The load cases studied are presented in Table 3.3 and their location on the dynamic instability

region can be seen in Figure 3.5(a). The results for the different points are depicted in Figures 3.7(a-f).
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Table 3.3: Load cases used to obtain the displacement vs time diagrams

θ (rad/s) Pd (N) β

A 2642 0 0

B 2800 93000 0.91

C 2831 30820.2 0.3

D 2642 21000 0.2

E 3000 21000 0.2

F 2000 51000 0.5
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(a) Point A (b) Point B

(c) Point C (d) Point D

(e) Point E (f) Point F

Figure 3.7: Displacement vs Time diagrams

Studying the same plate as before, but computing the principal dynamic instability region as a plot

of frequency ratio (θ/ω), ω being the natural frequency, against β, the results obtained can be seen in

Figure 3.8(a) for the FSDT model and Figure 3.8(b) for the HSDT model.
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(a) using FSDT model (b) using HSDT model

Figure 3.8: First and second approximation to principal region of dynamic instability for a square isotropic
plate

Tables 3.4 and 3.5 present the values of frequency ratio (Ω = θ/ω) in the first region of dynamic

instability boundaries, with varying β, for the FSDT and HSDT model, respectively. Ω1 are the values

of the left boundary and Ω2 the ones of the right boundary. These tables, also, present the results from

Ramana Reddy et al. [21]. Table 3.6 shows the relative deviations between the results obtained in this

work and the ones from [21].

Table 3.4: Variation of frequency ratios Ω1 and Ω2 for the first region of dynamic instability using FSDT
model

β
1st Approx. 2nd Approx. Ramana Reddy et al.[21]

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 2.000 2.000 2.000 2.000 2.0000 2.0000

0.1 1.950 2.049 1.950 2.049 1.9493 2.0493

0.2 1.898 2.097 1.900 2.098 1.8973 2.0976

0.3 1.845 2.144 1.848 2.146 1.8473 2.1447

0.4 1.790 2.189 1.797 2.193 1.7888 2.1908

0.5 1.734 2.234 1.746 2.239 1.7320 2.2360

0.6 1.676 2.278 1.694 2.285 1.6733 2.2803

0.7 1.615 2.321 1.644 2.329 1.6124 2.3237

0.8 1.552 2.363 1.596 2.374 1.5491 2.3664

1 1.418 2.445 1.424 2.460 1.4142 2.4493
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Table 3.5: Variation of frequency ratios Ω1 and Ω2 for the first region of dynamic instability using HSDT
model

β
1st Approx. 2nd Approx. Ramana Reddy et al.[21]

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 2.000 2.000 2.000 2.000 2.0000 2.0000

0.1 1.950 2.049 1.950 2.049 1.9493 2.0493

0.2 1.898 2.097 1.900 2.098 1.8973 2.0976

0.3 1.845 2.144 1.848 2.146 1.8473 2.1447

0.4 1.790 2.189 1.797 2.193 1.7888 2.1908

0.5 1.734 2.234 1.746 2.239 1.7320 2.2360

0.6 1.676 2.278 1.695 2.285 1.6733 2.2803

0.7 1.615 2.321 1.644 2.329 1.6124 2.3237

0.8 1.552 2.363 1.596 2.374 1.5491 2.3664

1 1.418 2.445 1.424 2.460 1.4142 2.4493

Table 3.6: Relative deviations of frequency ratios Ω1 and Ω2 (%)

β

FSDT HSDT

1st Approx. 2nd Approx. 1st Approx. 2nd Approx.

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0% 0% 0% 0% 0% 0% 0% 0%

0.1 0.04% 0.01% 0.04% 0.01% 0.04% 0.01% 0.04% 0.01%

0.2 0.04% 0.03% 0.14% 0.02% 0.04% 0.03% 0.14% 0.02%

0.3 0.12% 0.03% 0.04% 0.06% 0.12% 0.03% 0.04% 0.06%

0.4 0.07% 0.08% 0.46% 0.10% 0.07% 0.08% 0.46% 0.10%

0.5 0.12% 0.09% 0.81% 0.13% 0.12% 0.09% 0.81% 0.13%

0.6 0.16% 0.10% 1.30% 0.21% 0.16% 0.10% 1.24% 0.21%

0.7 0.16% 0.12% 1.96% 0.23% 0.16% 0.12% 1.96% 0.23%

0.8 0.19% 0.14% 3.03% 0.32% 0.19% 0.14% 3.03% 0.32%

1 0.27% 0.18% 0.69% 0.44% 0.27% 0.18% 0.69% 0.44%

Conclusions

Figures 3.7, besides allowing to understand better how the dynamic instability region is translated in

the plate behaviour, it also shows that the boundaries obtained are quite good. Points F and E that are

in the stable area present, in Figures 3.7(e) and (f), respectively, a stable behaviour since the amplitude

of the displacement is the same through time. On the other hand, Figures 3.7(b) and (d) show that

the points B and D are, clearly unstable. Both diagrams present an increasing of the amplitude of the
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displacement with time, which is an unstable behaviour. Finally, Points A and C that are both in the

boundary between the stable and unstable region present different behaviours. Figure 3.7(a) shows

that the amplitude of motion is constant. Although, Figure 3.7(c) depicts a beat-frequency oscillation.

This phenomenon happens when the plate vibrates with two different frequencies that interfere with

each other. The oscillation amplitudes add or subtract themselves as a result of this discrepancy in

vibrational frequencies due to a time variable phase difference between the components of the motion,

and the resulting oscillation amplitude takes values between the sum and the difference between the

corresponding amplitudes.

Moreover, the results just presented allow to conclude that the model used is valid in its generality.

From Figures 3.8 and Table 3.6 it becomes clear that the results obtained are in accordance with the

ones found in the literature. Actually, the relative deviations are lower than 2% for both approximations

and both models. In general, the second approximation presents higher deviations than the first approxi-

mation. This can be explained by the fact that in the literature only results for the first approximation were

found and the results obtained in this work for the second approximation are compared with the ones

from the first. Even though it was not presented in the graphics obtained, the point of the left boundary

of the second approximation for β = 0.9 shows an unexpected jump, for both the FSDT and HSDT, due

to numerical problems that occur in that area.

It is relevant to mention that both models FSDT and HSDT presented really similar results. From

tables 3.4 and 3.5 it is clear that the majority of the results are the same for both models, and the ones

that differ, the difference is almost irrelevant.

3.4.2 Orthotropic Plate

In the study of the dynamic instability of an orthotropic plate the ply studied was a square plate with

a/h = 100 and a = b = 1m. The material properties are E1 = 173GPa, E2 = 33.1GPa, G12 = 9.38GPa,

ν = 0.25 and density of 1000kg/m3.

The results obtained for the principal region of dynamic instability, as a plot of frequency θ against

the dynamic load factor β, are presented in Figure 3.9(a) and 3.9(b) for the FSDT and HSDT model,

respectively.

36



(a) using FSDT model (b) using HSDT model

Figure 3.9: First and second approximation to principal region of dynamic instability for a square or-
thotropic plate

The resonance frequencies of the boundary of the instability region obtained for both models, and

for both approximations, are presented in Table 3.7. That table also shows the results obtained for the

same plate in the work developed by Loja et al.[17].

Table 3.7: Frequency (rad/s) of the boundary of the first region of instability for an orthotropic square
plate

β

FSDT HSDT Loja et al.[17]

1st Approx. 2nd Approx. 1st Approx. 2nd Approx. 1st Approx. 2nd Approx.

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

0 923.0 923.0 923 923 923 923 923 923 921.48 921.48 921.48 921.48

0.5 799.3 1032 805.1 1034 799.3 1032 805.1 1034 802.05 1025.64 806.30 1027.29

1 652.7 1130 697.7 1138 625.7 1130 697.7 1138 658.63 1119.01 694.47 1123.74

To make it easier to compare the results presented, Table 3.8 shows the deviation of the results ob-

tained for each model, FSDT and HSDT, and the ones presented in [17]. Since Loja et al. [17] presented

results for both approximations, each approximation was compared with the respective approximation.

Table 3.8: Relative deviations of frequency θ1 and θ2 (%)

β

FSDT HSDT

1st Approx. 2nd Approx. 1st Approx. 2nd Approx.

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

0 0.16% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16%

0.5 0.34% 0.62% 0.15% 0.65% 0.34% 0.62% 0.15% 0.65%

1 0.90% 0.98% 0.47% 1.27% 0.90% 0.98% 0.47% 1.27%

Figure 3.10 depicts the first and second approximation for both, the principal and second instability
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regions, for the plate studied in this section. The model used to obtained this figure was FSDT due to

the easier computational effort needed without losing accuracy of the results obtained as already shown

previously.

Figure 3.10: First and second approximation of the first and second dynamic instability region for an
orthotropic plate

The dimensions of the plate will affect deeply the location of the dynamic instability region. One

important factor that will have an impact is the thickness of the plate. In order to analyse its impact a

dynamic instability analysis was performed for the orthotropic plate already studied with different ratios

b/h. The results obtained are presented in Figure 3.11.

Figure 3.11: First dynamic instability region for different values of b/h

Conclusions

The results obtained for the orthotropic plate are in conformity with the ones found in the literature for

both models and both approximations. All the relative deviations are lower than 1.5% and the majority
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of them are lower than 1%. Once again, both models, FSDT and HSDT, presented equal or really

similar results, as expected. For the orthotropic plate the literature presented results for the first and

second approximation. As a consequence the relative deviations for the second approximation are not

necessarily bigger than the ones obtained for the first approximation. Actually, for some points they are

smaller.

Then, it is possible to conclude that the results obtained for an orthotropic square plate are in agree-

ment with the ones found in the literature, even though their model formulate their system matrices

resorting to the Rayleigh-Ritz method.

Finally, the results presented in Figure 3.11 allow to conclude that the ratio b/h has a great impact on

the location of the principal dynamic instability region. The increase of b/h, meaning the decrease of the

thickness, shifts the principal dynamic instability region to the left. So thicker plates have the instability

regions in a zone of higher frequencies. The results also show that the difference is considerable since

the difference on the frequencies of the boundaries are, sometimes, of some thousand rad/s.

3.4.3 Laminated Composite Plate

In this section, a four layer cross-ply laminated plate is analysed. Each ply has the same thickness

and is a square plate with a [0◦/90◦/90◦/0◦] lay up, a ratio of a/h = 25 and a = 10in= 0.254m. Each

ply was made of the same orthotropic material, which has the following mechanical properties: E2 =

106lb/in2 = 6.8948GPa, E1 = 40E2, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = 0.25 and ρ =

1lbs2/in4 = 1.06864× 107kg/m3.

Figure 3.12(a) and 3.12(b) depict, both approximations, of the principal dynamic instability region

for the FSDT and HSDT model, respectively. The results are plotted as frequency θ (rad/s) against the

dynamic load factor β.

The results obtained for the frequencies of the boundaries of the first instability region, for both

models and both approximations, are presented in Table 3.9. Those results were compared with the

ones indicated in Wang et al. [15], also shown in Table 3.9.
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(a) using FSDT model (b) using HSDT model

Figure 3.12: First and second approximation to principal region of dynamic instability for a four layered
cross-ply laminated plate

Table 3.9: Frequency (rad/s) of the boundary of the first region of instability for a four layered cross-ply
laminated plate

β

FSDT HSDT Wang et al. [15]

1st Approx. 2nd Approx. 1st Approx. 2nd Approx.

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

0 144.6 144.6 144.6 144.6 144.5 144.5 144.5 144.5 144.57 144.57

0.3 133.3 155 133.6 155.2 133.2 154.9 133.5 155.1 133.29 155.03

0.6 121 164.8 122.4 165.4 120.9 164.8 122.3 165.3 120.95 164.83

0.9 107.2 174.1 112.1 175.1 107.1 174 112 175 107.21 174.08

To better compare and analyse the results presented in the previous table, the relative deviations of

the results obtained in this work and the ones presented in [15] were calculated and indicated in Table

3.10.

Table 3.10: Relative deviations of frequency θ1 and θ2 (%) for a four layered cross-ply laminated plate

β

FSDT HSDT

1st Approx. 2nd Approx. 1st Approx. 2nd Approx.

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

0 0.02% 0.02% 0.02% 0.02% 0.05% 0.05% 0.05% 0.05%

0.3 0.01% 0.02% 0.23% 0.11% 0.07% 0.08% 0.16% 0.05%

0.6 0.04% 0.02% 1,20% 0.35% 0.04% 0.02% 1.12% 0.29%

0.9 0.01% 0.01% 4.56% 0.59% 0.10% 0.05% 4.47% 0.53%

Figure 3.13 depicts the two approximations for the first and second dynamic instability regions. As

40



done for the study of the orthotropic plate, the graph presented was obtained using the FSDT model

since it presents a good accuracy and it is faster to compute than the HSDT.

Figure 3.13: First and second approximation of the first and second dynamic instability region for a four
layered cross-ply laminated plate

In order to understand how the ratio a/b affects the dynamic instability of a composite laminated plate

a parametric study was performed. Analysing the same laminated composite plate already used in this

section, but varying its relation a/b, the principal dynamic instability regions presented in Figure 3.14,

were obtained.

Figure 3.14: First dynamic instability region for different values of a/b

Conclusions

From the results obtained for the laminated composite plate, it is possible to conclude that the results

obtained in this work are in accordance with the ones found in the literature. The relative deviations

obtained are all lower than 5% and lower than 1.5% if not considering the point on the left boundary of
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the second approximation for both FSDT and HSDT. Once again, and as expected, both theories, FSDT

and HSDT, presented similar results for the frequencies of the boundaries of the instability dynamic

region. Unfortunately, in the literature it was only found the results for the first approximation. Therefore

the relative deviations for the second approximations were calculated comparing them to the ones of

the first approximation of the literature. This can explain why the relative deviations for the second

approximation are generally higher than the ones obtained for the first approximation.

At last, the parametric study show how the ratio a/b affects the dynamic instability region of a com-

posite laminated plate. The results presented in Figure 3.14 permit to conclude that the decrease of a/b

shifts the dynamic instability zone to the right, meaning to a zone with higher frequencies. The difference

becomes less significant for higher ratios a/b and vice versa. The width of the region tends to decrease

with the increase of a/b and, consequently, the area of the unstable dynamic region decreases with the

increase of a/b.
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Chapter 4

Sandwich Plates

In this chapter sandwich plates will be studied. The numerical model used to analyse them will be

presented. A first validation of the model will be performed doing a free vibration analysis. Later on, the

dynamic instability will be studied.

A special case of sandwich plates, where the core is made of a viscoelastic material, will be pre-

sented. It is already expectable that using this kind of materials in the core will add some kind of

damping effect on the structure. A dynamic instability analysis will be performed and its effect will be

studied.

4.1 Sandwich Plates

In this section it will be presented the formulation used to study a sandwich plate and its validation

through a vibration analysis.

A sandwich panel generally consists of two thin but stiff face sheets or skins separated by a light-

weight and thick but low modulus core [5]. A graphical representation of a sandwich panel can be seen

in Figure 4.1.

Figure 4.1: Sandwich Plate

The face sheets are usually laminated composite materials, but, can also be made of metallic ma-

terials. Moreover, the core is usually made of a light-weight material, such as, a foam polymer or a

honeycomb material. The main objective of the core, in a sandwich plate, is to reduce the weight of the

structure while producing a high resistance to transverse loads or damping unwanted vibrations.
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It is, now, needed to develop a mathematical formulation that models sandwich plates in order to be

able to proceed to different kinds of analyses and studies. The next subsection will present the models

used in this work.

4.1.1 Numerical Model

As mentioned in section 1.3, the formulation used to study sandwich panels in this work is an adap-

tation and an expansion of the one developed by Tomé [32].

The model formulates the sandwich panel as two laminated composite plates (e1, e2) and an elastic

core (c) between them. Figure 4.2 is a visual representation of the model developed.

Figure 4.2: Sandwich plate model

The two laminated composite layers (e1, e2) are modelled using the first shear deformation theory

(FSDT), while the core (c) is modelled with the higher-order shear deformation theory (HSDT).

The following assumptions are taken into account in the development of the sandwich panel model:

1. the origin of the z axis is the medium plane of the core layer;

2. no slip occurs at the interfaces between layers;

3. the displacements are continuous along the interfaces.

Adapting equations (2.16) for the laminated composite plates (e1, e2), the displacement field for these

layers is given, in the general form, by:

ui (x, y, z, t) = ui
0 (x, y, t) + (z − zi) θ

i
x (x, y, t) (4.1a)

vi (x, y, z, t) = vi0 (x, y, t) + (z − zi) θ
i
y (x, y, t) (4.1b)

wi (x, y, z, t) = wi
0 (x, y, t) (4.1c)

where i = e1, e2 and zi is obtained by:
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ze1 =
hc

2
+

he1

2
, ze2 = −hc

2
− he2

2
(4.2)

Since the core is modelled with the HSDT, the displacement field is given adapting equation (2.25)

and can be written as:

uc (x, y, z, t) = uc
0 (x, y, t) + zθcx (x, y, t) + z2u∗c

0 (x, y, t) + z3θ∗cx (x, y, t) (4.3a)

vc (x, y, z, t) = vc0 (x, y, t) + zθcy (x, y, t) + z2v∗c0 (x, y, t) + z3θ∗cy (x, y, t) (4.3b)

wc (x, y, z, t) = wc
0 (x, y, t) + zθcz (x, y, t) + z2w∗c

0 (x, y, t) (4.3c)

Assumption 3 can be mathematically written as:

uc =

(
x, y,

hc

2
, t

)
= ue1

(
x, y,

hc

2
, t

)
, uc =

(
x, y,−hc

2
, t

)
= ue2

(
x, y,−hc

2
, t

)
(4.4a)

vc =

(
x, y,

hc

2
, t

)
= ve1

(
x, y,

hc

2
, t

)
, vc =

(
x, y,−hc

2
, t

)
= ve2

(
x, y,−hc

2
, t

)
(4.4b)

wc =

(
x, y,

hc

2
, t

)
= we1 (x, y, t) , wc =

(
x, y,−hc

2
, t

)
= we2 (x, y, t) (4.4c)

Substituting these equations into the displacement field equations, (4.1) and (4.3), the following is

obtained:

θe1x =
2

he1

(
ue1
0 − uc

0 −
hc

2
θcx − h2

c

4
u∗c
0 − h3

c

8
θ∗cx

)
(4.5a)

θe2x =
2

he2

(
−ue2

0 + uc
0 −

hc

2
θcx +

h2
c

4
u∗c
0 − h3

c

8
θ∗cx

)
(4.5b)

θe1y =
2

he1

(
ve10 − vc0 −

hc

2
θcy −

h2
c

4
v∗c0 − h3

c

8
θ∗cy

)
(4.5c)

θe2y =
2

he2

(
−ve20 + vc0 −

hc

2
θcy +

h2
c

4
v∗c0 − h3

c

8
θ∗cy

)
(4.5d)

θcz =
we1

0 − we2
0

hc
, w∗c

0 =
4

h2
c

(
we1

0 + we2
0

2
− wc

0

)
(4.5e)

As done before in section 2.2, the linear and non-linear strains are obtained by substituting the re-

spective displacement field into equations (2.18) and (2.19), the linear and non linear strain-displacement

relations, respectively.

Therefore, for the laminated composite plates layers e1 and e2, the linear and non-linear strains are

given substituting equations (4.1) into equations (2.18) and (2.19), respectively. The non zero linear

terms are, then, written as:
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εixx
L
=

∂ui
0

∂x
+ (z − zi)

∂θix
∂x

= εixx
(0)

+ zκi
xx

(1)

εiyy
L
=

∂vi0
∂y

+ (z − zi)
∂θiy
∂y

= εiyy
(0)

+ zκi
yy

(1)

γi
xy

L
=

(
∂ui

0

∂y
+

∂vi0
∂x

)
+ (z − zi)

(
∂θix
∂y

+
∂θiy
∂x

)
= γi

xy

(0)
+ zκi

xy

(1)

γi
yz

L
= θiy +

∂wi
0

∂y
= γi

yz

(0)

γi
xz

L
= θix +

∂wi
0

∂x
= γi

xz

(0)

(4.6)

where i = e1, e2.

The following vectors group these variables regarding their contribution to membrane (m), bending(b)

and shear (s).

{εim} =


εixx

(0)

εiyy
(0)

γi
xy

(0)

 , {εib} =


κi
xx

(1)

κi
yy

(1)

κi
xy

(1)

 {εis} =

γi
yz

(0)

γi
xz

(0)

 , (4.7)

On the other hand, for the core (c), the linear and non-linear strains are given substituting equations

(4.3) into equations (2.18) and (2.19), respectively. Thus, the linear strain terms can be given by:

εcxx
L =

∂uc
0

∂x
+ z

∂θcx
∂x

+ z2
∂u∗c

0

∂x
+ z3

∂θ∗cx
∂x

= εcxx
(0) + zκc

xx
(1) + z2εcxx

(2) + z3κc
xx

(3)

εcyy
L =

∂vc0
∂y

+ z
∂θcy
∂y

+ z2
∂v∗c0
∂y

+ z3
∂θ∗cy
∂y

= εcyy
(0) + zκc

yy
(1) + z2εcyy

(2) + z3κc
yy

(3)

εczz
L = θcz + 2zw∗c

0 = εczz
(0) + zκc

zz
(1)

γc
yz

L =

(
θcy +

∂wc
0

∂y

)
+ z

(
2v∗c0 +

∂θcz
∂y

)
+ z2

(
3θ∗cy +

∂w∗c
0

∂y

)
= γc

yz
(0) + zκc

yz
(1) + z2γc

yz
(2)

γc
xz

L =

(
θcx +

∂wc
0

∂x

)
+ z

(
2u∗c

0 +
∂θcz
∂x

)
+ z2

(
3θ∗cx +

∂w∗c
0

∂x

)
= γc

xz
(0) + zκc

xz
(1) + z2γc

xz
(2)

γc
xy

L =

(
∂uc

0

∂y
+

∂vc0
∂x

)
+ z

(
∂θcx
∂y

+
∂θcy
∂x

)
+ z2

(
∂u∗c

0

∂y
+

∂v∗c0
∂x

)
+ z3

(
∂θ∗cx
∂y

+
∂θ∗cy
∂x

)
=

γc
xy

(0) + zκc
xy

(1) + z2γc
xy

(2) + z3κc
xy

(3)

(4.8)

The following vectors group these variables regarding their contribution to membrane (m), bending(b)

and shear (s).
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{εcm} =



εcxx
(0)

εcyy
(0)

γc
xy

(0)

εcxx
(2)

εcyy
(2)

γc
xy

(2)

εczz
(0)



, {εcb} =



κc
xx

(1)

κc
yy

(1)

κc
xy

(1)

κc
xx

(3)

κc
yy

(3)

κc
xy

(3)

κc
zz

(1)



{εcs} =



γc
yz

(0)

γc
xz

(0)

γc
yz

(2)

γc
xz

(2)

κc
yz

(1)

κc
xz

(1)


, (4.9)

The finite element model used to study sandwich plates is an eight-node serendipity quadratic model,

as presented in section 2.3, but with 15 degrees of freedom per node. In these 15 degrees of freedom,

the first and last three are regarding the top and bottom laminated composited face sheets, respectively,

and the 11 in between are regarding the core (c).

This change won’t affect the process and calculations already presented in section 2.3. Although

it will cause changes on some vectors and matrices. The vector of nodal degrees of freedom of the

sandwich plate, {dei}, corresponding to node i, assumes the following form:

{dei} = {(ue2
0 )

e
i (ve20 )

e
i (we2

0 )
e
i (uc

0)
e
i (vc0)

e
i (wc

0)
e
i (θcx)

e
i

(
θcy
)e
i

...

... (u∗c
0 )

e
i (v∗c0 )

e
i (θ∗cx )

e
i

(
θ∗cy
)e
i

(ue1
0 )

e
i (ve10 )

e
i (we1

0 )
e
i} (4.10)

The matrix [Z], essential to obtain the mass matrix, will present the following form:

[Z] =



1− (z − ze2)
2

he2
0 0

0 1− (z − ze2)
2

he2
0

0 0 1− z
hc

+ z2 4
h2
c

1 + 2
he2

(z − ze2)− 2
he1

(z − ze1) 0 0

0 1 + 2
he2

(z − ze2)− 2
he1

(z − ze1) 0

0 0 1− z2 4
h2
c

z − hc

he2
(z − ze2)− hc

he1
(z − ze1) 0 0

0 z − hc

he2
(z − ze2)− hc

he1
(z − ze1) 0

z2 +
h2
c

2he2
(z − ze2)−

h2
c

2he1
(z − ze1) 0 0

0 z2 +
h2
c

2he2
(z − ze2)−

h2
c

2he1
(z − ze1) 0

z3 − h3
c

4he2
(z − ze2)−

h3
c

4he1
(z − ze1) 0 0

0 z3 − h3
c

4he2
(z − ze2)−

h3
c

4he1
(z − ze1) 0

1 + 2
he1

(z − ze1) 0 0

0 1 + 2
he1

(z − ze1) 0

0 0 1 + z
hc

+ z2 4
h2
c



T

(4.11)

Besides that, the auxiliary vector {G′}k, used to obtained the geometric stiffness matrix, for each
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layer k = e1, e2, c, is now written as:

{G
′
}k =

8∑
i=1

[Gk
i ]{dei} (4.12)

{G′}k=e1,e2 = {θkx θky
∂uk

0

∂x

∂uk
0

∂y

∂vk0
∂x

∂vk0
∂y

∂wk
0

∂x

∂wk
0

∂y
− zi

∂θkx
∂x

− zi
∂θkx
∂y

...

... − zi
∂θky
∂x

− zi
∂θky
∂y

∂θx
∂x

∂θx
∂y

∂θy
∂x

∂θy
∂y

}T (4.13)

{G′}c = {θcx θcy θcz 2u∗c
0 2v∗c0 2w∗c

0 3θ∗cx 3θ∗cy
∂uc

0

∂x

∂uc
0

∂y

∂vc0
∂x

∂vc0
∂y

∂wc
0

∂x

∂wc
0

∂y

∂θcx
∂x

∂θcx
∂y

∂θcy
∂x

∂θcy
∂y

∂θcz
∂x

∂θcz
∂y

∂u∗c
0

∂x

∂u∗c
0

∂y

∂v∗c0
∂x

∂v∗c0
∂y

∂w∗c
0

∂x

∂w∗c
0

∂y

∂θ∗cx
∂x

∂θ∗cx
∂y

∂θ∗cy
∂x

∂θ∗cy
∂y

}T (4.14)

4.1.2 Vibration Analysis

Building the stiffness matrix [K] and the mass matrix [M ] of a sandwich plate, using the model

presented in the previous section, it is possible to obtain its natural frequencies. As before, this can be

achieved performing the eigenvalue problem at equation (2.59).

The plate considered in this analysis is simply supported in all four edges. Table 4.1 indicates the

details of the boundary conditions applied in the sandwich plate.

Table 4.1: Details of boundary conditions used on the vibration analysis for a sandwich plate

Top Face Sheet Core Bottom Face Sheet

x = 0, a v0 = w0 = 0 v0 = w0 = θy = v∗0 = θ∗y = 0 v0 = w0 = 0

y = 0, b u0 = w0 = 0 u0 = w0 = θx = u∗
0 = θ∗x = 0 u0 = w0 = 0

The plate studied in this section was a square sandwich plate with a [0◦/90◦/0◦/core/0◦/90◦/0◦] lay

up, a/h = 10 and hc/h = 0.88. The face sheets were made of glass polyester resins, having the

following properties: E1 = 24.51GPa, E2 = 7.77GPa, G12 = G13 = 3.34GPa, G23 = 1.34GPa, νs = 0.078

and ρs = 0.078Kg/m3. The core material was HEREX C70.130 PVC foam, which has the following

mechanical properties: Ec = 103.63MPa, Gc = 50MPa, νc = 0.32 and ρc = 130Kg/m3.

Table 4.2 present the results obtained and the comparision with the ones presented in Nayak et al.

[23]. The non dimensional natural frequencies are given by:

ω̄ = ω
a2

h

√
ρc
Ec

(4.15)
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Table 4.2: Non dimensional free vibration frequency results for a sandwich plate

Mode
Mesh

N ×N

ω̄

Present Model

ω̄

Nayak et al.[23]
Relative error

(1,1) 2x2 14.69 15.04 2.33%

5x5 14.42 15.04 4.12%

10x10 14.46 15.04 3.86%

15x15 14.52 15.04 3.46%

20x20 14.60 15.04 2.93%

(1,2) 2x2 31.91 28.10 13.56%

5x5 26.65 28.10 5.16%

10x10 26.62 28.10 5.27%

15x15 26.64 28.10 5.20%

20x20 26.67 28.10 5.09%

(2,1) 2x2 32.56 29.20 11.51%

5x5 27.28 29.20 6.58%

10x10 27.25 29.20 6.68%

15x15 27.26 29.20 6.64%

20x20 27.28 29.20 6.58%

(2,2) 2x2 40.98 37.76 8.53%

5x5 35.44 37.76 6.14%

10x10 35.36 37.76 6.36%

15x15 35.37 37.76 6.33%

20x20 35.38 37.76 6.30%
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(a) Mode (1,1) (b) Mode (1,2)

(c) Mode (2,1) (d) Mode (2,2)

Figure 4.3: Vibration Modes of a sandwich plate

Regarding convergence, it is possible to say that the results converge early on, after a mesh size of

5 × 5 or 10 × 10 for all modes studied. Relevant to mention that, for the first mode, even though, the

smallest relative error is for a mesh size of 2 × 2, the error gets smaller with the increase of the mesh

size after 2× 2. Results for a mesh size bigger than 20× 20 would presented a smaller error, but due to

the computational and memory effort required it was not possible to obtained them.

It is possible to conclude that, although the results have errors higher than 2%, and for some modes,

higher than 5%, when compared with the ones obtained in [23], they are still good results. Once there

are no errors higher than 10%, the results obtained validate the formulations of the mass matrix and

stiffness matrix for a sandwich plate. This discrepancy can be explained by the different models used

to obtained these results. In the present work the sandwich plate is modelled using an eight-node

serendipity quadratic element and the FSDT for the face sheets and the HSDT for the core. Instead, in

[23], to obtain the results used to do the comparison the formulation of the sandwich plate is made using

a ESL model and Reddy’s higher order theory but a 9 node quadratic element.
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4.1.3 Dynamic Instability Analysis

To study the dynamic instability of a sandwich plate using the model just presented in section 4.1.1,

a five layered square symmetric sandwich plate was analysed. The plate consists of laminated cross

ply face sheets and an isotropic core with a [0◦/90◦/core/90◦/0◦] lay up. Each of the face sheet plies is

assumed to be the same thickness, the ratio between the thickness of the core and the total thickness

(hc/h) is taken to be 0.8, being the total thickness 1mm, and the ratio a/h is 10. The properties of the

materials used for the face sheets and the core are the following:

• Face sheets: E1 = 276GPa, E2 = G12 = G13 = G23 = 10.34GPa, ν12 = 0.22 and ρ = 681.8Kg/m3;

• E1 = E2 = 0.5776GPa, G12 = G13 = 0.1079GPa, G23 = 0.22215GPa, ν12 = 0.0025 and ρ =

1000kg/m3.

Figure 4.4 depicts the principal dynamic instability region for both, the first and second, approxima-

tions.

Figure 4.4: First and second approximation of the first dynamic instability region for a symmetric sand-
wich plate

Table 4.3 presents the non-dimensional excitation frequencies of the boundary of the instability region

obtained for the first and second approximations. The same table, also, indicates the non-dimensional

results exhibit in Sahoo et al. [27], which uses a hyperbolic zigzag theory to model the plates. It is

important to mention that these values were obtained from the graph presented in [27], which can lead

to some lack of accuracy between the exact values obtained in [27] and the ones presented in Table 4.3.

The non-dimensional frequencies were obtained by:

θ̄ = 100θa

√
ρc
E1f

(4.16)

where ρc is the densidity of the core and E1f is the Young’s modulus of the face sheets.
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Table 4.3: Non-dimensional frequency of the boundary of the first region of instability for a symmetric
sandwich plate

β

Present Sahoo et al. [27]

1st Approx. 2nd Approx.

θ̄1 θ̄2 θ̄1 θ̄2 θ̄1 θ̄2

0 20.375 20.375 20.375 20.375 19.674 19.674

0.2 19.936 20.803 19.942 20.809 19.110 20.223

0.4 19.491 21.224 19.503 21.230 18.516 20.742

0.6 19.033 21.633 19.057 21.651 17.923 21.276

To make it easier to compare the results obtained with the model presented in this work and the

results presented in [27], Table 4.4 indicates the relative deviations between both results.

Table 4.4: Relative deviations of non-dimensional frequency θ̄1 and θ̄2 (%) for a symmetric sandwich
plate

β
1st Approx. 2nd Approx.

θ̄1 θ̄2 θ̄1 θ̄2

0 3.56% 3.56% 3.56% 3.56%

0.2 4.32% 2.87% 4.35% 2.90%

0.4 5.27% 2.32% 5.33% 2.35%

0.6 6.19% 1.68% 6.33% 1.76%

Figure 4.5 depicts the first and second approximations for both, the first and second dynamic insta-

bility regions, for the plate under analysis in this section.

Figure 4.5: First and second approximation of the first and second dynamic instability region for a sym-
metric sandwich plate
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The core and its dimensions is a relevant part of a sandwich plate and it will have an important impact

on the mechanical behaviour of the plate. In order to study the influence of the thickness of the core on

the dynamic instability of a sandwich plate, the principal dynamic instability region was obtained, for the

sandwich plate already studied in this section, for different values of hc/h. Figure 4.6 depicts the results

obtained.

Figure 4.6: First dynamic instability region for different values of hc/h

Conclusions

The results obtained for the sandwich plate are not as close to the results found in the literature as the

plates previously studied. However the relative deviations are lower than 10%. As already mention, the

values from the literature were obtained using a graph from [27] which can bring some imprecision to the

results used in the comparison. Besides that, [27] used a different element in the FEM and instead of the

Bolontin’s method to obtain the dynamic instability regions, they applied a different method developed by

themselves. These can explain some of the discrepancies obtained between the results. Although it is

not used to build the graph from Figure 4.4 the point in the right boundary of the second approximation

for β = 0.8 presents a jump which clearly means that its calculation has a numerical and computational

error associated.

However, at the end, one can say that the results obtained in this work are validated by the ones

found in literature since its relative deviations are lower than 10% and some of them lower than 5%.

The last analysis, whose results are presented on Figure 4.6, shows that the decrease of the ratio

hc/h shifts the principal dynamic instability region to the right. This means that sandwich plates with

thicker cores will have the principal dynamic instability region for lower frequencies and vice versa.
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4.2 Sandwich Plates with Viscoelastic Core

In this section two numerical models that can be used to describe the mechanical behaviour of a

sandwich plate with a viscoelastic core will be presented.

The material that composes the core will have a big influence on the mechanical behaviour of the

sandwich plate. Because of that, it is extremely important to choose an appropriate material. Some

materials are more advantageous than others, including, most especially, viscoelastic materials.

Figure 4.7: Sandwich plate with a viscoelastic core

Viscoelastic materials are frequently employed as core materials where damping is a major concern

because they undergo significant deformations under external pressure and have the capacity to absorb

and dissipate energy. They have characteristics of both viscous and elastic materials. The damping

effect can be added to the model in different ways. In this work it is going to be used two different types

of damping, proportional damping and hysteretic damping, which uses complex variables.

4.2.1 Proportional Damping

Considering the equation of motion of a plate, already shown on equation (3.1c), it can be added a

damping term as follows:

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} − P (t)[KG]{x} = 0 (4.17)

where [C] is the damping matrix in the form [C] = α[M ] + β[K] but, during the development of this work,

β = 0 was considered. If the damping coefficient (ϵ) is given by ϵ = α/2 the following can be done:

e−ϵt = I +

∞∑
k=1

ϵk(−t)k

k!
(4.18)

Equation (4.17) leads to the following form, when the solutions are in the form x = e−ϵtu(t) and e−ϵt

is not singular:

[K]−1[M ]{ü}+ {[I]− [K]−1[M ]ϵ2 − [Ps + Pdϕ(t)] [K]−1[KG]}{u} = 0 (4.19)

Extending the considerations given in section 3.2, it is easy to conclude that the boundary of the dy-

namic instability regions is given by the periodic solutions with period T and 2T. The boundary frequency

equations can be also found by looking for periodic solutions, such as the Fourier series represented

by equations (3.2) and (3.3), which, when inserted into equation (4.17), offer two linear homogeneous
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systems with approximate solutions. Equation (4.20) presents the system to obtained solutions with a

period of 2T.

∣∣∣∣∣∣[I]− (PS + Pd

2 )[K]−1[KG]− θ2

4 [K]−1[M ] −θ[K]−1[M ]ϵ

θ[K]−1[M ]ϵ [I]− (PS + Pd

2 )[K]−1[KG]− θ2

4 [K]−1[M ]

∣∣∣∣∣∣ = 0 (4.20)

4.2.2 Hysteretic Damping

As already mentioned, the hysteretic damping can be added to the system through the use of com-

plex variable. The shear modulus of viscoelastic materials is expressed in complex form as:

G = G′ + iG′′ (4.21)

where G’ and G” are the real part and imaginary part of the complex modulus and are measures of the

total energy stored and dissipated, respectively.

In this work to modelled a sandwich plate with viscoelastic core, it was used the model already

presented in section 4.1.1, giving complex values for the Young’s modulus. Then E can be written as:

Ec = E′ + ηE′i (4.22)

where η is the material loss factor. This will lead to complex values in the matrices of the system,

including the stiffness matrix and geometric stiffness matrix. The analysis performed is done using

exactly the same model presented in sections 3.2 and 2.4 to obtain the dynamic instability regions and

natural frequencies, respectively. The results obtained from the eigenvalue problems will be, obviously,

complex and it will be needed to calculate their modulus to obtain the final result.

For sandwich plates with a viscoelastic core the vibration characteristics are usually associated with

the modal loss factor. The measure of the vibratory energy absorbed by the structure is represented by

the modal loss factors, which are the normalised imaginary portions of the bending stiffness. Therefore,

it is important to obtain this factor for a better understanding of the plate. The modal loss factor can be

calculated by:

ηi =
ωI

ωR
(4.23)

where i indicates the mode, ωI is the imaginary component of ω and ωR is the real part.

4.2.3 Dynamic Instability Analysis - Results

To analyse the effects of adding a viscoelastic core to a sandwich plate the same plate was studied

for both methods. The plate under analysis is a square, three layered sandwich plate with a [0◦/core/0◦]

lay-up, thickness of 1mm and a/h = 100. The mechanical properties of the isotropic materials that the

face sheet and the core are made of are the following:
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• Face sheets: Ef = 66GPa, ν12 = 0.33 and ρf = 2680Kg/m3;

• Core: Ec = 5.2 + η5.2iMPa, ν12 = 0.3 and ρc = 1015Kg/m3.

Proportional Damping

To better understand the effect of the viscoelastic core, Figure 4.8 depicts the principal dynamic

instability region for the sandwich plate with α = 0, meaning that it should behave like a system without

damping, therefore a purely elastic core. Whereas, Figure 4.9 presents the same region for a sandwich

plate with a viscoelastic core with α = 50.

Figure 4.8: Principal dynamic instability region for
α = 0

Figure 4.9: Principal dynamic instability region for
α = 50

In order to analyse the effect that damping has on the behaviour of the plate over time a direct

integration using Newmark’s Method was performed. The time increment used was ∆t = 0.00008s and

an initial displacement of 0.0004m was imposed to the w0 degree of freedom on the central node of the

plate. A group of the same load cases were studied for both plates to better compare the damping effect

on different regions. The load cases studied are presented in Table 4.5 and its location on the dynamic

instability region can be seen in Figures 4.8 and 4.9. Figures 4.10(a-d) depict the time vs. displacement

diagrams for the load cases for α = 0 and Figures 4.11(a-d) for α = 50.

Table 4.5: Load cases used to obtain the displacement vs time diagrams

Points θ (rad/s) Pd (N)

A and A’ 3002 0

B and B’ 3003 200

C and C’ 3002 216.3

D and D’ 3002 1000
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(a) Point A (b) Point B

(c) Point C (d) Point D

Figure 4.10: Displacement vs Time diagrams of a sandwich plate with a purely elastic core with α = 0
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(a) Point A’ (b) Point B’

(c) Point C’ (d) Point D’

Figure 4.11: Displacement vs Time diagrams of a sandwich plate with viscoelastic core with α = 50

To study the effect of α on the mechanical behaviour and, consequently, on the dynamic instabil-

ity regions of a sandwich plate with a viscoelastic core, the dynamic instability analysis of plates with

different values of α is performed. The results can be seen in Figure 4.12 which depicts the different

dynamic instability principal regions. Table 4.6 presents the approximate values of the dynamic force

and frequency of the cases loads on the minimum point of the principal dynamic instability’s boundary

for different α.

Table 4.6: Minimum of the dynamic instability principal region for different values of α

Pd (N) θ (rad/s)

α = 0 0 3002.8

α = 5 27.66 3003

α = 50 276.3 3002

α = 100 552.3 2999
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Figure 4.12: Principal dynamic instability region of a sandwich plate with viscoelastic core for different α

Hysteretic Damping

The dynamic stability analysis,using the hysteretic damping model, is performed on the sandwich

plate with a viscoelastic core. The plate presents the same properties as the previous plate studied.

Figure 4.13 depicts the principal dynamic instability region for a sandwich plate with η = 0, which would

be equivalent to a sandwich plate with a purely elastic core. On the other side, Figure 4.14 presents the

principal dynamic instability region for a sandwich plate with a viscoelastic core with η = 0.1.

Figure 4.13: Principal dynamic instability region for
η = 0

Figure 4.14: Principal dynamic instability region
for η = 0.10

To analyse the effect of the variance of the core material loss factor η on the dynamic instability of

the plate, Figure 4.15 depicts the principal dynamic instability region for multiple values of η. In Table 4.7

are shown the values of the dynamic force and frequency of the lowest point of the principal dynamic

instability region’s boundary for the different values of η.
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Figure 4.15: Principal dynamic instability region of a sandwich plate with viscoelastic core for different η

Table 4.7: Minimum of the dynamic instability principal region fo different values of η

Pd (N) θ (rad/s)

η = 0 0 3003

η = 0.10 613.8 3005

η = 0.20 1225 3013

η = 0.30 1833 3026

η = 0.40 2433 3043

η = 0.50 3025 3066

Conclusions

From the results presented, it is possible to conclude that adding a viscoelastic core to a sandwich

plate will add damping to the system. Damping will transform the dynamic instability region. The mini-

mum will present a round shape instead of a peak and that minimum is for any positive dynamic force

applied to the system.

Besides that, Figures 4.10(a-d) and 4.11(a-d) allow to better understand the changes on the me-

chanical behaviour of the plate with viscoelastic core. These diagrams are also a good way to check

the reliability of the regions obtained. Figures 4.10 depict the expected diagrams for a system with no

damping where the points outside the dynamic instability region will show a stable behaviour in which

the amplitude keeps the same over time, and the points inside the unstable region present an increase
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of the amplitude with time. It is relevant to mention, that this increase becomes more sensitive when

the point is further away from the boundaries. On the other side, Figures 4.11 depict a very different

behaviour. Figures 4.11(a), 4.11(b) and 4.11(c) are characterised by a displacement function whose

amplitude decreases exponentially with time. Since the point C’ is in the boundary between regions or

really close to it, it shows a softer damping where the decrease of amplitude is slower than the others.

Figure 4.11(d) shows a typical unstable behaviour which was the expected result since point D’ is in the

unstable region.

Furthermore, the results obtained using proportional damping, and presented in Figure 4.12, show

that the increase of α reduces the area of the unstable dynamic region. This area reduction is due to

the fact that when α increases the minimum of the boundary is a load case with a higher dynamic force

applied.

For the hysteretic damping the results obtained show the already expected change on the dynamic

instability region and that as η increase the value of the force at the minimum also increases. Besides

that, Table 4.7 shows that there is, also, a slow shift to the right of the principal dynamic instability region

with the increase of η. It is possible to say that a viscoelastic core improves the dynamic behaviour of a

sandwich plate since it reduces the area of its dynamic instability region.
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Chapter 5

Conclusions

With all the work developed and presented, in this chapter a reflection of the results obtained and

possible future developments and improvements on the area will be performed.

5.1 Achievements

The work developed in this thesis allowed to enlarge the computationally efficient finite element

models already developed in Matlab by Tomé[32]. It added two more analyses, a free vibration analysis

and a dynamic instability analysis, with and without damping.

Beginning with Chapter 2 Development of Plates Elements, the formulations used to model isotropic,

orthotropic and laminated composite plates were presented. Besides that the mass matrix was created

and added to the formulations. A free vibration analysis was performed to an isotropic and an orthotropic

plate in order to validate the models developed.

Secondly, in Chapter 3 Dynamic Instability Analysis the numerical model used to study the dynamic

instability of the structures analysed was developed. This model was applied to isotropic, orthotropic

and laminated composite plates, whose results validated the model presented. Throughout this chapter,

results from many studies were provided, showing how various parameters might affect the dynamic

instability of the plates analysed. These parametric studies covered the changes in parameters like the

ratios b/h and a/b.

Lastly, in Chapter 4 Sandwich Plates the formulations to model these plates were presented. The

sandwich plate was simulated using the two theories and formulations discussed in Chapter 2, with

the face sheets based on the FSDT and the core based on the HSDT. The model developed was first

validated by a free vibration analysis. The strong agreement of the results obtained shows that the

generated mass and stiffness matrices are being created as intended and producing decent outcomes.

After the validation, the dynamic instability model, previously developed in Chapter 3, was applied to a

sandwich plate. The results obtained validated, once again, the models used and that the generated

Matlab code is working as planned and delivering satisfactory results. One more parametric study was

performed. This time was to analyse the impact that the thickness of the core has on the dynamic
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behaviour of the system.

At the end, in section 4.2, a viscoelastic material was used in the core of the sandwich plate which

added damping to the system. Two different models to add the damping to the system were developed,

one as proportional damping and the other as hysteretic damping. Even though it was not possible to

validate these results due to the scarce literature on this topic, the results obtained were in accordance

with what was expected.

5.2 Future Work

Developments and extensions of the present work can be done through multiple ways. Some relevant

ideas, but not exclusively, are:

• The work can be extended adding piezoelectric sensors and actuators to the model and studied

their effect on the dynamic instability;

• Validation of the results obtained in the present work through experimental studies;

Adding Piezoelectric Sensors and Actuators

One interesting development is adding, on the top and bottom surfaces of the sandwich plate, sym-

metric piezoelectric sensors and actuators patches and analyse how it would behave. The computational

model developed was adapted from one previous used to study the buckling and static behaviour of a

sandwich plate with piezoelectric patches, which means that the adaption would be achieved easily with

just a few adjustments on the computational process. Study the effect of the patches on the dynamic

instability regions would be useful to apply them in order to achieve better and more effective structures

to use it in a more wide range of applications and industries. Besides that, a lot of studies can be done

using the piezoelectric effect. Multiple control feedback laws can be used and each one of them would

affect the plate behaviour in a different way.

Experimental Studies

One important future work would be experimental studies of the results obtained in this work. Al-

though this would involve some investment due to the equipment and materials needed to do so, it would

be interesting and important for the sake of better understanding the behaviour of sandwich plates. It

would allow to understand if the numerical models present some kind of errors or deviation and would

help to find solutions to improve them in order to better use composite plates in different applications.

These are just some ideas of possible future studies of sandwich plates, but a lot more can be done.

It is always important to think that, the better this kind of structure is studied and its behaviour is known,

the better it can be applied in different applications and its unexpected failure can be prevented.
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