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Abstract

Simulations are used in vibration analysis to appraise the structure’s functionality and to determine the
loading effects, enabling partial optimization before actual prototyping. Oscillations are fundamental in
nature, appearing in practical engineering applications, which are generally nonlinear. These problems hardly
have analytical solutions, requiring sophisticated techniques to reach approximate solutions. A multi-harmonic
balance method with predictor-corrector numerical path continuation is built in Python to analyze spatially
discretized structures, modeled after real nonlinear systems. It relies on the alternating frequency time scheme
to evaluate the Fourier coefficients of the nonlinear force, by using the fast Fourier transform. The frequency
reformulation of the dynamics restates it as a root-finding problem. Furthermore, the predictor-corrector
numerical path continuation generates multiple individual solutions in the system’s frequency response curve.
The first order predictor, with step length adaptation, is used to initialize the subsequent Newton-Raphson
corrector step. The latter includes a constraint that makes the problem well-determined. Moreover,
forward-accumulation automatic differentiation retrieves the nonlinear force’s derivatives, by employing dual
numbers. Finally, the tool was integrated in a co-simulation procedure with a commercial software for finite
element analysis, enabling new possibilities in the study of large-scale systems.
Keywords: Harmonic balance, nonlinear vibration, numerical continuation, automatic differentiation,
Abaqus co-simulation

1. Introduction

Digital model building and simulation has higher
versatility, enhanced repeatability and lower long-term
cost comparing to real life prototyping and testing.
Computational simulations help identify bottlenecks in
product requirements and design also providing insight
into the most important variables. Hence, one can par-
tially optimize the design before actual prototyping.

Vibration analysis is necessary to predict the natural
oscillatory behavior of a structure and its response to
periodic external excitation, serving as means to ap-
praise the structure’s functionality and determine the
loading effects such as dynamic stresses, fatigue and
noise [1]. The most common tool for analyzing the
dynamics of forced vibrations of structures is the fre-
quency response curve.

Most real life systems are nonlinear, in this way they
might present sub-harmonic or super-harmonic oscil-
lations; combined internal resonance [2]; period dou-
bling, quasi periodic or chaotic motions [3]; and mul-
tiple qualitatively different solutions to the same dy-
namic problem [1]. Nonlinearities can be caused by
hardening or softening of materials, geometric con-
straints on deformation, misalignment of substruc-

tures, mechanical backlash, dry friction, and many
types of nonlinear hysteretic damping, including aero-
dynamic drag and damping of shock absorbers [4].

As an alternative to time-domain methods, the fre-
quency domain multi-harmonic balance aims to be a
versatile and fast alternative for building the frequency
response of nonlinear dynamic systems [1, 5, 6]. There
is also the need for synergetic workflows regarding
newly created tools and the established modeling and
simulation software, hence the demand for functional
co-simulation procedures.

With this in mind, the main goals of this work are:
(1) to build a multi-harmonic balance method with
predictor-corrector numerical path continuation; (2) to
integrate this tool with an established commercial soft-
ware for finite element analysis in a co-simulation syn-
ergetic workflow; (3) and to investigate and present
its potential for the efficient com- putation of the fre-
quency response curves of nonlinear systems, which
come from spatial discretization and modeling of real-
life engineering applications.

This work starts with a background on periodic
state-state structural dynamics, followed by a state of
the art review. In the theory section, the dynamics are
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restated as the harmonic balance root-finding problem.
Next, the implementation of root-solvers and numeri-
cal path continuation is analyzed. It is followed by
insight into the tool’s functionality, in the results sec-
tion. Then, the co-simulation procedure is developed
and tested. Lastly, there is the conclusion.

2. Background
To spatially discretize the dynamics of structures

through the Ritz method [7], one firstly defines a finite
set of shape functions that must meet the problem’s
boundary conditions and then considers the general-
ized degrees of freedom as the magnitude of the shape
functions over time. Subsequently, lagrangian mechan-
ics leads to the system’s Euler-Lagrange equation,

Mq̈+Cq̇+Kq+ fnl(q, q̇, ω, t) = f ext(ω, t) . (1)

The d-dimensional vector of the generalized degrees of
freedom is q, time is t, the baseline excitation circular
frequency is ω, the period is T , the mass matrix is
M, the damping matrix is C, the stiffness matrix is
K, the nonlinear force is fnl, and the external (non
state dependent) force is f ext. Time derivatives use
the dot notation. In vibration analysis, the focus is on
the periodic steady-state of the system, the boundary
value problem q(t) = q(t+ T ) and q̇(t) = q̇(t+ T ) [8].
Time integration techniques are often used for the

study of initial value problems [5, 8]. However, error
propagates with forward time integration often origi-
nating visible numerical divergence, or excessive decay
due to numerical damping [1]. This prevents reason-
able periodic steady-state results. Also, this approach
does not allow for a convenient implementation of nu-
merical path continuation to generate solutions of the
dynamics’ equation under parameter variation – for ex-
ample, to obtain the frequency response curve.
Difference methods transform the derivatives in the

equation of motion into finite differences defined on a
finite set of time instants and then solve the new set of
algebraic equations. These are not the most accurate
or fastest time-domain techniques [8].
Shooting methods are time-domain methods that

solve the boundary value problem of periodic steady-
state by partitioning the time-period and defining an
initial value problem on each time-partition [8]. The
goal is to find the set of initial states that leads to a
matching set of final states. It is a robust technique
that can deal with non-smooth forces. Adversely, to
use derivative-based root-finding solvers, one requires
the sensitivity of the final state with respect to the
initial state, i.e. an approximation of the monodromy
matrix [1], which is computationally heavy.
Multi-harmonic balance is a variational method spe-

cialized for periodic steady-state problems [8]. It oper-
ates in the finite dimensional linear space of complex
exponentials [1]. It relates to truncated Fourier series,
which can handle a large class of signals, even some

with jump discontinuities. It simplifies the time series
solution into a comparatively small set of unknowns,
thus decreasing the time-dimensionality of the prob-
lem. Ideally, this results in faster solving times, fa-
cilitates numerical path continuation and speeds the
computation of the sensitivity of the dynamics with
respect to the unknowns. Harmonic balance has been
extensively used to compute the frequency response of
systems in engineering [5, 6, 9–11].

Classical harmonic balance, operates entirely in the
frequency domain. It applies to when the dynamics’ de-
pendence on the system variables can be expressed in a
closed form - limiting the use cases to polynomial non-
linearities [11, 12]. This will not be used in this work
because it hardly generalizes, especially when handling
non-smooth contact.

The alternating time-frequency scheme, AFT, eval-
uates the nonlinear force in the time domain and relies
on the discrete Fourier transform [1, 6, 10]. It is pre-
cise and versatile, being a popular choice [12]. It can
handle non-smooth nonlinearities such as stick-slip or
unilateral contact. Therefore, it is the most adequate
choice for this work.

Stemming from high order Taylor expansions of the
dynamics at each solution point, the asymptotic nu-
merical method expresses the solution curve as piece-
wise multivariate polynomial on an arc length param-
eter [1, 11]. It aims to provide a smoother and, ideally,
more faithful prediction of the solution path which al-
lows for larger and automatically chosen predictor step
lengths, reducing the total amount of iterative correc-
tions. It only applies if the frequency domain dynam-
ics are Taylor expandable with polynomial order larger
than one, and the computation of the Taylor coeffi-
cients is a complicated procedure that takes a signifi-
cant computational toll [12]. It might not be applicable
for many engineering applications, particularly those
with stick-slip or unilateral contact.

A simpler alternative is the predictor-corrector nu-
merical continuation [1, 6]. The new solution is pre-
dicted from the last found solution point(s) by use of a
first-order approximation of the solution curve. Then,
an iterative root-solver finds the next solution point.
When step length is excessive, important solution curve
features might be poorly resolved or omitted entirely.
Hence, this procedure requires a step-length adapta-
tion algorithm. It does not demand the computation or
existence of high order derivatives, which is more ver-
satile and useful when handling non-smooth dynamics
[12].

To avoid convergence failure and to reach the same
accuracy as the predictor-corrector numerical continu-
ation, the asymptotic numerical method needs a com-
paratively large harmonic truncation order. The same
occurs when comparing the classical harmonic balance
to the AFT [12]. For non-smooth nonlinearities (e.g.
in contact problems) the AFT predictor-corrector com-
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bination is the best suited option and is the one used
in this work.

3. Theory
3.1. Fourier Analysis
A Fourier series is a T -periodic signal that can be

represented by the orthonormal (countably infinite) ba-
sis of T -periodic complex exponentials. The type of
signals that will be dealt with are at least piecewise
continuous and with piecewise continuous first-order
derivative with respect to time [13]. Emphasizing that
jump discontinuities are of high engineering relevance;
especially in this work, as they occur in some contact
mechanical problems, e.g. stick-slip friction or unilat-
eral contact. The Dirichlet’s theorem and Carleson-
Hunt theorem are enough to safeguard the convergence
of the Fourier series of the signals at hand.
A truncated Fourier series only considers frequency

multiples (the harmonics) up to a given magnitude. A
generic truncated Fourier series y of truncation order
H is

y(t) =

H∑
n=−H

Yn exp(jnωt) ,

where j is the imaginary unit and Yn is the nth Fourier
coefficient, which can be retrived with the Fourier in-
tegral, as such:

Yn = F{y}n =
1

T

∫ T

0

y(t) exp(−jnωt) dt .

For functions with a jump discontinuity, their trun-
cated Fourier series will always have a non-zero max-
imum error near the jump, independently on the har-
monic truncation order - the Gibbs phenomenon [1].
It does not affect the “position” and “velocity” as
they are forcefully continuous in time. However, some
nonlinear contact forces might be modeled with jump
discontinuities and their truncated Fourier series will
present with this undesired phenomenon. The Fourier
coefficients of the periodic signals in the differentiabil-
ity class Cp decrease algebraically with index p+1, for
p ≥ 0 [1].

3.2. Dynamics in the frequency domain
When simplifying the system such that both the re-

sponse, q(t), and the forces are truncated Fourier se-
ries, one must compensate the dynamics by introducing
the residual force, r(t). By definition, the residue bal-
ances the dynamics of the reduced system, as it gathers
all the terms not covered by the ansatzes [5]. There-
fore, the Fourier coefficients of r must be null for all
harmonics n such that |n| ≤ H. Defining F{q}n = Qn,
F{fnl}n = Fnl

n , F{f ext}n = Fext
n and F{r}n = Rn and

substituting the ansatzes in the dynamic equation leads
to

H∑
n=−H

[
AnQn + Fnl

n − Fext
n

]
exp(jnωt) = r(t) ,

where An = −(nω)2M + jnωC +K. The uniqueness
of the Fourier series implies a correspondence between

the residue and the forces in the frequency domain. For
each harmonic −H ≥ n ≥ H,

AnQn + Fnl
n − Fext

n = Rn = 0 . (2)

3.3. Time-discretization
To characterize the system’s time-dependent signals,

only a finite set of N evenly spaced samples will be
considered, allowing for a computationally viable im-
plementation of the Fourier transform. The notation
for sampling is yk = y(t = tk) and tk = Tk/N where
k ∈ {0, . . . , N − 1}.

Let En,k = exp(2πjnk/N)/N . The discrete Fourier
transform, DFT serves as the discrete-time counterpart
to the continuous-time Fourier integral. For 0 ≥ n <
N , the nth component of the DFT is

Yn = DFT{(yk)
N−1
k=0 }n = N

N−1∑
k=0

yk E−n,k .

In the same way time-periodicity occurs, expressly
yk = yk+N , due to the cyclic nature of the com-
plex exponential, the Fourier coefficients exist in a cy-
cle of length N , namely Yn = Yn+N . This issue
might cause aliasing [12], which is when two distinct
frequency components become indistinguishable under
sampling. This leads to the imprecise representation
of data and unreliable signal reconstruction. To avoid
aliasing in real signals, one must follow the Nyquist
criterion, namely to sample at a rate larger than dou-
ble the highest relevant frequency expected [1]. Hence,
if one expects, for the continuous time case, an ad-
equate truncation order of H̃, then, when using the
discrete Fourier transform, the sampling should follow
N ≥ 2H̃ + 1.
For completeness, the inverse discrete Fourier trans-

form, iDFT, follows

yk = iDFT{(Yn)
N−1
n=0 }k =

H∑
n=−H

Yn En,k .

3.4. Root finding problem
Let Q and R be Nd-dimensional vectors that group

all coefficients Qn and Rn, respectively. The goal is to
solve R(X) = 0, where X = [QT , ω]T. This equation
has an uncountable set of solutions, since it is solvable
for some frequency range. Said solution set generally
lacks an explicit analytical description due to the non-
linear term on the dynamical balance [12]. To solve this
issue, predictor-corrector numerical path continuation
aims to discretize the solution curve by consecutively
and individually obtaining separate solution points [1,
14]. In the prediction step, a first-order approximation
of the solution curve, either by a tangent (or secant), is
used to extrapolate a predicted solution from the last
found solution point(s). In the correction step, an iter-
ative root-finding method used the predicted solution
as initialization to find a new solution point.

The mismatch between the dimensionality of X and
R makes the problem underdetermined, i.e. without

3



a unique solution. Thus, individually obtaining solu-
tion points requires the annexation of an independent
equation to be solved [1]. To guarantee that the solu-
tion is in a sensible region, one might add a constraint
to the search space. For example, to translate the re-
quirement of proximity to a initial guess for the solu-
tion or a prerequisite of following given directions in
the search space, for instance to avoid backtracking or
branch switching. Note that, adding multiple indepen-
dent equations will make the problem overdetermined,
undermining the existence of solutions. Without loss of
generality, let this constraint be given by the zero-level
set of a scalar function g. The joint problem of the dy-
namic equilibrium - equation (2) - and the g constraint
can be represented as

f(X) = [RT(X) , g(X)]T = 0 . (3)

The dimensionalities of X and f(X) are the same.

4. Implementation
4.1. Root-finding solver
A root-finding algorithm aims to find zeros of contin-

uous functions. When there is no closed form expres-
sion to compute the zeros of a function, root-finding
algorithms approximate them by providing a numeri-
cal estimate. The majority of these algorithms aspire
to generate a sequence of solution candidates that con-
verges to one root, being called iterative methods [8,
15].
The fixed-point methods are easily generalizable to

higher dimensions and have fast convergence rates
[8]. These methods originate from the restatement
of root-finding as a fixed-point problem [8]. In
structural dynamical problems, the most commonly
used root-finding algorithms are those of Newton-type
[15]. Application examples are 1. the implicit solver
from Exudyn, a C++ based Python library for effi-
cient simulation of flexible multibody dynamics sys-
tems, 2. Abaqus/Standard, a general-purpose implicit
time-integration finite-element analyzer, and 3. the im-
plementations of harmonic balance in general litera-
ture, e.g [1, 6, 10]. Serving as a simple proof of con-
cept, the simple Newton-Raphson was chosen for the
corrector step. It is versatile, presents Q-quadratic con-
vergence and has general applicability. Yet, it is sim-
ple enough to be later adapted using more specialized
Newton-type algorithms.

4.2. Predictor step
Regarding the construction of the discretized solu-

tion curve, to avoid random guessing the initialization
for each new iterative solver step, one can make an edu-
cated approximation, a prediction. The predictor step
methods discussed in this work always use the informa-
tion from the last solution, Xlast, to help extrapolate
the position of the next solution, Xnext, by indicating
a predicted solution, X̃ as

X̃ = Xlast +V∆s . (4)

where ∆s is a positive real scalar and V is a unit vec-
tor [1]. To avoid backtracking, V must be aligned with

a reference direction, Vref , satisfying ℜ( VT

refV ) ≥ 0.
The reference direction should approximate the direc-
tion of the solution path, for instance it can be the
previous predicted direction - Vref = Vprev - or, more
accurately, it can be aligned with the secant through
the last two solution points - Vref = Xlast − Xprev.
Also, one must guarantee a real step in frequency, thus
Vω ∈ R.
The simplest approach is to recycle the last solu-

tion as an initialization for the next corrector step.
This type of predictor step undermines the continua-
tion procedure when dealing with sections of constant
frequency or saddle-node bifurcations regarding the pa-
rameter ω (the turning-points).

Another predictor method is the secant predictor,
giving V = (Xlast − Xprev)/∥Xlast − Xprev∥. Notice-
ably, it only works after obtaining two solution points.
It is a good approximation of the tangent when the
path is almost rectilinear, but fails in the presence of
significant curvatures.

Finally, there is the tangent predictor, for which it
is necessary to determine the direction for which the
local change in the residue is null so that the residue
remains equal to zero. One must find the non trivial
solution to

dR

dX

∣∣∣∣
Xlast

V = 0 ,

where the derivative is already known from the pre-
vious Newton-type corrector step. This is the most
accurate first-order predictor method and can handle
turning points and sections of constant ω.

In this work, all three predictor step method alter-
natives were implemented, but the tangent predictor
prevails in most applications.

The step length should be as large as possible to min-
imize the number of dynamic problems to be solved at
the corrector steps [14]. Conversely, the step length
must be bounded above by the necessity to ensure fast
convergence of the corrector step, maintain solution
branch and represent with sufficient detail the global
solution space. In short, ∆s must be bounded above
and below, respectively, by the maximum and mini-
mum step lengths adequate for the problem [1]. Both
bounds should come from expert knowledge of the spe-
cific problem and are influenced by the desired accu-
racy and speed of the numerical continuation proce-
dure.

The program should be able to adjust the step length
to the needs of the solver and this is called step length
adaptation. An approach is to change the step length
for the next predictor step according to the quality of
the last prediction-correction stage, namely the num-
ber of iterations needed until convergence, N last

iter . Ac-
cordingly, the step length should decrease, if the num-
ber of iterations is “large” and the other-way around
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if it is “small”. Both terms exist in comparison with
the goal number of iterations specified by the user,
Ngoal

iter , which in turn comes from expert knowledge of
the specific problem, either by self experience or exter-
nal sources. In general one has,

∆snext = max{∆smin,min{∆smax, k∆s last}} .

where k is computed based on the N last
iter and Ngoal

iter . The
option suggested in [1] is to double (of half) the step
length if N last

iter subceeds (or exceeds) the goal. The
option used in this work is

k =

(
N goal

iter + 1

N last
iter + 1

)2

,

which grades the corrector step’s performance in a
continuous manner, distinguishing “large” and “small”
contrasts against the goal. Squaring the ratio serves to
intensify the penalty for “large” numbers of iterations
since the goal is probably small. Also, the +1 term is
to avoid dividing by zero.

4.3. Parameterization of the corrector step
The purpose of parameterizing the search space is to

avoid backtracking or having large jumps in the solu-
tion. In short, it provides a sensible region for the next
solution by establishing a constraint. The constraint
can be expressed as the zero-level set of a function g.
For the implementation with a Newton-type solver, the
relevant directives are

compute g(X) and
dg

dX
=

[
dg

dQ
,
dg

dω

]
.

There are multiple types of search space parameteri-
zation, nevertheless, taking into account ease of imple-
mentation, applicability and computational optimality,
only four methods are addressed [1].
1. Local parameterization is a linear constraint that

fixes the frequency. It only allows for adjustments in
the Fourier coefficients, Q, and hence it can not deal
with turning points or sections of constant frequency
in the solution curve.

2. Orthogonal parameterization defines a search
space orthogonal to the predicted direction. It is a lin-

ear constraint defined by g(X) = γV
T
(X− X̃). Here,

the complex scalar γ serves to “harden” or “soften” the
constraint. The quality of the orthogonal parameter-
ization depends on the type of predictor method. In
combination with a robust predictor step, one can deal
with turning points and sections of constant frequency.

3. Arc length parameterization establishes the
search space as a hyper-sphere centered at the
last solution. The constraint is expressed as
g(X)/γ = ∥X−Xlast∥2−(∆s)2, which is guaranteed to
intersect another solution. It is a nonlinear (quadratic)
constraint that demands the computation of the pa-
rameterization’s gradient at every iteration. It allows

for back-tracking.
4. Normal parameterization avoids the search for the

solution in directions that do not change the residue.
The search is redefined at each iteration by consider-
ing the space orthogonal to the local tangent of the
residue. This is heavily nonlinear and might under-
mine the solver’s convergence.

Since they balance functionality and computational
efficiency, only the orthogonal and the arc length pa-
rameterizations were implemented.

4.4. Alternating frequency-time scheme
The linear and external forces can be directly eval-

uated in the frequency domain, however the Fourier
coefficients of the nonlinear force can not be explic-
itly expressed in terms of X [12]. In the alternating
frequency-time scheme, at each sampling instant, the
system’s state is computed with the iDFT, serving as
argument for the discrete time-evaluation of the non-
linear force and, finally, through the DFT, all the non-
linear force’s time samples are used to compute the
corresponding Fourier coefficients [10]. In schematic
form, this is

Q
iDFT−−−−→ (qk) , (q̇k)

function eval.−−−−−−−−→ (fnlk )
DFT−−−−→ Fnl .

To compute the DFT and the iDFT, one can imple-
ment the fast Fourier transform allowing for more com-
putational efficiency. The AFT can handle non-smooth
forces, namely those in contact problems.

4.5. Derivatives of the residue
The derivatives of R with respect to Q follow

dRn

dQn′
=


An +

dFnl
n

dQn
, n = n′

dFnl
n

dQn′
, n ̸= n′

,

where, due to the fact that Fnl is obtained through the
DFT , one has

dFnl
n

dQn′
= DFT

{(
dfnlk

dQn′

)N−1

k=0

}
n

.

And the derivative of the nonlinear force in the time
domain is obtained by the chain rule,

dfnlk

dQn
=

[
∂fnlk

∂qk
+

∂fnlk

∂q̇k
jnω

]
En,k .

Also, one must consider that the samples of the “po-
sition” and “velocity” are given by the inverse dis-
crete Fourier transform, of the coefficients (Qn) and
(jnωQn), respectively.

dRn

dω
= [jnC− 2n2ωM]Qn +

dFnl
n

dω
− dFext

n

dω
.

5



Using he chain rule, the derivative of the nonlinear
force with respect to the frequency domain to the cir-
cular frequency is

dFnl
n

dω
= DFT

{
∂fnlk

∂ω
+

∂fnlk

∂q̇k
iDFT{(Qn jn)}k

}
n

.

The derivative of the external force can also be ex-
pressed with the DFT. The partial derivatives of the
force samples with respect to ω are null in most appli-
cations because the frequency commonly only appears
combined with time, as ωt. The sampling is indepen-
dent of ω since ωtk = 2πk/N .

4.6. Automatic differentiation
Automatic differentiation is a collection of tech-

niques to compute the derivative of a function detailed
by a computer program, such that the final derivative
gets outputted along with the regular output of the
function. It manages a large set of functions without
requiring specific case tailoring, allowing for user pro-
vided functions, and delivers accurate derivatives up to
machine precision [15].
Forward accumulation automatic differentiation can

be partially accomplished by extending the algebra of
complex numbers via the combination with an addi-
tional component representing the differential of the
given quantity. This extended algebra (known as dual
numbers) describes the arithmetic of quantities x with
an infinitesimal part dx, such that (dx)2 = 0.
The generalization to d dimensions follows from the

fact that the elements of Cd are of the form x =
[x1, . . . , xd]

T, and hence there exists d different differ-
entials - one for each dimension: dx1, . . . ,dxd. The
generalization defines ∀p, p′ : dxp dxp′ = 0. In this
extended algebra, each component of a vector is of the
form α0 + α1 dx1 + · · · + αd dxd, and thus a general
vector is described by d× (d+1) complex scalars. Any
vector element can be mapped through the trivial in-
jection x 7→ x+ dx where dx = [dx1, . . . ,dxd]

T.
To generalize the idea of polynomial to the multi-

variate case, define the monomial xα as a product of
the variables raised to natural exponents, xα1

1 · · ·xαd

d

with α ∈ Nd
0. Then consider the multivariate polyno-

mial f : Cd −→ Cd′
, x 7→ f(x) =

∑
α bαx

α, with

bα ∈ Cd′
for all α. Evaluating the polynomial using

the extended algebra leads to

f(x+ dx) = f(x) +
∂ f

∂x1

∣∣∣∣
x

dx1 + · · ·+ ∂ f

∂xd

∣∣∣∣
x

dxd .

To handle relevant elementary functions one can im-
plement additional rules, for instance, regarding the
natural logarithm, ln(x + dx) = ln(x) + dx/x. Other
examples would be exponentials, sinusoids and inverse
trigonometric functions.
Unlike symbolic or numerical differentiation, auto-

matic differentiation is efficient at computing partial

derivatives of multivariate functions. It computes ex-
act derivatives through elementary binary operations
and functions, in a simultaneous and integrated man-
ner [15]. Finally, it can deal with a large range of func-
tions/programs, managing jump discontinuities by giv-
ing the unilateral derivative, which is useful for contact
problems.

5. Results
This section discusses the success of the method de-

veloped in this work, MHBM, by comparing it to pre-
existing tools, both in the frequency and time domains.
The solver used in this section adopts the Newton-
Raphson corrector, the tangent predictor and the or-
thogonal parameterization. The solution is not given
as an expression of the curve R = 0, but instead as a
finite set of approximate solutions that lay near it.

Note that, indicating a system of measurement is
irrelevant when attributing numerical values to the ge-
ometry or material parameters, instead one only re-
quires coherence between units.

5.1. Duffing oscillator
The Duffing oscillator [1] is a one-dimensional sec-

ond order linear dynamic system characterized by the
addition of a cubic spring (the nonlinear term) and ex-
cited by a sinusoidal external force. Namely the system
follows Mq̈ + Cq̇ +Kq + βq3 = P cos(ωt).

Figure 1: Frequency response of Duffing oscillator of
the form, q̈ + 0.07q̇ + q + βq3 = 0.18 cos(ωt), under
variation of β.

The results of the MHBM were verified by NLvib [1],
another multi-harmonic balance tool. This was done
regarding multiple configurations of the Duffing oscil-
lator by varying the numerical values of its parameters.
In figures 1 and 2, are some of the results.

One can observe that the nonlinear systems might
show an overhang delimited by two turning points.
This region is characterized by a chaotic behavior of
the real system in the time domain due to the exis-
tence of an unstable equilibrium.
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Figure 2: Construction of the backbone curve from of
Duffing oscillators of the form, q̈ + Cq̇ + q + 0.2q3 =
0.12 cos(ωt), under variation of C. The backbone curve
was traced by joining the resonance peaks of multiple
frequency response curves.

By zooming in, it was possible to observe step length
adaptation: the steps shortened in the high curvature
peak and lengthened as the solution curve straightened.
Hence, the results verify the effectiveness and useful-
ness of predictor-corrector numerical path continuation
for rendering the necessary curve features, such as the
sharp turning points.
To make a time-domain analysis, one must consider

a Duffing oscillator with numerical values attributed
to all parameters. In the time domain, the explicit
Runge-Kutta method of order four [8], RK45, was used
as reference by initializing it with the MHBM’s solu-
tion at t = 0, i.e the state (q0, q̇0). The relative error
of the time series was below 10−4 for all solutions in
the frequency range. The mean and maximum rela-
tive errors (in the time series) fall below 3% and 5%,
respectively, for all H ≥ 3 and decrease (at least) expo-
nentially with increasing truncation order. A trunca-
tion order of H = 9 already guarantees a mean relative
error in the time domain below 0.9%. Regarding each
of the response’s Fourier coefficients, one can verify
that, independently of the harmonic, the relative error
decays exponentially with increasing truncation order
and with the same order and rate of convergence.

5.2. 2-DoF system with two cubic springs
Here, MHBM was used to generate the frequency

response of the system in figure 3. The result is in
figure 4, where one can observe four apparent “reso-
nance” peaks. To verify the solution, the seven solu-
tions marked with crosses were compared in the time
domain to the RK45. The order of magnitude of the
relative error reached a maximum of 10−3 but it was
usually around 10−5, and often reached lows of 10−6

and 10−7. Also, the overall aspect of the frequency
response curve is akin to the one obtained in [16] re-

garding a similar system.

m

c

β

q1, f
ext
1

m
k

c

β

q2, f
ext
2

Figure 3: Two mass system with an interconnecting
linear spring and grounded dampers and cubic springs.

Figure 4: Frequency response of the system. Here
m = 1, c = 0.01, k = 1, β = 1, f ext

1 = 0 and
f ext
2 = 0.2 cos(ωt). The MHBM used a truncation or-
der of H = 9.

5.3. Euler-Bernoulli beam with dry friction

In this subsection, the case study is the system in
figure 5. Through Ritz method [7], and by using
(third degree) polynomial shape functions to describe
the bending deformation, one obtains the inertia and
stiffness matrices.

q1
q2

q3
q4

Figure 5: Two element discretization of a linearly elas-
tic cantilever beam with a dry friction element attached
at the middle node, acting in the transverse direction.

The dry friction element describes the nonlinear con-
tact between two solid surfaces [4], and it can be
treated, in its simplest form, using the Coulomb fric-
tion model, as seen in [9, 10]. The Coulomb friction
force is given by ff sign(q̇t), where ff is the friction
magnitude, q̇t is the tangential relative velocity at the

7



contact and sign is the signum function. This formu-
lation of dry friction is discontinuous at q̇t = 0, which
heavily undermines the success of root-finding algo-
rithms. A smooth regularization can solve this issue,
for instance, by approximating the Coulomb friction
by a hyperbolic tangent. This regularization solution
is well acknowledged [1], is quickly implementable, and
facilitates the convergence of Newton-type solvers by
introducing domain-wise differentiability. Hence the
dry friction becomes fD.F. = ff tanh(αq̇t), where the
value the derivative of the friction force with respect
to the tangential velocity at the static stick-condition
is α. When α → ∞, this regularization tends to the
original Coulomb friction.

Assembling the dry friction elements gives q̇t = q̇1
and fnl = [ fD.F., 0, 0, 0 ]T. At this point numerical
values will be given to the beam parameters: the length
is 1, the height is 0.1, the thickness is 0.3, the Young’s
modulus is 185 · 109 and the density is 7830. Also
α = 2 · 106 and ff = 1.5.

The chosen external force is given by the expres-
sion f ext = [ 0, 0, 0.2 cos(ωt), 0 ]T. The amplitude of
0.2 is smaller than the friction magnitude to promote
frictional stick. To avoid singularities, it is useful to
add damping. Therefore, C is such that, the damping
force is roughly 1% of the stiffness force, at the first
resonance of the equivalent linear system. The linear
system does not have the dry friction element and in-
stead has a pinned middle node, i.e q1 := 0, simulating
permanent frictional stick.

The results are in figure 6. The linear system
presents a sharp resonance. Regarding the nonlinear
system, its solution roughly equals the solution of the
linear case, except in the range where an intensity
plateau in the periodic steady-state response of q3 oc-
curs. This also coincides with the sudden jump in the
q1’s amplitude. When q̇1 is comparable to 1/α, the
oscillations are large enough to enter the slip regime
and the friction starts acting with a large intensity in
comparison to the external excitation, thus impeding
further movement.

Globally, NLvib and the MHBM agree in the results.
Additionally, the results were validated by a (time-
domain) shooting method [1].

5.4. Cantilever beams with unilateral contact

This subsection’s case study, the system in figure 7, is
spatially discretized by the Ritz method as described in
[7]. For the linear longitudinal dynamics, linear shape
functions were chosen. For the linear bending dynam-
ics, third degree polynomial shape function were used.
The two elements are uncoupled in the linear subsys-
tem. The nonlinear element can couple the two el-
ements and it is characterized by two nonlinearities:
unilateral contact with contact-separation in the nor-
mal (vertical) direction and stick-slip contact in the
tangential (horizontal) direction [9].

Figure 6: Comparison between NLvib (black line) and
MHBM (red line) for the frequency response of nonlin-
ear system represented in figure 5. The linear system
with q1 := 0 is in blue.

q1

q2 q3

q4

q5 q6
ϵ

Figure 7: Two cantilever bar+beam elements con-
nected by a frictional contact element. Both elements
have the same geometrical and material properties.

The normal reaction force is modeled as a very stiff
unilateral spring. The force is given by fnl

2 = kq⊥
where k is the contact stiffness, if the normal displace-
ment, q⊥ = ϵ+ q2 − q5, is negative; else if q⊥ ≥ 0, the
force is null. Also, fnl

1 = fD.F. with tangential velocity
q̇t = q̇1 − q̇4. Furthermore, ff = −µfnl

2 , with µ the
friction coefficient. Finally, the action-reaction pairs
imply that fnl = [fnl

1 , fnl
2 , 0, −fnl

1 , −fnl
2 , 0]T.

Now, numerical values are attributed. For each ele-
ment, the mass is 1, the length is 1, the axial rigidity is
1/3 and the flexural rigidity 1/3. Also, for the nonlin-
ear element, k = 500, ϵ = 0.01, α = 150 and µ = 0.1.

To guarantee frictional contact engagement, a
clamping force with intensity P5 = 0.4 is applied. And
the sinusoidal excitation is characterized by P1 = 0.1.
The axial excitation amplitude is larger than the fric-
tion intensity, since P1 > µP5 > ff . The external
excitation is f ext = [P1 cos(ωt), −P5, 0, 0, P5, 0 ]

T. To
avoid sharp resonances, Rayleigh damping is added:
C = 0.05K.

Regarding the MHBM tool, the smallest truncation
order reached while maintaining solver convergence
was H = 3 and the solver attained results very akin
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to the reference, H = 70. For H = 15, the maximum
relative error is 0.2%. And, for H = 25, the maximum
relative error is 0.02%. Thus, the solution seems to
converge with increasing harmonic truncation order.
In the time series in figure 8, one can observe the

stick-slip behavior. Stick occurs when the relative ve-
locity first crosses zero and its rate of change suddenly
alters such that the relative velocity remains null. The
slip behavior is better observed in the time series of the
nonlinear force, as it starts the large abrupt steps in
fnl
1 . Also, the results showed that the bending strains
and stresses are time-constant, through all the solu-
tions in the frequency range, because the clamping
force is constant and the longitudinal and bending dy-
namics are uncoupled in the linear system. Finally, the
time domain results for multiple solution points were
verified by the explicit Runge-Kutta method of order
eight [8] (chosen for its high accuracy and stability)
initialized with the MHBM’s solution at t = 0.

Figure 8: Time-series for the solution at ω = 0.9. The
black line and red lines are the MHBM solutions for
q1 and q4, respectively. And the yellow and cyan lines
are the corresponding DOP853 references. The green
curve is the dry friction force and the magenta curve
is the slip velocity.

6. Co-simulation with a commercial finite ele-
ment analysis software
This section examines the development of a syn-

ergetic workflows between the MHBM and an estab-
lished modeling and finite element analysis software,
Abaqus CAE. This program formulates structural dy-
namics using the inertia term, internal force and ex-
ternal force, hence the previous equation of dynam-
ics, Eq.(1), is substituted by the equivalent expression:
Mq̈+ f int(q, q̇)− f ext(ω, t) = 0.
The internal force, f int(q, q̇) = Cq̇+Kq+ fnl(q, q̇),

can be evaluated in Abaqus by quantifying the initial
acceleration of the free system, q̈free, in a parallel ini-
tial value problem [8] with predefined velocity and dis-
placement. The initial value problem follows:

Mq̈free + f int(qfree, q̇free) = 0

and (qfree, q̇free)|t=0 = (q, q̇)|t=tk .

Then, the internal force sampled at time tk is f intk =
−Mq̈free|t=0. Consequently the time valuations of the
alternanting frequency-time scheme, occur entirely in
Abaqus. Also, Abaqus outputs the derivatives of the
internal force with respect the “displacement” and the

“velocity”, correspondingly, the linearized stiffness and
the linearized viscous damping. This serves to build
the jacobian for the Newton-type solver.

Subsequently, the co-simulation procedure was com-
pared with the Abaqus’ steady-state dynamic analy-
sis regarding the system in figure 9. This serves as
a application with 30 volume elements and 80 nodes
with three degrees of freedom each. The external ex-
citation is null except for axial concentrated loads at
four tip nodes. Figure 10 has the results. For the

Figure 9: FE model in Abaqus and selected nodes.

axial degrees of freedom of the selected nodes, the
frequency responses from Co-Sim and Abaqus’ steady
state analysis strongly coincide. The error is given by
∥qCo−Sim(ω)− qAbaqus(ω)∥ and indicates a clear over-
lap between both methods. Thus, the effectiveness of
the co-simulation in computing this system’s frequency
response is verified, along with the functionality of this
framework.

Figure 10: Frequency response of the axial displace-
ments of three nodes and global relative error.

7. Conclusions
7.1. Remarks

A multi-harmonic balance method with a predictor-
corrector numerical path continuation solver was suc-
cessfully built in Python. It uses the alternating fre-
quency time scheme to evaluate the Fourier coefficients
of the nonlinear force, by employing the fast Fourier
transform. Regarding numerical continuation, the se-
cant and tangent predictors were implemented. Also,
the corrector step was built using the Newton-Raphson
method and included both the orthogonal and arc
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length corrector step parameterizations. Finally, this
tool was integrated in a co-simulation procedure along
with a commercial software for finite element analy-
sis responsible for the time domain evaluations, in the
alternating frequency time scheme.
The implementation of an automatic differentiation

procedure makes the program more versatile by sup-
porting a wide range of user provided nonlinear forces.
The program can handle a large variety of nonlinear
systems without demanding specific-case tailoring. It
also displayed sharp accuracy even with relatively low
harmonic truncation orders. It also presented stability
by computing unstable branches and handling strong
nonlinearities. Moreover, this method was faster than
time-integration techniques, as expected.
The tool is useful for structural engineering, regard-

ing the determination of loading effects, performance
and durability. Firstly, the tool aids vibration analysis
by predicting the periodic steady-state oscillatory be-
havior of spatially discretized structures modeled after
real-life engineering systems. Finally, the co-simulation
procedure displayed promising results, which suggest
new engineering workflow possibilities in the study of
large-scale nonlinear systems.

7.2. Future developments
The program could be adapted to incorporate non-

linear forces dependent on higher time-derivatives of q.
Homotopy continuation could be implemented [1] to
generate the first solution. Moreover, by performing
numerical path continuation on different parameters,
different bifurcation diagrams can be built. E.g. vary-
ing the intensity of the external excitation allows for
nonlinear modal analysis [2]. Also, a stability analysis
could be implemented. Additionally, the applicability
of periodic framework could be expanded by including
additional variables that describe certain non-periodic
motions [1]. And, ultimately, the co-simulation work-
flow should also be used in nonlinear applications while
enjoying the nonlinear force modeling capabilities of
commercial finite element analysis software.
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