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Abstract

Gympass offers a different range of wellness products to its users: gyms, classes, personal trainers,

and apps. But the main product is gyms. Users should be able to use the Gympass app to find recom-

mendations for gyms, according to their personal preferences. Thus, we can pose the question: how to

recommend gyms that are so distinct? Gympass is a subscription benefit that allows users to access

multiple gyms in their area, but, if users only go to the same gym, they might unsubscribe Gympass.

Therefore, we want to make sure the Recommendation System (RS) is good at recommending new

gyms so that they find the Gympass subscription useful. My M.Sc. project addresses the development

and evaluation of Graph Neural Network (GNN) approaches, specifically envisioning applications in the

recommendation of Gympass gyms. Taking inspiration from previous work such as PinSage [1], GNN

at Decathlon [2] and LARS [3], I implemented a similar approach and evaluated it on Gympass data.

The results of our GNN RS seem promising for the case of recommending users to new gyms that they

are visiting for the first time. The obtained results support the understanding that a Deep Learning (DL)

model can recommend new Gympass gyms to users. The main contribution of this work relies on build-

ing and validating a RS based on GNN that infers how to model Gympass complex environment into

a graph, using a GNN model architecture learns users’ past behaviors and with the ranking function

recommends gyms to users.
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Resumo

A Gympass oferece uma gama variada de produtos de bem-estar aos seus utilizadores: ginásios, aulas,

personal trainers e aplicações. Mas o principal produto são os ginásios. Os utilizadores devem poder

utilizar a aplicação Gympass para encontrar recomendações de ginásios, de acordo com as suas pre-

ferências. Assim, podemos colocar a questão: como recomendar ginásios que são tão distintos? A

Gympass é um benefı́cio de subscrição que permite aos utilizadores aceder a vários ginásios na sua

área, mas, se os utilizadores forem apenas ao mesmo ginásio, poderão cancelar a subscrição de Gym-

pass. Portanto, nós queremos garantir que o Recommendation System (RS) é bom em recomendar

novos ginásios para além daqueles que já conhecem, para que considerem útil a subscrição do Gym-

pass. O meu projecto M.Sc. aborda o desenvolvimento e avaliação de abordagens baseadas em Graph

Neural Network (GNN), prevendo especificamente aplicações na recomendação de ginásios da Gym-

pass. Inspirando-me em trabalhos anteriores como PinSage [1], GNN no Decathlon [2] e LARS [3],

implementei uma abordagem semelhante e avaliei-a com dados da Gympass. Os resultados da GNN

RS parecem promissores para o caso de recomendar aos utilizadores novos ginásios que estão a vis-

itar pela primeira vez. A principal contribuição deste trabalho baseia-se na construção e validação de

uma RS baseado em GNN que modela o ambiente complexo da Gympass num gráfo, usando uma

arquitectura de GNN e usando com a função de pontuação recomenda ginásios aos utilizadores.

Palavras Chave

Sistema de Recomendação; Aprendizagem Profunda; Redes Neuronais de Grafos; Aprendizagem de

Máquina
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This chapter is divided in four sections. Section 1.1 briefly summarizes the related work in this field,

discussing what is not covered in this particular area and stating the project question, puts forward the

project objectives that will allow answering the main question, while Section 1.2 presents the method-

ology, putting the methods used to answer the question. Section 1.3 is an overview of the results and

main contributions of this work. The chapter ends with an overview of the structure of this dissertation,

in Section 1.4.

1.1 Context and Motivation

Applications of Recommendation System (RS) increasingly rely on Deep Learning (DL) techniques

to learn meaningful low-dimensional embeddings of images, text, and even users [8, 9]. DL represen-

tations can replace or enhance more conventional recommendation methods like Collaborative filtering

Systems (CF). Significant progress has been made in this area recently, particularly with the creation

of new DL techniques that can learn from graph-structured data, which is essential for recommendation

applications (e.g., to exploit user-to-item interaction graphs) [1].

Gympass offers a different range of wellness products to its users: gyms, classes, personal trainers,

and apps. But the main product is gyms. Users should be able to use the Gympass app to find rec-

ommendations for gyms, according to their personal preferences. Different gyms may contain different

information regarding their activities, description, location, and which is the minimum plan for a user to

check-in there. Thus, we can pose the question: how to recommend gyms that are so distinct? Further-

more, Gympass is a subscription benefit that allows users to access multiple gyms in their area, but, if

users only go to the same gym, they might unsubscribe Gympass and pay the subscription only to the

gym they go to. In order to avoid this scenario, one of our concerns is to evaluate if the RS is able to

recommend not only gyms that the users usually go to but also new gyms they haven’t tried before. In

other words, we want to make sure the RS is good at recommending new gyms so that the users try

new gyms so that they find the Gympass subscription useful and keep paying for it.

The Gympass variety of data and the links between them makes a case for the use of graph tech-

niques, more specifically Graph Neural Network (GNN). Although they were first proposed in the late

1990s [10] and early 2000s [11], GNNs are now extensively used for a variety of tasks, including online

and movie recommendations [12,13]. Recent research shows that highly scalable GNNs for recommen-

dation are possible [1]. The capacity of GNNs to represent non-Euclidean data is one of the factors

driving such attention [14].

GNNs can be defined as neural networks that operate on graph data, in order to learn new embed-

dings for all graph features. These representations can have several practical applications. For instance,

3



in the context of recommendation systems, these networks can be grouped in two scenarios depending

on their application: (1) Non-structural scenarios where the relational structure is implicit or absent and

generally include images and text; (2) Structural scenarios, where the data has an explicit relational

structure. These second scenarios, on the one hand, often emerge from scientific research, such as

graph mining, modeling physical systems, and chemical systems. On the other hand, they can also rise

from applications such as knowledge graphs, traffic networks, and RS [15].

When considering efficient highly-scalable GNN algorithm to recommend items to users, it is neces-

sary to consider more complex algorithms such as PinSage [1]. PinSage does not require operating on

the full Laplacian graph during training because it uses many techniques such as batching. The batch-

ing technique is used together with the re-indexing technique to create a sub-graph containing nodes

and their neighborhood, which otherwise would not fit into memory. The task of generating embeddings

outputs a representation of a node that incorporates both information about itself and its local graph

neighborhood.

GNNs at Decathlon [2] builds upon the PinSage idea to recommend users items with GNN. The

authors build a graph with nodes and edges, generate embeddings for each node and apply a max-

margin loss function with a set of training edges and a set of nodes negatively sampled.

LARS [3] is a location-aware RS that uses location-based ratings to produce recommendations.

LARS produce recommendations within reasonable travel distances by using travel penalty, a technique

that penalizes the recommendation rank of items the further in travel distance they are from a querying

user.

Graph Convolutional Neural Networks (GCN) architecture applied to semi-supervised classification

tasks [16] shows the variety of tasks that GNN can solve, not only it can solve recommendation tasks

but also classification.

Knowledge Graph Attention Network [7] is a GNN architecture that explicitly models the high-order

connectivities in Knowledge Graphs in an end-to-end fashion. It recursively propagates the embed-

dings from a node’s neighbors to refine the node’s embedding and employs an attention mechanism to

discriminate the importance of the neighbors.

Developing a GNN for a RS is currently still a challenging endeavor, as a balance between efficiency

and accuracy needs to be met. Graph Convolutional Networks (GCNs) have already been proven to be

efficient and highly scalable.

My M.Sc. project addresses the development and evaluation of GNN approaches, specifically envi-

sioning applications in the recommendation of Gympass gyms. Taking inspiration from previous work

such as PinSage [1], GNN at Decathlon [2] and LARS [3], I implemented a similar approach and evalu-

ated it on Gympass data.
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1.2 Methodology

The initial stage of this thesis project focused on laying a good theoretical foundation that could

support the reasoning for our proposed model. To this end, a survey of current state-of-the-art methods

in the fields of GNN and RS was conducted. Special focus was given to work on products and sports

since these were the main issues we attempt to address in Gympass.

Having understood what challenges GNN models faced, we set out to develop a RS based on GNN

that is location aware in an attempt to ease some of the challenges affecting user query location and

gyms’ location.

After downloading the Gympass dataset with US data which includes gym features, user-gym inter-

actions, gym-activities edges, plans, and user locations, we cleaned and replaced text features with its

BERT [17] text embeddings. Using temporal markers, the data is split into train and test sets. For all of

the available check-ins, a defined period, i.e. from March 2021 to February 2022, is used for training,

and the next month’s time, i.e. from March 2022, is used for testing. We have two test sets, the test set

and the test set only new check-ins where the test set only new check-in is a subset of the test set with

only new check-ins between users and gyms to evaluate the model ability to recommend new gyms to

users.

We build three baselines: one that only recommends the closest gyms based on the inferred user

location, one which is a simpler model based on our proposed model, and another using only prepro-

cessed embeddings to give recommendations.

The model is trained by first building the graph with edges and input node features and dividing the

graph into batches of sampled graphs due to the large dimension of the full graph. For each batch, the

embedding generation is done through message passing. With the final embedding layer, we compute

the loss function to parameterize the model.

We evaluated this work with recommendation system metrics such as Recall@k, MRR@k, and

NDCG@k at the cutoff point k.

The recommendation systems were implemented using the Python programming language, given

that it allows for the quick and easy creation of different experiments, as well as the considerable machine

learning and deep learning support it offers. Specifically, we took advantage of several libraries such as

Pytorch1, Deep Graph Library2, PySpark3, and MLFlow4.

1https://pytorch.org/
2https://docs.dgl.ai/
3https://spark.apache.org/python/
4https://mlflow.org
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1.3 Results and Contributions

The results of our GNN RS seem promising for the case of recommending users new gyms that they

are visiting for the first time. They seem to show that a RS based on DL can predict which new gym a

user will go to next better than only location-based recommendation systems or simpler GNN models.

Our RS improves every metric very significantly by at least 2.95 times over the second-best metrics.

The fact that our RS seems to have the best metrics might show how well the model can generalize

past historical user data to new gyms that the user did not go to yet. The success of our RS might

be because is able to leverage both the content information of the gyms, users, and activities and the

relations between each other to generate meaningful gyms recommendations for the users.

The obtained results support the understanding that a DL model can recommend new Gympass

gyms to users. The main contribution of this work relies on building and validating a RS based on GNN

that infers how to model Gympass complex environment into a graph, using a GNN model architecture

learns users’ past behaviors and with the ranking function recommends gyms to users. This thesis

provides a GNN recommendation system with a trained model showing promising results compared to

the baselines.

1.4 Thesis Outline

Our document is organized in the following way: In Chapter 1 we introduce the context and moti-

vation of the proposed theme, followed by the objectives achieved. Chapter 2 presents an explanation

of the fundamental concepts that serve as a base to our proposed work. Chapter 3 presents state-of-

the-art approaches accomplished in the same areas of interest. Chapter 4 addresses the methodology,

subsequent architecture of the proposed solution, and our re-ranking function. Chapter 5 describes our

data, and our experiments to test our proposed method. This includes an explanation of our experi-

mental setup, followed by a deep analysis of the obtained results. Finally, Chapter 6 exposes the main

contributions of this thesis, as well as a delineation of promising future work that can be developed.
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This chapter discusses the fundamental concepts required to understand the remaining techniques

presented in this report. It covers perceptrons, and discusses optimization mechanisms such as gradient

descent. Besides that, the chapter also covers convolutional neural networks and graph neural networks,

as well as which techniques we can use to train and optimize them. It also introduces recommender

systems and describes techniques such as singular value decomposition and factorization machines.

2.1 Neural Networks

The perceptron is an algorithm for learning a binary classifier corresponding to a threshold function

[18]. A threshold function is a function that receives an input x (a real-valued vector) and outputs a value

f(x):

f(x) =

{
1 if w · x+ b > 0,

0 otherwise,
(2.1)

where w is a vector of real-valued weights, and b is the bias term, as seen in Figure 2.1. The bias does

not depend on any input value and applies a transformation to the decision boundary so that it gets

farther away from the origin. We need to add hidden layers to this simple model to turn the perceptron

into a universal approximator, which essentially means that it is capable of capturing and reproducing

extremely complex input–output relationships, mixing numerous perceptrons, in order to mimic non-

linear decision functions. We develop a Multilayer Perceptron (MLP) as a result of this. The computation

and storing of intermediate variables (including outputs) for a MLP in the proper sequence from the input

layer to the output layer is referred to as forward propagation (also known as forward pass). We can write

the forward propagation equations as follows:

A[0] = X = Input (2.2)

Z [l] = W [l]A[l−1] + b[l] (2.3)

A[l] = f [l](Z [l]), (2.4)

where X is the input matrix, l ∈ {1, . . . , C}, where C is the total number of layers, W [l] is the weight

matrix that makes the connections between layer l− 1 and l, b[l] contains the bias of each unit in layer l,

f [l] is the activation function of the units in layer l, function f attenuates values below a certain threshold

and augments values above it. Some examples of these functions are the logistic sigmoid, the Rectified

Linear Unit (ReLU), and the Hyperbolic Tangent (tanh).

To train a neural network such as a MLP, we first need to initialize weights with some values, e.g.

randomly. Then we can start training our network, minimizing a loss function. We consider inputs x and

outputs y as static values. The variables that we will change are the weights w and bias b, to improve

9
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Figure 2.1: Ilustration for a perceptron model.

our network. If we compute the gradient of the loss function with reference to our weights and take small

steps in the opposite direction of the gradient, our loss will gradually decrease until it converges to some

local minima. This algorithm is called Gradient Descent (GD). The rule for updating weights on each

iteration of GD is the following:

wi = wi − η∂
L

∂wi
, (2.5)

where η is the learning rate. If we choose a learning that is too big, then we will make large steps to find

local minima and diverge. If we choose a learning rate that is too small, it might take too much time to

converge to some local minima.

There are 3 main variants of GD, differing in the amount of data required to compute the gradient of

the loss function:

• Batch Gradient Descent : In each step, the gradient of the loss function is calculated over the

entire training set and the parameters are adjusted accordingly. In general, this is the smoothest

approach, guaranteeing convergence to the global minimum (set of parameters that best minimize

loss) in most cases. However involves costly updates, as it requires the full dataset to be loaded

into memory.

• Stochastic Gradient Descent : This variant is the most commonly used, as it is the computationally

cheapest. In each step, a single training example is used to estimate the gradient and update

the parameters accordingly. This makes each update considerably more irregular, as training

examples may vary tremendously, making careful consideration regarding the learning rate crucial

10



for achieving convergence.

• Mini-batch Gradient Descent : Here the data set is divided into smaller batches of size k ≤ N . In

each step, the loss is calculated for every example in a batch and the update is performed similarly

to the batch variant. This is then repeated for each batch. This way, the batch computations

can be performed efficiently through matrix operations, leading to much stabler gradients than the

stochastic variant. The hyper-parameter k can be adjusted according to the data set size, making

it easily adaptable to the data and the hardware.

During the training of a Neural Network (NN), the most commonly used algorithm is backpropagation,

which is based on GD to optimize the parameters in a model. The backpropagation method works by

using the chain rule to compute the gradient of the loss function with respect to each weight, one layer

at a time, iterating backward from the last layer.

Suppose the optimization target for the output z is z0, which will be approached by adjusting the

parameters w1, w2, . . . , wn, b. By the chain rule, we can deduce the derivative of z with respect to wi

and b:
∂z

∂wi
=

∂z

∂y

∂y

∂wi
=

∂f(y)

∂y
xi, (2.6)

∂z

∂b
=

∂z

∂y

∂y

∂b
=

∂f(y)

∂y
. (2.7)

With a learning rate of η, the update for each parameter will be:

∆wi = η(z0 − z)
∂z

∂wi
= η(z0 − z)xi

∂f(y)

∂y
, (2.8)

∆b = η(z0 − z)
∂z

∂b
= η(z0 − z)

∂f(y)

∂y
. (2.9)

In summary, the back propagation process is comprised of the following two phases:

• Forward propagation: the NN computes the values at each neuron in a forward sequence given a

set of parameters and an input.

• Backward propagation: calculate the error at each variable to be optimized, then update the pa-

rameters in reverse order with their corresponding partial derivatives.

The process will continue until the optimization objective has been achieved.

2.1.1 Convolutional Neural Networks
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A Convolutional Neural Network (CNN) is a class of artificial neural networks, most commonly applied

to analyze visual imagery [19]. The name comes from one of the involved operations, called convolution.

In a CNN for two-dimensional data (e.g. images), the vector input has shape (number of inputs) ×

(input height) × (input width) × (input channels). After passing through a convolutional layer, the input

becomes abstracted to a feature map, also called an activation map, with shape: (number of inputs) ×

(feature map height)× (feature map width)× (feature map channels).

Some types of layers used in a CNN are the following:

• Convolutional layers convolve the input;

• Pooling layers receive input with a certain dimensionality and reduce the dimensions of data by

combining the outputs of neuron clusters, at one layer, into a single neuron in the next layer. The

most common polling operations are maximum (uses the maximum value of each local cluster of

neurons in the feature map) and average (takes the average value).

• Fully connected layers connect every neuron in one layer to every neuron in another layer. They

work the same as an original multi-layer perceptron neural network.

• ReLU activation layers effectively remove negative values from an activation map by setting them

to zero.

A convolution is a linear process in a CNN that involves the multiplication of a set of weights with

the input, similar to a standard NN. The multiplication is done between an array of input data and a

two-dimensional array of weights, called a filter or a kernel, because the approach was created for two-

dimensional input. The filter is smaller than the input data and the type of multiplication applied between

a filter-sized patch of the input and the filter is a dot product. It is intentional to use a filter that is smaller

than the input because it allows the same filter (set of weights) to be multiplied by the input array several

times at different points on the input. From left to right, top to bottom, the filter is applied systematically

to each overlapping section or filter-sized patch of the incoming data.

If the filter is designed to detect a specific type of feature in the input, then applying it systematically

throughout the entire image gives the filter the chance to find that feature anywhere in the image. This

property is known as translation invariance, e.g. the general interest in whether a feature exists rather

than where it exists.

A single value is obtained by multiplying the filter with the input array once. Because the filter is

applied to the input array several times, the outcome is a two-dimensional array of output values that

indicate input filtering, as we can see in Figure 2.2. As a result, this operation’s two-dimensional output

array is referred to as a feature map. Once a feature map has been constructed, each value in the

feature map can be passed through an activation function, such as a ReLU.

A convolutional layer has the following hyperparameters:
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Figure 2.2: An example filter applied to a two-dimensional input to create a feature map.

• Kernel size is related to the number of input values processed together. It is typically expressed

as the kernel’s dimensions, e.g., 2x2, or 3x3.

• Padding is used to add values on the borders of input, usually, those values are set to zero.

• Stride is the number of input values that the analysis window moves on each iteration.

• Dilation involves ignoring input values within a kernel. This reduces processing/memory, potentially

without significant signal loss.

2.1.2 Graph Neural Networks

While neural networks effectively capture hidden patterns in Euclidean data, i.e. data which is sen-

sibly modeled as vectors in n-dimensional linear space, there is an increasing number of applications

where data are represented in the form of graphs. For example, in e-commerce, a graph-based learning

system can exploit the interactions between users and products to make highly accurate recommenda-

tions [20].

In brief, graphs are a type of data structure that represents a set of objects and relations between

them. We denote a graph as G = (V,E), where |V | = n is the number of nodes in the graph and |E| = m

is the number of edges.

Consider that i, j ∈ V and consider a edge eij ∈ E connecting vertices i and j. The neighborhood

of a node v ∈ V is defined as N(v) = {u ∈ V |(v, u) ∈ E}. The adjacency matrix A is a n× n matrix with

Aij = 1 if eij ∈ E and Aij = 0 if eij ̸∈ E. A graph may have node attributes X, where X ∈ Rn×d is a

node feature matrix with xv ∈ Rd representing the feature vector of a node v. Meanwhile, a graph may

have edge attributes Xe, where Xe ∈ Rm×c is an edge feature matrix with xe
v,u ∈ Rc representing the

feature vector of an edge (v, u).

GNNs are a kind of NN that operate on a graph structure. GNNs can perform complex tasks such as

node classification (e.g. recognize whether a node in a social network is a bot), or link prediction (e.g.

predict the formation of a link between two nodes representing diseases [21]).
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Before introducing the theory behind GNNs, let us introduce first some key notions of feature and

embedding, in the context of GNNs.

Features are quantifiable attributes that characterize a phenomenon that is under study. In the graph

domain, features can be used to further characterize vertices and edges. For example in a social

network, we might have features for each person (vertex) which quantify the person’s age, popularity,

and social media usage. Similarly, we might have a feature for each relationship (edge) that quantifies

how well two people know each other, or the type of relationship they have (e.g. familial or colleague).

Embeddings are compressed feature representations. If we reduce large feature vectors associated

with vertices and edges into low dimensional embeddings, it becomes possible to classify them with low-

order models (i.e. we can make a dataset linearly separable). A key measure of an embedding’s quality

is if the points in the original space retain the same similarity in the embedding space. Embeddings can

be created (or learned) for vertices, edges, neighborhoods, or graphs. Embeddings are also referred to

as representations, encodings, latent vectors, or high-level feature vectors depending on the context.

When classifying nodes, each node v is identified by its features xv, and then it is associated with

a ground-truth label tv. When we have a partially labeled graph G, the goal is to leverage the existing

labeled nodes, for which we know the ground-truth, to predict the labels of the other nodes. The target

of GNNs is to learn a state embedding hv ∈ Rs, which encodes the information of the neighborhood, for

each node. The reception of information from another node is also known as message-passing. The

node embedding hv is used to produce an output embedding ov, such as the distribution of the predicted

node label. Formally,

hv = f
(
xv, xco[v], hne[v], xne[v]

)
, (2.10)

where x denotes the input feature and h denotes the hidden state. cov[v] is the set of edges connected

to node v and ne[v] is set of neighbors of node v. So that xv; xcov[v]; hne[v]; xne[v] are the features of v,

the features of its edges, the states and the features of the nodes in the neighborhood of v, respectively.

The function f is the local transition function that gathers the inputs of the neighboring nodes as well as

the node itself on a d-dimensional space - this operation is also known as message aggregation. Note

that the computations described in f and g can be interpreted as the feedforward neural network.

The output is computed by a local output function g which receives as argument hv and xv.

ov = g (hv, xv) . (2.11)

In the example of node l1 in Figure 2.3, xl1 is the input feature of l1. co[l1] contains edges l(1,2), l(3,1),

l(1,4), and l(6,1). ne[l1] contains nodes l2, l3, l4, and l6.

Let H, O, X, and XN be the matrices constructed by stacking all the states, all the outputs, all the
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Figure 2.3: An example of a graph [4].

features, and all the node features, respectively. Then we have a compact form as:

H = F (H,X), (2.12)

O = G(H,XN ), (2.13)

where F , the global transition function, and G is the global output function. They are stacked versions

of the local transition function f and the local output function g for all nodes in a graph, respectively. The

value of H is the fixed point of Equation 2.12) and is uniquely defined with the assumption that F is a

contraction map.

GNN uses the following iterative scheme to compute the state:

Ht+1 = F (Ht, X), (2.14)

where Ht denotes the tth iteration of H. The dynamical system Equation 2.14 converges exponentially

fast to the solution of Equation 2.12 for any initial value of H(0).

The L1 loss can be straightforwardly formulated as the following:

loss =

p∑
i=1

(ti − oi) , (2.15)
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where p is the number of supervised nodes. The learning algorithm is based on a gradient descent

strategy and has the following steps:

• The states ht
v are iteratively updated by Equation 2.10 until a time step T . Then we obtain an

approximate fixed point solution of Equation 2.12: H(T ) ≈ H;

• The gradient of weights W is computed from the loss;

• The weights W are updated according to the gradient computed in the last step.

In the beginning of this section it was explained the vanilla GNN. However, there are several varia-

tions of GNN like for example GCN or Graph Attention Networks (GAT).

2.1.2.A Graph Convolutional Neural Networks

GCN aim to generalize convolutions to the graph domain. As CNNs have achieved great success

in the area of deep learning, it is intuitive to define the convolution operation on graphs. Here a sin-

gle convolution operation transforms and aggregates feature information from a node’s one-hop graph

neighborhood, and by stacking multiple such convolutions information can be propagated across far

reaches of a graph.

GCN [22] are usually represented using as an adjacency matrix. First, self-connections are added

to the adjacency matrix A to ensure all nodes are connected to themselves, to get a new matrix Ã. This

ensures we factor in source node embeddings during message aggregation. The combined message

aggregation and update steps look like so:

H l+1 = σ(ÃH lW l). (2.16)

Kipf and Welling, further introduce a degree matrix D̃ as a form of renormalization to avoid numerical

instabilities and exploding/vanishing gradients:

D̃ii =
∑
j

Ãij . (2.17)

The ”renormalization” is carried out on the augmented adjacency matrix Ã, such that Â = D̃− 1
2 ÃD̃− 1

2 .

Â can be used in place of Ã in Equation 2.16.

2.1.2.B Graph Attention Networks

Compared with GCN which treats all neighbors of a node equally, GAT could assign different attention

scores to each neighbor, thus identifying more important neighbors.
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GAT [23] corresponds to an attention-based architecture to perform node classification of graph-

structured data. The idea is to compute the hidden representations of each node in the graph, by

attending over the neighbors, following a self-attention strategy. One of the benefits of attention mecha-

nisms is that they allow for dealing with variable-sized inputs, focusing on the most relevant parts of the

input to make decisions.

The input to a self-attention layer is a set of node features, h = {h⃗1, h⃗2, . . . , h⃗N}, h⃗i ∈ RF , where N

is the number of nodes, and F is the number of features in each node. The layer produces a new set of

node features (of potentially different cardinality F ′), h′ = {h⃗′
1, h⃗

′
2, . . . , h⃗

′
N}, h⃗′

i ∈ RF ′
.

For each node, we apply an initial step, corresponding to a shared linear transformation parametrized

by a weight matrix, W ∈ RF×F . Then, we perform self-attention on the nodes using the function a :

RF ′ × RF ′ → R that computes attention coefficients

eij = a(Wh⃗i,W h⃗j). (2.18)

the coefficients indicate the importance of node j’s features to node i. One inject the graph structure into

the mechanism by performing masked attention—it only computes eij for nodes j where j belongs to

the neighborhood of node i in the graph. To make coefficients easily comparable across different nodes,

we apply a normalization across all choices of j using the softmax function:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

, (2.19)

In Velickovic experiments [23], the attention mechanism a is a single-layer feedforward NN, param-

eterized by a weight vector a⃗ ∈ R2F , and applying the LeakyReLU nonlinearity (with negative input

slope α = 0.2). Fully expanded out, the coefficients computed by the attention mechanism may then be

expressed as:

αij =
exp(LeakyReLU(⃗aT [Wh⃗i ∥Wh⃗j ]))∑

k∈Ni
exp(LeakyReLU(⃗aT [Wh⃗i ∥Wh⃗k]))

, (2.20)

where ·T represents transposition and ∥ is the concatenation operation.

Once obtained, the normalized attention coefficients are used to compute a linear combination of

the features corresponding to them, to serve as the final output features for every node after applying

a nonlinearity σ. To stabilize the learning process of self-attention, the authors employ a multi-head

attention with K independent attention mechanisms that execute the transformation, and then their
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features are concatenated, remaining with the following feature representation:

h⃗′
i =

K
k=1 σ

∑
j∈Ni

αk
ijW

kh⃗j

 , (2.21)

where ∥ represents concatenation, αk
ij are normalized attention coefficients computed by the k-th atten-

tion mechanism (ak), and W k is the corresponding input linear transformation’s weight matrix. For each

node, the final returned output, h′, will have a size of KF ′ which will represent its features.

h⃗′
i = σ

 1

K

K∑
k=1

∑
j∈Ni

αk
ijW

kh⃗j

 . (2.22)

2.2 Recomender Systems

A recommender system refers to a software tool and technique that, by making use of information

about the users and items under consideration, proposes items that are probable to be of interest to a

specific user [24]. The suggestions can be the result of different decision-making processes, such as

what app to install, which gym to go to, or which class to attend. In this context, item is the common

term used to identify what the system recommends to users.

The set of items offered by different providers is increasing quickly, and users can no longer filter

through all of them. In this sense, recommendation engines provide a unique experience, aiding people

to find what they are looking for or what could be of interest to them more quickly. The result is that users’

satisfaction will be higher because they get relevant results without having to see too many options.

These systems are commonly used in online user-centric applications such as video players, music

players, or e-commerce applications, where users are recommended further items to engage with. For

example, Netflix reported in 2015 that its recommender system influenced roughly 80% of streaming

hours on the site and further estimated the value of the system at over $1B annually [25].

RS mostly have 3 components:

• Candidate Generation, which is responsible for generating smaller subsets of candidates to rec-

ommend to a user.

• Scoring System, which tries to assign a score to each of the items in the subset that is produced

by candidate generation.

• Re-Ranking System, which takes into account other additional constraints to produce the final

ranking.
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Game1 Game2 Game3 Game4 Game5
u1 5 4 2 1
u2 1 5 3
u3 5 4 4 1
u4 2 2
u5 3 1 1

Table 2.1: Game rating matrix.

There are many recommendation techniques although the main techniques that cover a wide spec-

trum of opportunities and modeling examples are the following:

• Content-based filtering systems (CBF): The recommendation engine uses item descriptions (man-

ually created or automatically extracted) and user profiles that assign importance to different char-

acteristics. It learns to find items that are similar in content to the ones that the user liked (interacted

with) in the past. CBFs do not need other users’ data when recommending to one user. A typical

example is a news recommender that compares the articles the user read previously with the most

recent ones that are available to find items that are similar in terms of content.

• CF: The basic idea behind collaborative recommendations is that if users had the same interests

in the past—bought similar books or watched similar movies, for example—they will have the

same behavior in the future. CF-based approaches have the advantages of being domain-free

(i.e., no specific business knowledge or feature engineering required) as well as generally more

accurate and more scalable than CBF models [26]. The most famous example of this approach

is Amazon’s recommender system, which uses user-item interaction history to provide users with

recommendations.

For example, let us consider the rating matrix in Table 2.1 with game reviews. Each column rep-

resents a game and each row represents a user, and the entries are the ratings that a user gave to a

game. If we use a CF method to infer if we should or not recommend Game1 to u1, we would find that

u3 has the most similar interests to u1 and, since u3 gave a high rating to the game, the system would

recommend Game1 to u1.

Most RS require a model of the users’ preferences in order to function. Preferences for items are

learned from users’ past system item interactions, also known as feedback. Feedback has often two

main types:

• Implicit Feedback : The user’s likes and dislikes are recorded indirectly by its actions like clicks,

searches, and purchases. This method does not support negative feedback.

• Explicit Feedback : The user specifies his/her likes or dislikes by actions like reacting to an item or

rating it. It has both positive and negative feedback, but usually less feedback is available.
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2.2.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a very popular linear algebra technique to decompose a

matrix into the product of a few smaller matrices [27]. The SVD is employed as a CF strategy in the

context of a RS. It is organized in a matrix format, with each row representing a user and each column

representing an item. The ratings given to items by users constitute the elements of this matrix, as we

can see in Table 2.1.

A matrix can be expressed as a multiplication of 2 or more matrices. Examples of this are QR decom-

position, LU decomposition, or singular value decomposition. This latter technique has no restrictions

on the shape or properties of the matrix to be decomposed, so let us assume a matrix M (for example,

a m× n matrix) can be decomposed as

M = U · Σ · V T , (2.23)

where U is a m × m unitary matrix, Σ is a rectangular diagonal matrix of dimensionality m × n, and

V T is a n × n unitary matrix. The rectangular diagonal matrix Σ can only have non-zero entries on the

diagonal. The matrices U and V T are orthogonal matrices, which means that the columns of U or rows

of V are orthogonal to each other (the two vectors’ dot product is zero) and are unit vectors (the vector’s

L2-norm is 1). An orthogonal matrix has the property that its transpose is its inverse. In our case, since

U is an orthogonal matrix, then UT = U−1.

The name of SVD comes from the name of the diagonal entries on Σ, which are called the singular

values of matrix M . The square root of the eigenvalues of the matrix corresponds to the values M ·MT .

These numbers are as important to reveal the structure of that matrix.

We described above the full SVD. However, there is another version called reduced SVD or compact

SVD [28]. Like the full SVD, we still decompose the matrix as M = U · Σ · V T , but we have Σ as a

r× r square diagonal matrix with r being the rank of matrix M , which is usually less than or equal to the

smaller of m and n. The matrix U is then a m × r matrix and V T is a r × n matrix. Because matrices

U and V T do not have a squared dimensionality, they are called semi-orthogonal. This means that

UT · U = I and V T · V = I, where I in both case is an identity matrix.

For the purpose of the recommender system, if the user-item matrix M is rank r, then we can prove

that the matrices M ×MT and MT ×M are both rank r. In SVD (the reduced SVD), the columns of

matrix U are eigenvectors of M ·MT and the rows of matrix V T are eigenvectors of MT ·M . What is

important here is that MT ·M and M ·MT can be in different sizes (because matrix M can not be in a

square shape). However, they have exactly the same set of eigenvalues, which are the square of values

20



𝑖1 𝑖2 𝑖3

𝑢1 2 4

𝑢2 1

𝑢3 3 5

Matrix Factorization 
Training Data 𝑢1 𝑢2 𝑢3 𝑖1 𝑖2 𝑖3 𝑎1 𝑎2 𝑦

𝑥1 1 0 0 1 0 0 2.0 0.0 2

𝑥2 1 0 0 0 1 0 1.5 0.5 4

𝑥3 0 1 0 0 1 0 0.0 1.0 1

𝑥4 0 0 1 1 0 0 0.3 0.7 3

𝑥5 0 0 1 0 0 1 3.2 1.7 5

Factorization Machine 
Training Data

O
b

se
rved

 R
atin

gs

Users Items Auxiliary 
Features

Figure 2.4: Transformation of a user-item matrix to be provided as input to training FM.

on the diagonal of Σ.

2.2.2 Factorization Machines

Factorization Machines (FM), originally proposed by Rendle [29], are generic supervised learning

models that map arbitrary real-valued features into a low-dimensional latent factor space, nowadays

being commonly employed in the development of recommendation systems [30]. FM can estimate

model parameters accurately under very sparse data and train with linear complexity, allowing them to

scale to very large data sets [29]. FM models represent user-item interactions as tuples of real-valued

feature vectors and numeric target variables.

In CF, the base features usually will be vectors only with 0s and 1s of user and item indicators, so

that each training sample has exactly two entries that are not zero corresponding to the given user/item

combination. However, when using FMs, we can also consider auxiliary features, corresponding to the

user or item attributes, or corresponding to contextual features relevant to the interaction itself (e.g.

day-of-week, add-to-cart order).

Let us consider we have a general recommendation problem, where the data can be described by a

design matrix X ∈ Rn×p, where the ith row xi ∈ Rp of X describes one case (i.e., one rating event) with

p real-valued variables, and where ŷi is the prediction target of the ith case. A FM model of order d = 2

can be defined as follows:
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ŷ(x) = w0 +

p∑
j=1

wjxj

p∑
j=1

p∑
j′=j+1

xjxj′

k∑
f=1

vi,fvj′,f , (2.24)

where k is the dimensionality of the factorization and the model parameters corresponding to {w0, w1, ...,

wp, v1, ..., vp, k} are such that w0 ∈ R, w ∈ Rp, and V ∈ Rp×k. The first part of the model equation is

similar to a standard linear regression, while the second part, with the two nested sums, contains all

pairwise interactions of input variables.

To train FM, we can use a GD based optimization techniques, the parameters to be learned are (w0,

w, and V ). The gradient of the FM model is:

∂

∂θ
ŷ(x) =


1, if θ is w0

xi, if θ is wi

xi

∑n
j=1 vj,fxj − vi,fx

2
i if θ is vi,f

. (2.25)

Since
∑n

j=1 vj,fxj is not reliant on i, it may be calculated independently. Additionally, the last formula

above, can also be written as xi(
∑n

j=1 vj,fxj−vi,fxi). To avoid overfitting, we may need L2 regularization

in practice.
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This chapter contains an in-depth discussion about previous work on RS, detailing a study that is

considered relevant in the context of this project. The chapter focuses on a more recent and novel

approach based on GNN such as GCN, which I plan to extend.

3.1 PinSage: Graph Convolutional Neural Networks for Web-Scale

Recommender Systems

PinSage is an efficient highly-scalable GCN algorithm designed at Pinterest, in the context of their

RS. PinSage does not require operating on the full Laplacian graph during training [1]. The authors

model the Pinterest environment as a bipartite graph consisting of nodes in two disjoint sets, namely I

(containing pins) and C (containing boards). Consider V to be the node set of the full graph.

The authors consider the task of generating an embedding zu for each node u, which depends on

the node’s input features and the graph structure around this node. This is made through Algorithm 4.1.

Algorithm 3.1: CONVOLVE
Input : Current embedding zu for node u; set of neighbor embeddings {zv|v ∈ N (u)}, set of

neighbor weights α; symmetric vector function γ(·)
Output: New embedding zNEW

u for node u

1 nu ← γ({ReLU(Qhv + q)|v ∈ N (u)},α);
2 zNEW

u ← ReLU(W· CONCAT(zu,nu)+w);
3 zNEW

u ← zNEW
u /||zNEW

u ||2

The basic idea of Algorithm 4.1 is to transform the representations zv, ∀v ∈ N (u) of u’s neighbors

through a dense NN and then apply a aggregator/pooling function on the resulting set of vectors (Line 1

of Algorithm 4.1). This aggregation step provides a vector representation, nu, of u’s local neighborhood,

N (u). Then, the authors concatenate the aggregated neighborhood vector nu with u’s current represen-

tation hu, and transform the concatenated vector through another dense NN layer (Line 2 of Algorithm

4.1). The set of parameters of our model which we then learn is: the weight and bias parameters for

each convolutional layer (Q(k) , q(k), W (k), w(k) ,∀k ∈ {1, · · · ,K}). Furthermore, the normalization in

Line 3 makes training more stable, and it is more efficient to perform an approximate nearest neighbor

search algorithm for normalized embeddings. The output of the algorithm is a representation of u that

incorporates both information about itself and its local graph neighborhood.

An important difference from the original GCN approach [16], that simply examines k-hop graph

neighborhoods, is that in PinSage the authors define importance-based neighborhoods, where the

neighborhood of a node u is defined as the T nodes that exert the most influence on node u.

Consider that L is a set of labeled pairs of items and (q, i) ∈ L, where q and i are items assumed

to be related, and thus corresponding to good recommendation candidates for each other. PinSage is
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Algorithm 3.2: MINIBATCH
Input : Set of nodes M ⊂ V ; neighborhood function N : V → 2V

Output: Embeddings zu, ∀u ∈M

// Sampling neighbourhoods of minibatch nodes.

1 S(K) ←M ;
2 for k = K, . . . , 1 do
3 S(k−1) ← S(k);
4 for u ∈ S(k) do
5 S(k−1) ← S(k−1) ∪N(u);

// Generating embeddings

6 h
(0)
u ← xu,∀u ∈ S(0);

7 for k = 1, . . . ,K do
8 for u ∈ S(k) do
9 H ←

{
h
(k−1)
v ,∀v ∈ N(u)

}
;

10 h
(k)
u ← CONVOLVE(k)

(
h
(k−1)
u , H

)
;

11 for u ∈M do
12 zu ← G2· ReLU

(
G1h

(K)
u + g

)
;

trained in a supervised fashion using the following max-margin ranking loss:

JG(zqzi) = Enk∼Pn(q) max{0, zq · znk
− zq · zi +∆}, (3.1)

where Pn(q) denotes the distribution of negative examples for item q, and ∆ denotes a margin hyper-

parameter.

It is important to note that the authors use a gradual warmup procedure that increases the learning

rate from a small to a peak value in the first epoch, according to a linear scaling rule. Afterward, the

learning rate is decreased exponentially.

During training, the authors also use a re-indexing technique to create a sub-graph G′ = (V ′, E′)

containing nodes and their neighborhood, which will be involved in the computation of each minibatch.

A small feature matrix containing only node features relevant to the computation of the current minibatch

is also extracted, such that the order is consistent with the index of nodes in G′. The authors run the

system with large batch sizes, ranging from 512 to 4096. The negative samples are used in the loss

function (Equation 3.1) as an approximation of the normalization factor of edge likelihood.

For each positive training example the authors add hard negative examples, i.e., items that are

somewhat related to the query item q, but not as related as the positive item i. The hard negative items

are generated by ranking items in a graph according to their personalized PageRank scores [31] with

respect to query item q. In the context of the personalized PageRank, π(s, t) reflects the significance

of node t with respect to the source node s. In a directed graph, π(s, t) is defined as the probability
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that an α-discounted random walk from node s finishes at t. An α-discounted random walk is a random

traversal that either end at the current node with probability α or advances to a random out-neighbor

with probability 1− α at each step.

The PinSage model is trained offline and all node embeddings are computed via MapReduce and

saved in a database. Afterward, an efficient nearest-neighbor lookup operation enables the system to

serve recommendations in an online fashion.

3.2 Graph Neural Networks at Decathlon

I now present a new RS approach based on GNN [2] by the Decathlon Research team to leverage all

the available historical user data as well as interactions with user-item. Combining multiple data sources

to build an efficient RS based on GNN. The model improves the most popular model at the company by

more than 2 times regarding recall and 167 times more regarding coverage.

The author proposes a basic GNN model and a more advanced one. We will be focused on the

advanced model. For the advanced model, the author creates a tripartite graph, as we can see in Figure

3.1, with a set of nodes including users, items and sports, and edges linking them together. Regarding

the edges between the user and the items, the author distinguishes between clicks and purchases. The

author also adds edges linking sports to users and items. The advanced model graph edges are the

following:

• user, buys, item

• user, clicks, item;

• user, practices, sport;

• item, utilized by, sport;

• sport, belongs to, sport;

and all the reverse types:

• item, bought by, user;

• item, clicked by, user;

• sport, practiced by, user;

• sport, utilizes, item;

• sport, includes, sport.
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Figure 3.1: Author tripartite graph

Besides defining the graph edges, the author also initializes the nodes with basic features: user

nodes are initialized with a one-hot encoding representing the gender; item nodes are initialized with

a one-hot encoding representing the gender and another numerical field representing the age group;

sport nodes are initiated with a one-hot encoding of the sport.

With the constructed graph, we can move on to embedding generation. Here is the pseudo-code, for

a given node embedding generation:

1. Fetch incoming messages from all neighbors.

2. Reduce all those messages into 1 message by doing mean aggregation.

3. Matrix multiplication of the neighborhood message with a learnable weight matrix.

4. Matrix multiplication of the initial node message with a learnable weight matrix.

5. Sum up the results of steps 3 and 4.

6. Pass the sum through a ReLU activation function.

7. Repeat for as many layers as wished. The result is the output of the last layer.

Mathematically, the process can be defined as we can see in Equation 3.2.

h(v)
v = relu

(
W

(k)
1 · h(k−1)

v +W
(k)
2 ·mean

(
h(k)
u ∀u ∈ N (v)

))
,

zv = hK
v .

(3.2)
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After the embeddings are generated, scoring can take place. The scoring function takes as input the

embedding of the origin node of the edge (the user), and of the destination node of the edge (the item).

Then, cosine similarity is computed between the two embeddings.

To train the model the author uses a max-margin loss function, as we can see in Equation 3.3.

L =
∑

(u,τ,v)∈E

∑
vn∈Pn,u

max (0,−DEC(zu, τ, zv) +DEC(zu, τ, zvn) + ∆) (3.3)

where E is the set of training edges, DEC is the decoder used that takes as input the embeddings of the

origin and destination node (and potentially the edge type), Pn,u is a set of nodes negatively sampled

from which vn is drawn and ∆ is a fixed hyperparameter that represents the size of the margin.

Splitting the data into train and test sets are done using temporal indicators. For all the available

users, a fixed period is used as training and a following fixed period is used as testing.

The author employs multiple training components. First, the author builds the graph, then groups the

data into batches. The author adds the initial node features to the model for each batch. It’s important to

note that there are distinct blocks for each batch so that the updated representations of all the nodes in

each block are computed by a model layer that corresponds to each block. The updated representations

of the last layer are the final embeddings of all nodes. Afterward, the author computes the loss using all

of the nodes’ final embeddings from the batch which can be summed as follows:

• Calculate the similarity score between the user node and the item node for each positive edge.

• Calculate the similarity score between the user node and the item node for each negative edge.

• Calculate the similarity score between the user node and the item node for each negative edge.

• Since, the loss function is a max-margin loss, there must be a predetermined difference between

the positive and negative scores.

Finally, parameterize the model using the loss. Calculate the validation loss, and if it stops decreas-

ing, utilize early stopping.

The metrics that the author uses to evaluate the model are precision, recall, and coverage, all for 10

items recommendations.

3.3 LARS: A Location-Aware Recommender System

LARS [3] is a location-aware recommender system that uses location-based ratings to produce rec-

ommendations. Traditional (non-spatial) recommendation techniques may produce recommendations

with burdensome travel distances (e.g., hundreds of miles away). LARS produce recommendations
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within reasonable travel distances by using travel penalty, a technique that penalizes the recommenda-

tion rank of items the further in travel distance they are from a querying user. Travel penalty may incur

expensive computational overhead by calculating the travel distance to each item. Thus, LARS employs

an efficient query processing technique capable of early termination to produce the recommendations

without calculating the travel distance to all items.

LARS accomplishes this with travel locality, which means that locations are linked to specific prod-

ucts, for instance, in a system that recommends restaurants, the locations are linked to the restau-

rants [32]. In a specific question, users may, however, indicate their current location. It is obviously

preferable to deliver results that are close to the area that the query specifies. With the help of the

concept of the travel penalty, LARS accomplishes this.

Query processing for spatial items using the travel penalty technique employs a single system-wide

item-based collaborative filtering model to generate the top-k recommendations by ranking each spatial

item i for a querying user u based on RecScore(u, i), computed as we can see in Equation 3.4:

RecScore(u, g) = P (u, g)− TravelPenalty(u, g) (3.4)

P (u, i) is the standard item-based CF predicted rating of item i for user u. TravelPenalty(u, i) is a non-

decreasing function of the distance between u and i normalized to the same value range as the rating

scale (e.g., [0, 5]).

When processing recommendations, the authors aim to avoid calculating Equation 3.4 for all can-

didate items to find the top-k recommendations, which can become quite expensive given the need to

compute travel distances. To avoid such computation, the authors evaluate items in monotonically in-

creasing order of travel penalty (i.e., travel distance), enabling them to use early termination principles

from top-k query processing [33], [34], [35].

Algorithm 3.3 provides the pseudo-code of the authors’ query processing algorithm to compute travel

penalties in an increasing order of travel distance that takes a querying user id U , a location L, and a

limit K as input, and returns the list R of top-k recommended items. The algorithm starts by running a

k-nearest-neighbor algorithm to populate the list R with k items with the lowest travel penalty; R is sorted

by the recommendation score computed using Equation 3.4. This initial part is concluded by setting the

lowest recommendation score value (LowestRecScore) as the RecScore of the kth item in R (Lines 2 to

6). Then, the algorithm starts to retrieve items one by one in the order of their penalty score. For each

item i, we calculate the maximum possible recommendation score that i can have by subtracting the

travel penalty of i from MAXRATING, the maximum possible rating value in the system, e.g., 5 (Line

9). If i cannot make it into the list of top-k recommended items with this maximum possible score, we

immediately terminate the algorithm by returning R as the top-k recommendations without computing the

recommendation score (and travel distance) for more items (Lines 10 to 11). The rationale here is that
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Algorithm 3.3: Travel Penalty Algorithm for Spatial Items
1 Function LARS SpatialItems(User U , Location L, Limit K)
// Populate a list R with a set of K items

2 R← ∅;
3 for K iterations do
4 i← Retrieve the item with the next lowest travel penalty;
5 Insert i into R ordered by RecScore(U, i) computed by Equation 3.4

6 LowestRecScore← RecScore of the kth object in R
// Retrieve items one by one in order of their penalty value

7 while there are more items to process do
8 i← Retrieve the next item in order of penalty score
9 MaxPossibleScore←MAXRATING− i.penalty

10 if MaxPossibleScore ≤ LowestRecScore then
11 return R // early termination - end query processing

12 RecScore(U, i)← P (U, i)− i.penalty // Equation 3.4

13 if RecScore(U, i) > LowestRecScore then
14 Insert i into R ordered by RecScore(U, i)

15 LowestRecScore← RecScore of the kth object in R

16 return R

since the authors are retrieving items in increasing order of their penalty and calculating the maximum

score that any remaining item can have, then they guarantee that no processed item has a lower score

than the lowest recommendation score in R. If the early termination case does not arise, we continue to

compute the score for each item i using Equation 3.4, insert i into R sorted by its score (removing the

kth item if necessary), and adjust the lowest recommendation value accordingly (Lines 12 to 15).

Travel penalty requires very little maintenance [3]. The only maintenance necessary is to occasionally

rebuild the non-location aware model in order to account for new location-based ratings that enter the

system.

3.4 Semi-supervised classification with graph convolutional net-

works

Approach for semi-supervised learning on graph-structured data [16] that is based on an efficient

variant of CNNs which operate directly on graphs. A localized first-order approximation of spectral graph

convolutions is used by the authors to justify their selection of the convolutional architecture. The model

learns hidden layer representations that encode both local network structure and node features and

scales linearly as the number of graph edges increases. The authors show through numerous trials on

various datasets that their approach outperforms related methods by a substantial margin.

The overall model, a multi-layer GCN for semi-supervised learning, is schematically depicted in Fig-
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ure 3.2. In the following example, the authors consider a two-layer GCN for semi-supervised node

classification on a graph with a symmetric adjacency matrix A (binary or weighted). The authors first

calculate Â = D̃− 1
2 ÂD̃− 1

2 in a pre-processing step, with D̃ii =
∑

j Ãij and Ã = A + IN . The forward

model then takes the simple form on Equation 3.5:

Z = f(X,A) = softmax
(
ÂReLU

(
ÂXW (0)

)
W (1)

)
. (3.5)

(a) Graph Convolutional Network (b) Hidden layer activa-
tions

Figure 3.2: Left: Schematic depiction of multi-layer GCN for semi-supervised learning with C input channels and
F feature maps in the output layer. The graph structure (edges shown as black lines) is shared over
layers, labels are denoted by Yi. Right: t-SNE [5] visualization of hidden layer activations of a two-layer
GCN trained on the Cora dataset [6] using 5% of labels. Colors denote document class.

Here, W (0) ∈ RC×H is an input-to-hidden weight matrix for a hidden layer with H feature maps.

W (1) ∈ RH×F is a hidden-to-output weight matrix. The softmax activation function, defined as

softmax(xi) = 1
Z exp(xi) with Z =

∑
i exp(xi), is applied row-wise. For semi-supervised multi-class

classification, the authors then evaluate the cross-entropy error over all labeled examples, as we can

see in Equation 3.6.

L = −
∑
l∈YL

F∑
f=1

Ylf lnZlf , (3.6)

where YL is the set of node indices that have labels.

The neural network weights W (0) and W (1) are trained using gradient descent. Furthermore, the

authors perform batch gradient descent using the full dataset for every training iteration, which is a viable

option as long as datasets fit in memory. Using a sparse representation for A, memory requirement

is O(|E|), i.e. linear in the number of edges. Stochasticity in the training process is introduced via

dropout [36].

The authors test the model in a number of experiments: semi-supervised document classification in

citation networks, semi-supervised entity classification in a bipartite graph extracted from a Knowledge

Graph (KG), an evaluation of various graph propagation models, and a run-time analysis on random
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graphs.

The authors evaluate prediction accuracy on a test set of 1,000 labeled examples. The authors

provide additional experiments using deeper models with up to 10 layers. The authors choose the same

dataset splits as in [37] with an additional validation set of 500 labeled examples for hyperparameter

optimization (dropout rate for all layers, L2 regularization factor for the first GCN layer and a number of

hidden units). The authors do not use the validation set labels for training.

3.5 Knowledge Graph Attention Network for Recommendation

The authors investigate the utility of KG, which breaks down the independent interaction assumption

by linking items with their attributes. The authors argue that in such a hybrid structure of KG and user-

item graph, high-order relations - which connect two items with one or multiple linked attributes - are

an essential factor for successful recommendation. The solution found by the authors was Knowledge

Graph Attention Network (KGAT) [7] which explicitly models the high-order connectivities in KG in an

end-to-end fashion. It recursively propagates the embeddings from a node’s neighbors (which can be

users, items, or attributes) to refine the node’s embedding, and employs an attention mechanism to

discriminate the importance of the neighbors.

Figure 3.3: Illustration of the proposed KGAT model [7]. The left subfigure shows model framework of KGAT, and
the right subfigure presents the attentive embedding propagation layer of KGAT.

The authors’ recommendation task can be summed as follows:

• Input: collaborative knowledge graph G that includes the user-item bipartite graph G1 and knowl-

edge graph G2.

• Output: a prediction function that predicts the probability ŷui that user u would adopt item i.

Figure 3.3 shows the model framework, which consists of three main components: 1) embedding

layer, which parameterizes each node as a vector by preserving the structure of Collaborative Knowl-

edge Graph (CKG) which is a hybrid structure of KG and user-item graph; 2) attentive embedding
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propagation layers, which recursively propagate embeddings from a node’s neighbors to update its rep-

resentation, and employ knowledge-aware attention mechanism to learn the weight of each neighbor

during a propagation; and 3) prediction layer, which aggregates the representations of a user and an

item from all propagation layers, and outputs the predicted matching score.

The training considers the relative order between valid triplets and broken ones, and encourages

their discrimination through a pairwise ranking loss:

LKG =
∑

(h,r,t,t′)∈T

− lnσ (g(h, r, t′)− g(h, r, t)), (3.7)

where T = {(h, r, t, t′)|(h, r, t) ∈ G, (h, r, t′) ̸∈ G}, and (h, r, t′) is a broken triplet constructed by replacing

one entity in a valid triplet randomly; σ(·) is the sigmoid function; g(h, r, t) is triplet (h, r, t) plausibility

score (or energy score).

The authors build upon the architecture of GCN [22] to recursively propagate embeddings along

high-order connectivity; moreover, by exploiting the idea of GAT [23], the authors generate attentive

weights of cascaded propagations to reveal the importance of such connectivity.

To optimize the recommendation model, the authors opt for the BPR loss [38], as we can see in

Equation 3.8.

LCF =
∑

(u,i,j)∈O

− lnσ (ŷ(u, i)− ŷ(u, j)), (3.8)

whereO = (u, i, j)|(u, i) ∈ R+, (u, j) ∈ R− denotes the training set,R+ indicates the observed (positive)

interactions between user u and item j while R− is the sampled unobserved (negative) interaction set;

σ() is the sigmoid function.

Finally, the authors have the objective function to learn Equations 3.7 and 3.8 jointly, as we can see

in Equation 3.9:

LKGAT = LKG + LCF + λ||Θ||22, (3.9)

where Θ = E,Wr,∀l ∈ R,W (l)
1 ,W

(l)
2 ,∀l ∈ 1, . . . , L is the model parameter set, and E is the embedding

table for all entities and relations; L2 regularization parameterized by λ on Θ is conducted to prevent

overfitting.
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In this chapter, we introduce the model proposed. We will explain how the graph was built, how we

designed the algorithm, how we trained the model, and handled the user location to give recommenda-

tions. The developed model builds upon the previous models PinSage [1] and GNN from Decathlon [2]

by adapting them to the problem at hand.

4.1 Building the Graph

Firstly, we built a tripartite graph with gyms, users, and activities, as we can see in Figure 4.1.

u1 u2 u3 u4

g1

Users

Gyms g2

Activities
a2

r1 r1 r1 r1

r1

Relations

r1: checks-in

r2: features 

r2
r2

r2 r2

a1 a3

Figure 4.1: Tripartite graph with users, gyms, and activities

A gym and user are connected if the user has checked-in at least once in the gym. A gym and an

activity are connected if the activity can be practiced in the gym. In the end, we have the following edges

in the graph:

• user, checks-in, gym;

• gym, features, activity;

and all the reverse types:

• gym, checked-in-by, user;

• activity, featured-by, gym.

We modeled the environment as a tripartite graph consisting of nodes in three disjoint sets, namely

G (containing gyms), U (containing users), and A (containing activities). Consider V to be the node set

of the full graph. The node features are described in Section 5.1.
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4.2 Designing the Algorithm

4.2.1 Embedding Generation

We can start creating embeddings once the graph has been built. A procedure identical to GNN at

Decathlon [2] and PinSage [1] is used to build embeddings for each graph node.

The task of generating an embedding zu for each node u, which depends on the node’s input features

and the graph structure around this node, is made through Algorithm 4.1.

Algorithm 4.1: Embedding Generation Layer
Input : Current embedding zu for node u; set of neighbor embeddings {zv|v ∈ N (u)}
Output: New embedding zNEW

u for node u

1 nu ← Q ·mean(zv|v ∈ N (u));
2 zNEW

u ← ReLU(W · zu + nu);
3 zNEW

u ← zNEW
u /||zNEW

u ||2

The basic idea of Algorithm 4.1 is to transform the representations zv, ∀v ∈ N (u) of u’s neighbors,

by reducing those representations into one by doing mean aggregation and multiply the result by a

learnable weight matrix (Line 1 of Algorithm 4.1). This aggregation step provides a vector representation,

nu, of u’s local neighborhood, N (u). Then, transform u’s current representation zu through a dense

neural network layer, thereafter we sum the aggregated neighborhood vector nu with the transformed

u’s current representation and pass the sum through a ReLU activation function (Line 2 of Algorithm

4.1). The set of parameters of our model which we then learn is: the weight parameters (Q(k), W (k),

∀k ∈ {1, · · · ,K}). Furthermore, the normalization in Line 3 makes training more stable, and it is more

efficient to perform an approximate nearest neighbor search algorithm for normalized embeddings. The

output of the algorithm is a representation of u that incorporates both information about itself and its

local graph neighborhood. Finally, we repeat the algorithm for as many layers as wished. The result is

the output of the last layer.

Mathematically, the process can be defined as:

z(v)v = relu
(
W(k) · z(k−1)

v +Q(k) ·mean
(
z(k)u ∀u ∈ N (v)

))
,

zNEW
v =

zKu
||zKu ||2

(4.1)

4.2.2 Scoring Function
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Scoring is possible following the generation of the embeddings. The embedding of the edge’s origin

node, the user u, and the destination node, the gym g are inputs for the scoring function. The two

embeddings are then compared using cosine similarity, represented as P (u, g), yielding a score between

0 and 1.

When the model finishes the embedding generation, we apply an algorithm similar to the one de-

scribed in Algorithm 3.3. Therefore, we first filter for each user the closest 100 gyms to their check-in

and apply the ranking function which combines the user-gym embedding similarity and the euclidean

distance between the user location and the gym location.

The ranking algorithm starts by running a 100-nearest-neighbor algorithm based on k-d tree [39] and

euclidean distance between the user location at least 2 hours before the check-in and the gym location

to populate the list R with 100 gyms with lowest euclidean distance. We explain in further detail why we

are using the location 2h before the check-in and the user and gym location in Section 4.4.

With the 100 closest gyms, it computes the cosine similarity between them and the user. After that,

it ranks each spatial item g for a querying user u based on RecScore(u, g), inspired from the work of

Location-Aware Recommender System [3], computed as:

RecScore(u, g) = P (u, g)− TravelPenalty(u, g), (4.2)

P (u, g) is the GNN recommendation model final embeddings cosine similarity of gym g with user u.

TravelPenalty(u, g) is the euclidean distance between u and i normalized to the same value range as

P (u, g).

4.3 Training the Model

4.3.1 Loss Function

Consider that L is a set of labeled pairs of user and gym and (u, g) ∈ L, where u is a user and g is a

gym that the user checked-in, and thus corresponding to good recommendation candidate for the user.

The model is trained in a supervised fashion using the max-margin loss function in Equation 4.3. The

equation is based on Equation 3.3 by GNN at Decathlon [2]

L =
∑

(u,v)∈E

∑
vn∈Pn,u

max (0,−f(zu, zv) + f(zu, zvn) + ∆) (4.3)

39



where E is the set of edges on which training is done, f(·) is a cosine similarity function and Pn,u

is a set of nodes negatively sampled from where vn is drawn. The size of Pn,u and ∆ are tunable

hyperparameters.

The training process is intuitive in that we use positive pairs of instances as our training signal. The

intention is for these positive pairs to receive higher scores from the model than the randomly generated

negative pairs.

4.3.2 Batching

Our case includes data with thousands of interactions for the model to be trained on. Since a graph

of this dimension cannot be fit on GPU utilization, batches are required. Batches include blocks that

contain neighbors of all the nodes for which we want to construct embeddings. The technique is very

similar to the one described in Algorithm 3.2.

Batching becomes more complicated as a result [2]. The model’s layers go as deep as its building

blocks. Each block layer contains every node needed to calculate the embeddings of the nodes in

the layer below. Each batch of edges, therefore, contains blocks to build embeddings for each node

connected by the edges, as well as a positive graph where the positive pairings are scored and a

negative graph where the negative pairs are scored.

4.3.3 Full Training Loop

The full training loop of the model is very similar to one by the Decathlon team [2]. To summarize

here is an overview of the full training loop of the multiple training components presented throughout this

section.

1. Create the graph and divide the data into batches.

2. For each batch, input the initial node features into the model.

3. Each batch has its respective blocks. Each block corresponds to a model layer that will compute

the updated representations of all the nodes in that block. The updated representations of the last

layer are the final embeddings of all nodes.

4. With all the final embeddings of the nodes in the batch, compute the loss.

(a) For all positive edges, compute the similarity score between the user node and the item node.

(b) For all negative edges, compute the similarity score between the user node and the item

node.
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(c) For all negative edges, compute the similarity score between the user node and the item

node.

(d) The loss function is a max-margin loss. The positive score needs to be higher than the

negative score by a predefined margin.

5. Using the loss, parameterize the model. Compute the evaluation test metrics and use early stop-

ping if MRR stops increasing for 10 successive epochs.

4.4 Location Problem

Since the model failed to learn that recommending closer gyms to the other gyms a user has been

are good recommendations, as we can see in Figure 4.2, and due to the user behavior, we decided to

use the TravelPenalty algorithm [3] to solve the location problem.

Figure 4.2: 10 recommendations for a user that went to the same gym in the training set and in the test set, using
the RS without TravelPenalty. The RS recommendations are represented in blue, the gyms that the
user checked-in in the training set are represented in brown, and the gyms that the user checked-in
next, in the test set, are represented in green. The training gym check-in dot and the test gym check-in
dot coincide.

The first version of the RS didn’t include a ranking function that combined both cosine similarity and

distance between the user and the gym as we have at the moment in the final version. The initial ranking

function only included the cosine similarity between the user and the gym because we expected that the

model was able to learn that recommending gyms closer to others that the user has been to would be

good recommendations. As we can see in Figure 4.2, a user that just checked-ins in at a gym in San
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Antonio, Texas (green dot) would be recommended gyms very far away in Seattle and New York both at

more than 2,500 kms from San Antonio.

(a) All users (b) Users that checked-in to a different gym in
test

Figure 4.3: Both charts show the mean users traveled distance between the average gyms location they checked-
in in the training set and the gyms’ location they checked-in in the test set. Left: Bar chart comparing
the users that traveled less than 5 kms and more than 5kms to check-in to a gym. Right: Bar chart
comparing the users that traveled less than 5 kms and more than 5kms to check-in to a different gym
from training.

Furthermore, since Gympass was interested in exploring recommendations for users that go to new

gyms, we analyzed the data, as we can see in Figure 4.3, and we noticed that more than 70% of users

that went to a different gym from the training set in test set traveled more than 5kms from their average

check-in gym location. Considering all the users, we found that less than 20% of users traveled more

than 5kms to check-in to a gym, we can see a significant difference between the traveled distance

between all the users and the users that checked-in to different gyms in the test set where the latter tend

to travel farther.

The TravelPenalty algorithm [3] applied in the re-ranking phase was the chosen method to solve

the location problem, as described in Section 4.2.2. Since the TravelPenalty algorithm needs the user

location we used the user app location at least 2h before the check-in. We used the user location at

least 2h before the check-in because, if the user location was very close in time to the check-in, the

user location would match the gym location that the user was checking-in. Therefore if we used the user

location at most 2h before the check-in we would be giving an unfair advantage to the recommendation

system because it would only need to recommend the closest gym to maximize the offline metrics.

Besides that, Gympass was interested in exploring the scenario where the user is just exploring the app

searching for gyms nearby some hours before checking-in at a gym which supported using the user
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location 2h before the check-in.

4.5 Summary

This chapter detailed the implemented RS for recommending Gympass gyms to users. Section 4.1

presented the tripartite graph that modeled the problem, as well as, the nodes and edges. Section

4.2 described how the model generates embeddings and how the ranking function combines these

embeddings with the user location with the gym’s location. The model was trained using the loss,

batching, and training loop described in Section 4.3. Finally, Section 4.4 explains the reasons why we

decided to use TravelPenalty in the re-ranking phase.
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This chapter presents the experimental results obtained during the course of this work. We start by

presenting the dataset in Section 5.1. We then present the baselines on Section 5.2 and the evaluation

metrics on Section 5.3. The details about the tuning of the hyperparameters are present in Section 5.4.

The results of our experiments are afterward provided in Section 5.5.

5.1 Dataset

5.1.1 Gympass dataset

We are using user US data to build the GNN model. The dataset includes gym features, user-gym

interactions, gym-activities edges, plans, and user locations which are described in this section. In Table

5.1 we can see some statistics about the training and test data. Since most users check-in often in at the

same gyms, it is interesting to evaluate how the RS performs when recommending gyms only to users

who checked-in in at a different gym. For all of this, we extracted a subset of the test set with only new

check-ins (i.e. check-ins that were not in the training set) to evaluate exactly that.

Table 5.1: Sets statistics

Statistic\Set Train set Test set Test set only new check-ins

#users 12,865 877 217
#gyms 2,639 545 179
#activities 258 - -
#check-ins 16,913 986 227
#gym-activities 14,854 - -
Average user check-ins 1.315 1.124 1.024
Average gym check-ins 0.205 1.809 1.179
Average activities per gym 5.629 - -
Average gyms per activity 57.574 - -
#check-ins in non-train gyms - 227 (23.02%) 227 (100%)
#users that checked-in in non-train gyms - 217 (24.74%) 217 (100%)

5.1.1.A Gym features

The gym features include two text fields: title and description, as we can see in Table 5.2. The title

feature is the gym name, the description feature is a text written by the gym owner. We also have

coordinate features such as latitude and longitude which mark the gym location. There are 2,639 gyms

from different locations in the US. An example of gym textual features anonymized data is available in

Table 5.2.
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Table 5.2: Gym textual features

id title description

0 Crunch Fitness... Why users love this gym?\nMembers love our gym...
1 Broadway Boxing Gym What makes this place unique? \nWe have been a...
2 Lloyd Athletic Club
3 Pilates Plus San Diego Why users love this gym?\nWe provide unique in...

Table 5.3: User-gyms check-ins

date user id gym id

2021-11-17 00:32:21.613 11307 1161
2022-02-04 13:05:30.946 6503 1161
2022-01-15 17:14:20.695 1931 1161
2021-12-17 13:03:26.346 10209 1161

5.1.1.B User-gym interactions

A user-gym interaction is when a user checks in at a gym at a given timestamp. This data is used to

create edges between gyms and users. All check-ins made from March 7 2021 to March 3 2022 are

fetched. Those interactions involve 2,639 different gyms and 12,865 users. An example of user-item

interaction anonymized data is available in Table 5.3.

5.1.1.C Gym-activities edges

A gym-activities edge is when a gym has an activity. This data is used to create edges between gyms

and activities. Those edges involve 2,639 different gyms and 258 activities.

5.1.1.D Plans

Each user and gym is associated with a value (max value and value, respectively) that corresponds to

a plan. For example, if user u has a $69.99 max value then he is in the plan Basic, as we can see from

Table 5.4, and can only go to gyms inside plan Basic or below that plan. The same applies to gyms but

with value. For example, if a gym g has a $69.99 value then only users with plan Basic or higher, as we

can see from Table 5.4, can check-in.

• Users max value - the data is used to create engineered features. The dataset has 12,865 different

users and their max value is associated with a certain starting and end date of that max value

because users’ plan value can change over time. A description of the user max value is available

in Table 5.6.

• Gyms value - the data is used to create engineered features. The dataset has 2,639 different gyms

and their median value. A description of the gym value is available in Table 5.5.
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Table 5.4: Plans’ highest value

Order Plan Highest value/$

0 Starter 40
1 Basic 70
2 Bronze 100
3 Silver 150
4 Gold 250
5 Platinum 350
6 Diamond 450
7 Custom 1e+99

Table 5.5: Gyms features description

feature name type min max % nulls

latitude float 19.644419 71.290174 0
longitude float -166.8080556 -68.7627325 0
value float 9.99 449.99 0

5.1.1.E Users’ locations

The features include coordinate features which are latitude and longitude and a timestamp. There are

12,865 users. A description of the users’ locations are available in Table 5.6.

Having understood the data being used, I will explain the data preparation and feature engineering

applied to the data. Two main data preprocessing were applied: data preprocessing that uses the

activities embeddings and data preprocessing that uses the gym description.

5.1.2 Data preprocessing that uses the gym description

In this treatment, only the user and gym features are changed from the dataset described in Section

5.1. We start with the gym features, as we can see in Table 5.2. We keep all the other gym features but

replace the text description with its text embedding, the embedding generation process is explained in

more detail in Section 5.1.2.A. On the other hand, the user features are initiated with the average of the

gym description embeddings that they checked-in at least once.

Table 5.6: Users features description

feature name type min max % nulls

max value float 6.99 1999.0 0
valid start date timestamp 2015-03-29 21:00:00 2022-07-20 01:00:00 0
valid end date timestamp 2015-04-30 20:59:59 2022-08-22 00:59:59 0
latitude float 25.7505585484564 47.74450538388441 0
longitude float -122.48305966157697 -70.9429543797924 0
timestamp timestamp 2022-02-10 10:46:56.100 2022-03-09 23:57:32.690 0
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5.1.2.A Text embedding

First, we applied multiple regex patterns to clean the text description field of gyms, we can see the rules

in Table 5.7. Since we had some cases where the text description was left empty after the regex cleaning,

in case the cleaned text description field was empty, we replaced it with the gym title. Afterward, we

Table 5.7: Regex rules for gym text description field

Rule Example text Cleaned text

HTML tags <p style=”color:red;”>important</p> important
HTML chars Crossfit &#8594 taekwondo &#x2192 Crossfit taekwondo
Only white spaces \n \n
Quotations “One of the best gyms in LA” One of the best gyms in LA
Ats We are open @ the studio! We are open the studio!
Hashtags We are team #fitplus #gym4life We are team
Repeated punctuation One experimental class for free!!!! One experimental class for free!

generated text embeddings on the final gyms text description field using a BERT model [17] generating

768 floating point number vector.

5.1.3 Data preprocessing that uses the activities embeddings

After analyzing the gym text description, we found out that they were mostly marketing messages to

attract customers into gyms which made them unhelpful because they missed essential useful informa-

tion about the gyms that could help the model learn. To solve this issue, it was decided to replace the

gym description embeddings with the average of their activities embeddings.

5.1.3.A Text embedding

We generated text embeddings on the activities title field using a BERT model generating 768 floating

point number vectors which replaced the activity title text field. The activity embeddings were reused to

generate embeddings for the gyms. The gym embeddings were the average of activities embeddings

associated with it.

5.1.3.B Plans

So that the model could output embeddings which also took into account the plan information of the

gym and user it was added new features to both.

A – Feature engineering

First we joined the gyms value and users max value, which are fields important to infer the user and

gym plan, to generate the following new features. We applied an ordinal encoding with Gympass plan
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values, as we can see in Table 5.8, which generated a new field called plan num. Then we created equal

frequency bins with these values.

Table 5.8: Gympass user plans

Plan num Plan Unlimited

0 Starter 40
1 Basic 70
2 Bronze 100
3 Silver 150
4 Gold 250
5 Platinum 350
6 Diamond 450
7 Custom 1e+99

5.1.4 Splitting in Train and Test Sets

Since we want to predict gyms that the user will check-in in the future, we need to use the past data

to predict future data. In this case, we can not split the train and test sets randomly because it might

happen that we are using future data to predict past data. Therefore, since the dataset has a date

variable and we want to make a prediction about the future, the temporal variable is a more reliable

approach to dividing the dataset. Thus, in order to create the test dataset, we must use the most recent

samples and the training set older samples before the test.

More precisely, we use all available data for training, except for the most recent month, used for

testing. Since this test set can be considered as the future of the training set, it serves two purposes: a

classic test set purpose of early stopping, and a performance monitoring purpose – we compute metrics

on the test set to see if the training has a proper impact on the metrics. We call the previous test set

normal test set, but, as described in Section 5.1.1, we also built a subset of normal test set which we

called only new check-ins test set.

The train set was not further split into train and validation using a similar methodology because,

although the model might have relatively high metrics in the validation set since the model did not see

the validation set it would lose important future information to predict the test.

5.2 Baselines

To evaluate the model, we built 3 baselines: closest gym to user, only initial embeddings, and bipartite

model.

The baseline closest gym to user for each user outputs a recommendation list ordered by how far

each gym is to the user starting from the closest to the farthest. The baseline was created due to the
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fact that US Gympass users have a preference for gyms close to them as we discovered that 75% of

users travel less than 5kms to a gym, as we can in Figure 4.3.

The baseline only initial embeddings uses the initial user and gym features described in the data

preprocessing described in Section 5.1.2 and for each user and gym, the cosine similarity ranking func-

tion is applied so that given a query user u, returns a gyms list whose embeddings are most similar to

the query user’s embedding. The list is ordered by how similar the item embedding is to the query u.

The baseline was created because Gympass recommendation systems using only embeddings were

successfully built and deployed with high evaluation metrics.

The baseline bipartite model is based on the model built in Chapter 4. We built a simple graph that

consisted of a bipartite graph with gyms and users connected if the user had checked-in at least once in

the gym. In the end, we have the following graph edges:

• user, checks-in, gym;

• gym, checked-in-by, user.

We modeled the environment as a bipartite graph consisting of nodes in two disjoint sets, namely G

(containing gyms) and U (containing users). Consider V to be the node set of the full graph. The node

features were the ones described in data preprocessing that uses the gym description, as described in

Section 5.1.2. Since the model needs to have the same feature size for gyms and features, the data

preprocessing that uses the activities can not be used. After the model generates the users and gyms

embeddings, the cosine similarity ranking function is applied so that given a query user u, returns a

gyms list whose embeddings are most similar to the query user’s embedding. The list is ordered by

how similar the item embedding is to the query u. We applied an efficient similarity search library called

Faiss [40]. Faiss contains algorithms that search in sets of vectors of any size, up to ones that possibly

do not fit in RAM.

5.3 Evaluation metrics

Recommender systems are often assessed from either an online or an offline standpoint. Although

offline approaches are the most common methods for evaluating recommender systems, online evalua-

tion does offer often a true measure of the effectiveness of the system, mostly due to their viability and

reproducibility in varied settings [32]. Precision and recall are common measurements.

The only user preferences that are recorded in a recommendation task with implicit data are those

that are positive. Non-positive interactions don’t always mean the user isn’t interested; they might have

just never seen the item before. The precision meter focuses on the accuracy of recommendations,
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which may include intriguing but rarely encountered items, whereas the recall metric concentrates on

the positive interactions that really occurred. Therefore, recall should be utilized rather than precision.

Other popular metrics used in the literature are called ranking metrics such as Mean Reciprocal Rank

(MRR) and Normalized Discounted Cumulative Gain (nDCG), which take the exponential decay of utility

into account and suggest that ”users are only interested in top-ranked items, and they do not pay much

attention to lower-ranked items.” [32]

The set of recommended items is denoted by S and let G represent the true set of relevant items

(ground-truth positives) that are consumed by the user. The recall is computed according to the following

equation:

Recall =
|S ∩ G|
|S|

. (5.1)

We also evaluate the system using the Mean Reciprocal Rank (MRR), which takes into account the

rank of the item j among recommended items for query u:

MRR =
1

m

∑
(u,j)∈L

1

Ru,j
, (5.2)

where Ru,j is the rank of item j among recommended items for query u, and m is the total number of

labeled item pairs.

We also use the NDCG which is computed with the discounted cumulative gain where the discount

factor of item j is set to log2(vj + 1), and vj is the rank of item j in the test set Iu. Then, the discounted

cumulative gain is defined as follows:

DCG =
1

m

m∑
u=1

∑
j∈Iu

guj
log2(vj + 1)

. (5.3)

In this case, the utility (or gain) of the user u in consuming item j is represented by guj . Typically,

an exponential function of relevance (such as non-negative ratings or user hit rates) is specified as the

value of guj :

guj = 2reluj − 1. (5.4)

Here, reluj is the ground-truth relevance of item j for user u, which is computed as a heuristic function

of the ratings or hits. Then, the normalized discounted cumulative gain (NDCG) is defined as the ratio of

the discounted cumulative gain to its ideal value, which is also referred to as ideal discounted cumulative

gain (IDCG).

NDCG =
DCG

IDCG
. (5.5)

Repeating the calculation for DCG, but using the ground-truth rankings instead, yields the ideal

discounted cumulative gain.

53



In the ranking segment, the resulting space is handled as an ordered set with a specific cut-off point

k defined for each metric, comparing the top k ranked candidates of the RS with the top k ranked items.

In this work we made use of several metrics to automatically evaluate the capability of the RS.

Analyzing recommendations was performed through the computation of commonly used metrics in the

recommendation systems domain, such as Recall@k, MRR@k, and NDCG@k at the cutoff point k.

These metrics are calculated in the exact same manner as the previous equations, but only considering

the top k retrieved candidates.

5.4 Hyperparameter Tuning

Many hyperparameters are present in the model, some of which are exclusive to the GNN framework

and others that are present in all deep learning frameworks. The GNN layers convert the initial feature

vectors into hidden vectors and then output vectors to generate embeddings. Hyperparameters include

the size of the hidden vector, the size of the output vector, and the number of embedding layers (i.e., the

number of times a node should go through each step described in Section 4.2.1). The predefined loss

function margin value, the number of negative samples, and the learning rate of the model parameters

are other hyperparameters.

Other conventional hyperparameters are defined beforehand. The optimizer is set to Adam, early

stopping is taken into account after ten epochs in which the test MRR has not increased, and the batch

size is set to 2048.

The model may be optimized for a variety of hyperparameters as a result. Finding the set of hyper-

parameters that optimizes MRR on the test set is the objective here. We employed the random search

method to achieve this.

5.5 Results

Table 5.9 presents the effects of the different proposed preprocessing techniques and recommenda-

tion systems on the recommendation task for the different test sets.

Table 5.9: Recall, MRR, and NDCG for data preprocessing that uses the activities and embeddings and data pre-
processing that uses the gym description for the normal test set and the only new check-ins test set.

Data preprocessing Data preprocessing that uses the activities Data preprocessing that uses the gym description

Recommendation system\Test set Normal test set Only new check-ins test set Normal test set Only new check-ins test set
Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10

Closest gyms to user 0.782 0.129 0.269 0.170 0.032 0.061 0.782 0.129 0.269 0.170 0.032 0.061
Only initial bipartite model embeddings - - - - - - 0.657 0.417 0.471 0.119 0.049 0.063
Bipartite model - - - - - - 0.599 0.346 0.403 0.119 0.057 0.069
Tripartite model 0.711 0.538 0.565 0.467 0.198 0.257 0.591 0.299 0.361 0.502 0.234 0.294

With regards to the employed RS, there does not seem to be a clear winner. Even when it comes to
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recommending gyms with the normal test set, there is no clear winner either. However, when it comes

to recommending users with gyms in only new check-ins in test set, it seems that the tripartite model

improves every metric very significantly by at least 2.95 times over the second best baseline metrics.

Since the RS closest gyms to user only uses the coordinates features from both users and gyms

which do not change in both data preprocessing, the RS will have the same values on the metrics for

both data preprocessing, as we can see in Table 5.9. The RS closest gyms to user seems to be the best

in terms of recall for both data preprocessing using the normal test set but has the lowest metrics in MRR

and NDCG. This could mean that the RS closest gyms to user could be interesting in scenarios where

we are recommending to all users that it is more important to just retrieve relevant gyms than it is to

have the most relevant gyms right on top of the recommendations. The RS closest gyms to user seems

to have relatively low metrics when being evaluated against the only new check-ins test set having the

lowest MRR and NDCG. The RS closest gyms to user relatively low recall value seems to be explained

by the majority of check-ins not being in the first 10 closest gyms from the inferred user location. This

could mean that these users usually go beyond just the first 10 gyms near them.

The RS only initial bipartite model embeddings and bipartite model do not have metrics for the data

processing that uses the activities because that data preprocessing has users and gyms features with

different dimensions and, since this recommendation systems have the limitation of only accepting the

same dimension of features for gyms and users, they can not generate embeddings of the features with

the data preprocessing that uses the activities embeddings. However, since in the data preprocessing

that uses the gym description both users and gyms have the same feature dimension, the RS can

compute metrics. For the data preprocessing that uses the gym description and normal test set the RS

only initial bipartite model embeddings seems to have the highest metrics in terms of MRR and NDCG

and the second best recall metric. However, for the only new check-ins test set it seems to have one of

the lowest metrics. The difference in values between the normal test set and only new check-ins test

set could be explained by the RS using user embeddings initialized with the average of the gyms they

checked-in on the training set. Since most users repeat gyms in the training set on the test set, it might

allow the RS to have high metrics in normal test set. However, since in the only new check-ins test set

we only have check-ins of users to new gyms they didn’t go to in the training set, it fails to generalize to

these new check-ins.

The RS bipartite model in the data preprocessing that uses the gym description and normal test

set seems to have the second best metrics in terms of MRR and NDCG and in the only new check-ins

test set seems to have the second highest overall metrics but by a very significant difference. Since

the RS bipartite model is initialized with the same embeddings used in the RS only initial bipartite

model embeddings, might start with a tendency to recommend gyms in training. This behavior might

be aggravated by the fact that the bipartite model architecture shares the same GCN layer and their
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parameters for both the check-in and checked-in-by edge which makes the model overfit the training

data leading to poor metrics when trying to recommend new gyms to users, as we can see in Table 5.9.

The RS tripartite model using the data preprocessing that uses the activities seems to have the high-

est MRR and NDCG for the normal test set by more than 2.1 times. Using the same data preprocessing

but with the only new check-ins test set the tripartite model seems to have the highest metrics by at

least more than 2.74 times over the second best. Using the data preprocessing that uses the gym de-

scription and normal test set, the RS seems to have significantly lower metrics than the two RS with the

highest metrics. Using the only new check-ins test set and the same data preprocessing, it seems that

the tripartite model improves every metric very significantly by at least 2.95 times over the second best

metrics. The fact that the tripartite model seems to have the best metrics might show how well the model

is able to generalize training data to new gyms that the user didn’t go yet. The tripartite model is able to

leverage both the content information of the gyms, users, and activities, and the relations between each

other to generate embeddings for both users and gyms. The metrics seem to show that the embedding

of a user, that is going to a new gym, is similar to the embedding of the new gym going next which might

lead the gym to rank higher on the user recommendations and increase the RS metrics.

The hyperparameters combination that had the highest overall evaluation metrics was the following

for the Tripartite Model:

• learning rate: [0.0001, 0.0008]

• delta: [0.26, 0.30]

• hidden embeddings dimension: 27

• output embeddings dimension: 27

• number of layers: 3

• negative sample size: [1200, 1500]
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My M.Sc. project aims to understand if it is possible for a GNN model to recommend new Gympass

gyms to users because Gympass is a subscription benefit that allows users to access multiple gyms in

their area, but, if users only go to the same gym, they might unsubscribe Gympass and pay the sub-

scription only to the gym they go to. To evaluate the model, we built 3 baselines: closest gym to user,

only initial embs and bipartite model, described in Section 5.2. In this work, we made use of several

metrics to automatically evaluate the capability of the RS. Analyzing recommendations was performed

through the computation of commonly used metrics in the recommendation systems domain, such as

Recall@10, MRR@10, and NDCG@10 at the cutoff point 10, described in Section 5.3 for different pro-

posed preprocessing techniques and for different test sets, one of them including only new check-ins

from training between users and gyms. The results of our GNN RS seem promising for the case of

recommending users gyms that they have never visited before. They show that a RS based on GNN can

predict which new gym a user will go to next better than only location based recommendation systems

or simpler GNN models.

The obtained results support the understanding that a DL model can recommend new Gympass

gyms to users. The main contribution of this work relies on building and validating a RS based on GNN

that infers how to model Gympass complex environment into a graph, using a GNN model architecture

learns users’ past behaviors and with the ranking function recommends gyms to users. This thesis

provides a GNN recommendation system with a trained model showing promising results compared to

the baselines.

For future work, it could be interesting to extend the experiments reported in this dissertation to other

Gympass products such as classes and apps. It would also be interesting to add more data about

the gyms to the gym features. Besides BERT embeddings, there are other text embedding pre-trained

models that could be used in this thesis for comparison since BERT only supports English but Gympass

has gym descriptions available in multiple languages. Gympass gyms also have pictures that could be

used in the RS so that it takes into account the quality of the gym pictures when recommending them to

users.
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