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Abstract—This work focuses on demonstrating the possible ad-
vantages of designing autonomous vehicles (AV) to improve traffic
conditions. Given the constant improvement of the capabilities of
autonomous vehicles and the lack of effective methods to counter
traffic congestion, AVs have become a potential asset for finely
managing traffic. Our work considers the traffic-critical setting
of an open multi-lane highway with a merging single road, and
presents a deep reinforcement learning strategy that trains the
system of AVs on that road to minimize the congestion generated
by the merge. This solution is tested in a traffic micro-simulator
and proven to effectively improve the network’s outflow and the
vehicles’ average speed at a 10% AV penetration rate. Replays
of the simulations can be seen in SimulationReplays1.

Keywords—autonomous vehicles; traffic congestion; deep rein-
forcement learning

I. INTRODUCTION

Traffic congestion is a serious problem in big cities around
the world. The current methods to counter this problem (for
instance, constructing better roads) are often costly and time-
consuming, proving overall not appropriate for solving a
worldwide problem. Therefore, there is an urgent need for
alternative ways of countering traffic congestion.

On another note, autonomous vehicles (AVs) have been
turning into valuable assets. The amount of AVs on the road
has been quickly growing, and their capabilities have been
continuously improving. AVs are currently simply designed as
a means of transport, with the goal of getting the owner from
one place to another. However, this approach might not be
considering their full potential—in effect, people are sharing
the roads with robots and could use them, for example, to
benefit traffic conditions.

That said, this work is based on the premise that, with
the right knowledge about the current state of traffic, there
are optimal driving behaviors that can be followed to avoid
traffic congestion. However, human drivers do not usually
have access to this required information, and even if they
did, they may favor their own goal (quickly reaching their
destination) over improving traffic. AVs, on the other hand, can
simply be programmed to follow the optimal behavior when
in situations that commonly lead to congestion (like merges
or intersections), and can easily assess the state of traffic
by communicating with other AVs on the road. Additionally,
the communication with other AVs allows them to create

1https://drive.google.com/drive/folders/1sa5y2FAWpInOHvYFTHaO56dg
zNgIEE-j?usp=sharing

new traffic-beneficial strategies that require the cooperation
of multiple vehicles.

It follows naturally that we could exploit AVs to improve
traffic. To this end, we first need to identify which situations
commonly lead to congestion, to then document which prac-
tices can be beneficial in those situations, and finally develop
the AV control algorithms that implement those behaviors.

After researching some works on this topic, we found that
the deep reinforcement learning (deep RL) approaches, that
trained the AVs to learn an optimal behavior, were often
very successful. We also noticed that there were no presented
solutions for improving traffic on the critical scenario of
an on-merge section in an open road with multiple lanes.
Therefore, our work focuses on developing a deep RL-based
AV control strategy that prevents traffic congestion in this
scenario. Additionally, note that, since one AV cannot impact
the traffic of an entire road, our strategy inevitably involves
coordinating with other AVs and influencing the human-driven
vehicles so that they all work towards the same goal.

To summarize, in this work we address the following
research question: how can we design autonomous vehicles
to improve traffic conditions?

We highlight the contributions of our project:
• The documentation of existing autonomous vehicle con-

trol algorithms that prevent traffic congestion;
• The development of an autonomous vehicle control strat-

egy that improves traffic conditions on an open multi-lane
highway with a single-lane on-merge section;

• The implementation of this solution in a mixed-autonomy
traffic simulation, and the evaluation of its effectiveness.

The remainder of this document is organized as follows:
In section II, we clarify some concepts that are used in this
project and describe the works in the literature that inspired
our solution. We then describe our envisioned strategy and
detail the performed experiments in section III. In section IV,
we present the obtained results for these experiments and com-
ment on the effectiveness of our solution. Finally, in section V
we reflect on the overall contributions and limitations of our
project.

II. BACKGROUND

In this section, we clarify some less trivial concepts that
are used throughout this document and highlight some works
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developed in the scope of using autonomous vehicles to
improve traffic conditions.

In the extended thesis document, we carry out an extensive
discussion on the various solutions that have been developed
on this topic, comparing solutions for multiple different sce-
narios and with different specific goals. Nevertheless, in this
document, we limit this discussion to including solely the two
works that proved especially relevant to the development of
our solution.

A. Deep Reinforcement Learning and MDPs

Reinforcement Learning is one of the 4 basic categories
of Machine Learning. Machine Learning (ML) is a type of
artificial intelligence where a system uses previous data to
“learn” and more accurately predict new outcomes, without
being explicitly programmed to do so. Reinforcement Learning
(RL) distinguishes itself by working through trial and error—
an agent following an RL algorithm has a defined goal and a
set of actions that it can perform to achieve the goal, and is
rewarded or punished for performing an action that is, respec-
tively, beneficial or prejudicial towards the goal. The agent
then uses this feedback to update an internal policy. In the
context of ML, a policy is a probability distribution over the
possible actions (depending on the state), ultimately guiding
how the agent should act. Therefore, an agent will attempt to
define an optimal policy that maximizes its expected reward.
On another note, Deep Learning is a family of ML strategies
that use deep artificial neural networks (neural networks with
multiple layers) to repeatedly process the input data into
defining features. Deep RL is thus a family of techniques
that combine deep learning with reinforcement learning, using
neural networks to process the gathered information into
actions, and ultimately representing the RL-learned behavior
as neural networks.

There are two main types of RL algorithms: model-based
and model-free. In model-based RL, the agent constructs an
internal model of the problem given its experience to the
moment, and then constructs its policy according to this model.
In model-free RL, the agent uses its experience to directly
learn its policy (or an action-value function, which informs
how good each action is at a given state), without the use
of a world model. A Markov Decision Process (MDP) is
a mathematical framework often used in model-based RL
problems, defined through a set of elements: the states an
agent can be in; the actions it can take; for each action,
the probability of transitioning from one state to another
(called probability functions); the reward function for the
agent’s actions. Following this model, the agent’s policy is first
initialized to some value. Then, at each timestep, the agent
is at some state, chooses an action according to its current
policy, transitions to another state according to the probability
functions, receives a reward, and updates its policy function
according to what it did and the reward it received from doing
so. This way, the agent’s policy is eventually able to accurately
guide it to the goal. A Partially Observable Markov Decision
Process (POMDP) is a commonly used variation of an MDP

that extends it by including information on what an agent
senses at each time step (the observations), assuming that it is
unable to know its own exact state. In a POMDP, the policy
is calculated according to what the agent can observe, instead
of the actual states it is in.

That said, a policy is updated according to a policy opti-
mization algorithm, that strives to maximize the expected re-
ward. Following the Trust-Region Policy Optimization (TRPO)
algorithm, each policy update is bounded by a defined maxi-
mum difference between the new and old policies, expressed
in terms of KL-divergence. The update thus corresponds to
the largest possible improvement of the system’s performance
that satisfies this constraint. The Proximal Policy Optimization
(PPO) algorithm is a simplification of the TRPO algorithm,
using essentially first-order methods to keep the new policy
close to the old, while the TRPO algorithm requires complex
second-order methods.

In the scope of this work, a centralized policy is one
that is calculated by a centralized controller after joining the
information sensed by the set of agents that are within its
reach. In contrast, a distributed policy is calculated by each
agent, using only the knowledge obtained by itself.

B. Maximizing road utility

Given that our solution focuses on the context of multi-
lane roads, we describe the work [3], which explores the idea
of balancing the lane usage between the vehicles on a road to
maximize the roads’ capacity and utility. The goal of this work
is to develop a centralized AV controller that, after finding the
maximum affordable increase to a road’s capacity, calculates
the optimal vehicle configuration, and rearranges the vehicles
according to this configuration.

To calculate the road’s capacity (the number of vehicles that
can simultaneously travel on the road) and the optimal config-
uration, the controller uses a helpful property of autonomous
vehicles known as platooning. Platooning is defined as the
ability of 2 sequential AVs to safely keep a smaller headway
than the one that would be required if an HDV was involved.
It follows that the optimal configuration is one where, in each
lane, there will optimally be either only AVs or only HDVs. If
a mixed lane exists, then the AVs should rearrange themselves
so that no HDV is between them.

For the rearranging process, the controller makes use of the
AVs’ capability of influencing HDVs into taking a desirable
action. The process is distributed to each AV, which individu-
ally interacts with the HDVs around it (making them change
lanes, slow down, or speed up) to reach the configuration
that is intended by the controller. This process is illustrated
in fig. 1.

The other papers on the topic of our project usually consider
settings where there is either only one lane per road or where
lane changes are not allowed. In fact, very few of the works
explored the possible advantages of lane-changing, which
accentuates the findings in this paper. Besides the benefits
that this strategy brings by itself, the techniques for lane
balancing can also be combined with other approaches to
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Fig. 1. Phase 1: the AVs follow optimal lane assignment. Phase 2: the AVs
influence the HDVs to follow optimal lane assignment. The acting AVs pair
with the HDVs A and B. Phase 3: the AVs platoon in the mixed lane. Taken
from [3]

make them more efficient—the constant maximum usage of
the road’s capacity provides an additional efficiency gain in
every scenario that involves a multi-lane road. Therefore, our
solution takes inspiration from this algorithm, recognizing the
multiple lanes as a resource to reorganize the vehicles in a
way that is optimal for our goal.

C. Dissipating stop-and-go waves

Ideally, every vehicle would travel at its optimal perfor-
mance, showing constant speed and spacing. However, this is
not the case in natural highway traffic, as small disturbances
inevitably form and propagate backward, eventually expanding
and forming jams. This effect is known as stop-and-go waves
and is commonly the cause of traffic congestion.

The work [2] focuses specifically on programming au-
tonomous vehicles to mitigate these waves. It considers the
scenario of an open single-lane highway with a merge section
to generate the perturbations. The authors define a centralized
RL controller with access to the AVs’ observations and actions.
The plan is that, after training the controller, the AVs that
are at the beginning of the road learn to slow down or even
stop in the event of a wave near the on-ramp, making the
vehicles behind them also slow down prematurely, and this
way smoothing the impact of the wave.

Note that, following this strategy, a higher AV penetration
rate translates to needing a less drastic deceleration per AV,
and since the vehicles can speed up again once the jam is
cleared, a higher number of AVs will inevitably provide better
results. Therefore, the authors test their solution for increasing
AV penetration rates (the defined percentage of autonomous
vehicles on the road). Surprisingly, the experiments show that a
2.5% AV penetration rate was sufficient to contribute greatly to
dissipating the waves. Furthermore, at 10% the group of AVs
was able to roughly dissipate the waves completely, with the
vehicles moving twice as fast and with a 13% improvement
in throughput.

Fig. 2. Overview of the project setup

This work showed multiple interesting conclusions. For
one, it suggested that AV control algorithms may successfully
replace the current less effective and more expensive ramp
meters since, providing the same results, it is applicable to
waves formed everywhere in the controlled area, instead of just
the ramp. Additionally, it presented an AV control strategy for
single-lane open roads with an on-ramp that is effective while
not being too complex, which is commonly the issue with
other solutions. For that reason, this solution allows itself to
be expandable to more realistic conditions—our project takes
great inspiration from this work, striving to expand it to the
context of multi-lane roads.

III. IMPLEMENTATION

We address the problem of developing an autonomous
vehicle control strategy that, in a mixed-autonomy context,
prevents traffic congestion on an open multi-lane highway
with a merge section, and that takes into consideration the
possibility (and advantages) of lane-changing, using the lanes
to optimally reorganize the vehicles on the main road.

A. Project overview and strategy

We define a centralized agent that has access to each AV’s
observations and can act through each AV’s actions. Note that
the agent does not have full access to the state of the network
at each step, and instead only gets partial information from
what the AVs can observe of their own surroundings. As such,
the problem is modeled using a POMDP. We then use deep
reinforcement learning to train this agent to learn an optimal
policy that maximizes the network’s outflow and the vehicles’
average speed, since those are the best indicators of clear
traffic.

Fig. 2 presents an overview of the project setup. The net-
work and vehicles are represented in a traffic micro-simulator.
At each step, the agent obtains the AVs’ observations from
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Fig. 3. Network configuration of the single-lane highway with merge section

the simulator and sends the AVs’ next actions, based on the
observations that it got and on an internal policy that it keeps.
The agent then receives a reward depending on the state of
the system and updates its policy according to that reward.

That said, we model our problem as the combination of two
simpler problems:

1) a single-lane highway with a merge section, where the
controller learns to maximize the network’s outflow and
dissipates stop-and-go waves;

2) a multi-lane highway without a merge section, where the
controller learns to rearrange the AVs and the vehicles
around them before the merge section into a distribution
that would be optimal for handling the merge.

We decided to first experiment with training the AVs in
these two sub-problems and then join the experiments to build
the more complex scenario, to conclude whether these two
behaviors can be joined to reach our initial goal.

That said, in scenario 1 we follow the approach described
in [2], with the exception of some minor necessary changes
to update the solution. For scenario 2, inspired by [3], the
idea is to reorganize the vehicles into a configuration that is
optimal for our initial goal. Since in [2] we concluded that a
higher AV penetration rate allows for a smoother merge, we
believe that the optimal configuration is one where the AVs
are concentrated on the lane that suffers the merge. Therefore,
the goal of scenario 2 is to make the AVs learn to reorganize
that lane into having the largest possible AV rate. For the final
scenario, we join these two strategies, expecting the AVs to
manage between reorganizing the lane that suffers the merge
and dissipating the waves to allow for a smooth merge.

B. Preliminary experiment 1

1) Network configuration: For the first preliminary exper-
iment, we consider the single-lane highway with a merge
section illustrated in fig. 3. The main road has a single lane of
length Lhw = 700 m, with pre-merge length Lhw pre = 600 m
and post-merge length Lhw post = 100 m. The merging road
has length Lm = 100 m. We define the inflows of the main
and merging roads to be, respectively, fhw = 2000 veh/hr
and fm = 100 veh/hr, and the AV penetration rate to be
PAV = 10%. We assume the AVs to be uniformly distributed,
which means that every 100

PAV
th vehicle that enters the network

is autonomous.
2) Observation and action spaces: The observation space

of the agent corresponds to what each AV can observe at each
step. In this scenario, the observations are the AV’s speed vi,

the speeds vi,lead and vi,fol of the vehicles directly in front and
behind it, and the time headways hi,lead and hi,fol between the
AV and those same vehicles. The action space is the bounded
acceleration ai of each AV.

3) Reward function: The used reward function is a
weighted sum defined in eqs. 1 to 4. The first term Rv

rewards the proximity of the system’s speed v(t) to the desired
speed vdes, while the second Rout rewards high network
outflows out(t). We add a cost Ch for small AV space and
time headways since these are indicators of congested traffic.
In eq. 4, hmin,t and hmin,s are, respectively, the minimum
desirable time and space headways, while hi,t(t) and hi,s(t)
are the corresponding headways of AV i at time step t. For the
experiments, we used vdes = 25 m/s, outdes = 2100 veh/hr,
hmin,t = 1 s, hmin,s = 7 m, a1 = 0.1 and b1 = 0.1.

R1 = a1 ×Rv + (1− a1)×Rout − b1 ×
∑
i∈AV

Ch (1)

Rv = ∥vdes∥ − ∥vdes − v(t)∥ (2)

Rout = min[out(t)/outdes, 1] (3)

Ch = min[hi,t(t)− hmin,t, hi,s(t)− hmin,s, 0] (4)

In the original solution presented in [2], only the average
system speed was considered—however, we found that, in
that case, the AVs ended up exploiting the reward function
by stopping at the beginning of the main road (blocking the
inflow) until the road was clear and then speeding through
the road, this way managing to output high average speeds
at the cost of lowering the network outflow. We added Rout

as a workaround to this problem. Additionally, the original
headway cost only accounted for time headways. We decided
to account for space headways as well since the time headway
can be uninformative at very low speeds.

C. Preliminary experiment 2

1) Network configuration: For the second preliminary ex-
periment, the network is as shown in fig. 4, where the main
road has two lanes instead of one, and there is no merging lane.
As in the first experiment, Lhw = 700 m and PAV = 10%.
Given the extra lane and since we want to test the controller’s
ability to learn the intended behavior in high-density traffic,
the inflow of the main road is increased to fhw = 3500 veh/hr.
This is because, in the final experiment, the traffic is expected
to have high density caused by the bottleneck. We assume the
lane that suffers the merge to be the right lane (also called
lane 0).

2) Observation and action spaces: The observation space
includes some of the observations already described in III-B
for each AV—vi, vi,fol and hi,fol—, with the addition of the
AV’s lane li and the type foli (AV or HDV) of the vehicle
directly behind it. The action space consists of each AV’s
bounded acceleration ai and their direction di.
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Fig. 4. Network configuration of the multi-lane highway

Fig. 5. Network configuration of the multi-lane highway with merge section

3) Reward function: The reward function is the weighted
sum defined in eqs. 5 to 7 and 2. The first term Rv rewards
proximity to the desired speed. The second term Rp rewards
the proximity of the AV rate p(t) on the right lane to the
desired rate pdes. The final term Bpush is a bonus that rewards
AVs for influencing an HDV to change out of the right lane.
For this scenario, we used the constants vdes = 25 m/s, pdes =
0.25, a2 = 0.75 and b2 = 0.1.

R2 = a2 ×Rv + (1− a2)×Rp + b2 ×
∑

j∈HDV

Bpush (5)

Rp = min[p(t)/pdes, 1] (6)

Bpush =

{
1, if lanej(t− 1) = 0 ∧ lanej(t) ̸= 0

0, otherwise
(7)

D. Main experiments

1) Network configuration: Our main experiments consider
the open network scenario of a 2-lane highway of length
Lhw = 700 m, with a merge section where the merging road
is single-lane and has length Lhw = 100 m. As in III-B, the
main road has pre-merge length Lhw pre = 600 m and post-
merge length Lhw post = 100 m. The inflows on the main and
merging road are set to fhw = 3500 veh/hr and fm = 200
veh/hr, and the AV penetration rate remains at PAV = 10%.
Fig. 5 illustrates the network.

2) Observation and action spaces: The observation space
for this problem combines the ones used in the preliminary
experiments, including, for each AV: the AV’s speed vi and
lane li, the speeds vi,lead, vi,fol and headways hi,lead, hi,fol

of the vehicles directly in front and behind the AV, and the
type foli of the vehicle directly behind it.

The action space is the same as in III-C, corresponding
to each AV’s bounded acceleration ai and their direction di.

Note that the direction corresponds to the intent or not of
moving to the lane on the right/left of the current lane and that
the AVs cannot be in between two lanes. Additionally, in this
environment, any action chosen by the agent that would lead to
immediate collisions (for example, changing lanes when there
is no space on the target lane) is overwritten by the simulator.

Since the network is open, the number of AVs (and con-
sequently, the number of observations and actions) varies
throughout the experiment. Therefore, we define a fixed max-
imum size NAV for the set of controlled AVs at each step and
use zero padding for the observation and action space when
there are fewer than NAV AVs in the network.

3) Reward function: The reward function used to train the
vehicles is a weighted sum of the reward functions used in the
preliminary experiments, defined as follows:

R = α×R1 + (1− α)×R2 (8)

where R1 is defined in eq. 1, R2 is defined in eq. 5 and
α ∈ [0, 1]. R1 rewards behaviors that lead to the dissipation
of the waves that may form near the merge, while R2 rewards
behaviors that lead to an increase of the AV ratio on the
right lane. We experiment with a set of different α values to
conclude which proportion between these two terms allows
for the best results. Regarding the first term, we set vdes = 25
m/s, outdes = 3700 veh/hr, hmin,t = 1 s, hmin,s = 7 m,
a1 = 0.1 and b1 = 0.1. Regarding the second term, we set
pdes = 0.25, a2 = 0.75 and b2 = 0.1.

We point out that we were unfortunately forced to limit
the number of lanes to two due to the complexity of the
experiments—the training duration proved proportional to the
number of vehicles currently in the network since the envi-
ronment required a running simulation of the network while
training. This originated a significant difference in the training
times when we added a second lane on the main road and
ultimately rendered adding a third lane unfeasible.

E. Simulations

The experiments are implemented in Flow [5], an open-
source framework developed by the authors of the work [2] to
perform reinforcement learning experiments in traffic micro-
simulators. Flow allows for the creation of various traffic-
oriented RL tasks with the goal of developing control strategies
for autonomous vehicles. Additionally, we use SUMO [1] for
the execution of the simulations. SUMO is a renowned open-
source traffic micro-simulator. Finally, the human-driven vehi-
cles’ behavior and dynamics are modeled using the Intelligent
Driver Model (IDM) [4], a microscopic car-following model
built into SUMO.

The simulations are executed with time steps of 0.2 s and
a total duration of 3600 s. The RL agent receives observa-
tions and chooses new actions every 5 simulation time steps,
repeating its actions in the meantime.

The agent is trained using the Proximal Policy Optimization
(PPO) algorithm, with discount factor γ = 0.999 and a
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TABLE I
RESULTS OF THE PRELIMINARY EXPERIMENT 1

PAV,total (%) speed (m/s) outflow (veh/hr) # vehicles PAV,lane0 (%)
0 7.08 1440 49 -
10 14.25 1560 24 -

learning rate of 0.001. Furthermore, we use an MLP actor-
critic policy with hidden layers (32, 32, 32) and relu activation
function.

IV. RESULTS

In this section, we present the numerical results for each of
the experimental settings described in section III and reflect
on the learned behavior of the trained controllers.

Each simulation had a total duration of 3600s, and the
results were averaged over 50 simulations to account for
stochasticity between simulations. The considered metrics
throughout the experiments are the average of the system’s
speed at each step (speed), the total outflow over the duration
of the simulation (outflow), the average number of vehicles
on the highway at each step (#vehicles), and the average
percentage of AVs on the right lane at each step (PAV,lane0).

Videos of the simulations are available at SimulationRe-
plays. The title of each video is informative of the experiment
setting, the level of autonomy, and, in the case of the final
experiments, the used value for α. Although some videos may
be longer due to simulator processing delays, each video shows
a total of 1200 simulation seconds. The current simulation time
can be assessed in the top left corner. Regarding the colors of
the vehicles, red vehicles correspond to AVs, white vehicles
to HDVs, and blue vehicles to the HDVs that the AVs can
currently observe. Finally, we recall that only a limited group
of AVs can be controlled at each step—as such, in the event
of a jam, there can be some uncontrolled AVs in the network
that will act as HDVs.

A. Preliminary experiment 1

Table I shows the obtained results for the single-lane high-
way with merge section experiment (described in III-B), com-
paring the zero-autonomy simulations to the mixed-autonomy
simulations performed using the trained controller. The final
metric is not relevant in a single-lane scenario and is thus not
included.

In the mixed-autonomy simulations, we notice an 8% in-
crease in the outflow of the network, along with a 50% increase
in the average speed, with the vehicles effectively traveling at
double the speed. The number of vehicles on the network at
each step also decreased to half in the case of mixed autonomy,
showing a clear improvement in the road’s efficiency.

From the simulation replay of the mixed autonomy setting2,
we observe that, as expected, the AVs at the beginning of the
highway slow down in the event of a wave, forcing the line of
vehicles behind them to slow down as well, and successfully
dissipating the waves.

2Video titled SingleLaneMerge MixedAutonomy

TABLE II
RESULTS OF THE PRELIMINARY EXPERIMENT 2

PAV,total (%) speed (m/s) outflow (veh/hr) # vehicles PAV,lane0 (%)
0 20.2 3460 38 10*
10 16.4 3436 51 16

B. Preliminary experiment 2

In table II, we assess the results of the multi-lane highway
experiment. To be able to evaluate the PAV,lane0 evaluation
metric (which represents the main goal of this experiment) on
the zero-autonomy simulations, we perform the simulations
using puppet AVs which, without a trained RL controller,
simply act as HDVs while carrying the label of being an
AV. That said, in the zero-autonomy simulations, this value
corresponds to the set AV penetration rate of 10%. This is
expected since the departure lane for each vehicle is random.
In the mixed autonomy setting, we see that the controller
was able to increase this percentage to 16%, but there is a
consequent decrease of 19% in the average speed and also a
slight decrease in the outflow.

From the replay of the simulation3, we see that the AVs
move to the right lane when possible, and sometimes slow
down in front of an HDV, eventually influencing it to change
to the left lane, as intended. However, since the inflow is high,
the traffic is inevitably very dense, and thus the repeated lane
changes in the mixed-autonomy scenario end up generating
jams (as seen toward the end of the video), whereas in the zero-
autonomy scenario there are no disturbances and the vehicles
travel at their free-flow speed. Additionally, we note that, after
these jams are formed, the attempts of the AVs to change to
the right lane are overwritten given the lack of space on that
lane. This justifies the decrease in the average speed and why
the AV percentage increase on the right lane was not larger.

In any case, our insight is that, in the multi-lane merge
scenario where both solutions are joined, the obtained increase
in the AV penetration rate on the right lane should compensate
for its consequences, since the controller in that environment
has more resources to dissipate the waves.

C. Main experiment

For the final scenario, we show in table III the results of the
experiments for different values of the α scalar in eq. 8. We
compare the experiments for α = {1, 0.75, 0.50, 0.25, 0}. To
understand the results, we start by looking at the experiment
where α = 0.50, which is the one that achieved the best
performance.

1) Best case strategy: Surprisingly, in the experiment where
α = 0.50, the PAV,lane0 was actually lower than the original
AV penetration rate on the inflow of 10%. From the replay of
the simulation4, we noticed that the controller had naturally
developed a different strategy for dissipating the waves in this
multi-lane scenario. In the replay, the AVs end up staying

3Video titled MultiLaneHighway MixedAutonomy
4Video titled MultiLaneMerge MixedAutonomy alpha050
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TABLE III
RESULTS OF THE MAIN EXPERIMENTS FOR DIFFERENT α VALUES

α speed (m/s) outflow (veh/hr) # vehicles PAV,lane0 (%)
1 4.10 1955 113 11
0.75 6.43 2614 99 9
0.50 13.1 3045 53 5
0.25 8.08 2801 87 10
0 7.82 2823 89 11

mostly on the left lane, where they behave similarly to the first
preliminary experiment, slowing down periodically to open
space in the lane. Then, in the event of a wave near the
merge, they quickly alternate between the two lanes, surprising
the vehicles and thus forcing them to brake. Although this
behavior effectively resulted in decreasing the impact of the
wave on both lanes, we did not plan or anticipate it.

We first note that, in the event of a wave in a multi-lane
scenario, the vehicles in the lane that suffers the merge are
more likely to change into the adjacent lane to avoid stopping,
rather than staying in their current lane. Thus, the wave on
the right lane only aggravates once there is no more space
on the adjacent lane for the vehicles to change into, that
is after another wave has formed on the adjacent lane. The
video of the zero-autonomy simulation for this setting5 shows
this behavior. This effectively translates to a second parallel
merge of the right lane into the left lane—and this merge
is much more alarming than the original since the number
of vehicles on the right lane is almost 10 times the number
of vehicles on the actual merging road. With this in mind,
we understand why the left lane should be the most closely
monitored, and consequently the one with the higher AV
percentage. Additionally, we note that the HDVs have a slight
resistance to overtaking on the right, meaning that when an
AV brakes to prepare the left lane for the merge, it indirectly
manages to slightly affect the right lane as well.

Finally, we realize that, for increasing values of α in our
reward function, the term that rewards high AV percentages
on the right lane (originally defined in equation 6) ends up
amounting to very small values. Additionally, since there is a
constant inflow and outflow of vehicles, and since this term is
recalculated in every time step, it frequently varies regardless
of the AVs actions. Therefore, we believe the controller
ultimately interprets this term as an incentive for changing into
the right lane, rather than as a continuous reward for staying
in that lane, justifying the repeated changes between lanes.

2) Remaining results: For every other value of α, we
get significantly worse results. Note that, when α is 0, the
reward function becomes equal to R2 (equation 5), and the
experiment is similar to the one described in section III-C,
however applied to the more complex scenario of an on-merge
section. Accordingly, in the simulation video6 the AVs change
to the right lane as soon as possible. However, since they lack
the incentive to dissipate the waves, they do not slow down

5Video titled MultiLaneMerge ZeroAutonomy
6Video titled MultiLaneMerge MixedAutonomy alpha0

TABLE IV
PERFORMANCE OF THE BEST MAIN EXPERIMENT AGAINST THE

ZERO-AUTONOMY SIMULATION

PAV,total (%) speed (m/s) outflow (veh/hr) # vehicles PAV,lane0 (%)
0 10.2 2902 94 10*
10 13.1 3045 53 5

to prepare their lane for the merge, and allow the waves to
quickly expand.

Likewise, when α is 1, the reward function is R1 (equa-
tion 1) and the controller is rewarded solely for behaviors that
lead to the dissipation of eventual waves, as in the experiment
of section III-B. From the simulation 7, we can see that the AVs
rarely change lanes, and simply focus on braking extensively
in their current lane, a strategy that ends up generating its
own jams. We believe that, without the incentive to change
to the right lane, the controller is unable to learn the working
strategy of alternating lanes, and instead chooses a defensive
strategy that is ineffective.

In the replay of the experiments where α is 0.258 and 0.759,
we recognize some efforts to follow the same strategy as in
the α = 0.50 experiments—we see that the AVs change lanes
repeatedly, trying to control both lanes, and also brake in their
lane, managing to create small gaps. However, the controller is
unable to balance these two behaviors and the waves inevitably
propagate. That said, when alpha = 0.75, the strategy works
slightly better in the beginning than when alpha = 0.25, as the
AVs are able to dissipate the first waves. Nevertheless, when a
wave is finally able to expand, the efforts of the controller to
mitigate the wave are counterproductive and end up generating
additional jams behind the AVs, whereas when alpha = 0.25
the waves simply propagate as in the zero-autonomy setting.

This detail, along with the overall worse results in table III
for alpha < 0.5 than for alpha > 0.5, leads us to conclude
that the strategy used to mitigate stop-and-go waves in the
preliminary experiment III-B is only effective in the multi-
lane scenario if it is joined with the incentive to change lanes,
and is otherwise actually harmful to traffic.

3) Achieved traffic improvement: Finally, we evaluate the
performance of the best-case experiment, α = 0.50, by
comparing it against the zero-autonomy setting. Table IV
shows the results for both simulations. We notice that, using
the RL controller, there is a 28% increase in the average speed
of the vehicles, along with a 5% increase in the network’s
outflow and a 44% decrease in the density of traffic.

We conclude that the trained AV controller, although not
following the strategy we envisioned, effectively improved
traffic conditions on a two-lane highway with a merge section.

V. CONCLUSIONS

This project highlights the possible advantages of au-
tonomous vehicles to traffic. We propose a deep RL-based

7Video titled MultiLaneMerge MixedAutonomy alpha1
8Video titled MultiLaneMerge MixedAutonomy alpha025
9Video titled MultiLaneMerge MixedAutonomy alpha075
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autonomous vehicle control mechanism that improves traffic
conditions near a merge section on an open two-lane highway.

Since the envisioned strategy is the composition of two sub-
strategies, we additionally present implementations for each—
we update an existing AV control strategy that dissipates
stop-and-go waves near a merge section in a single-lane
highway, and develop a strategy that reorganizes the vehicles
on a multi-lane highway—and prove their effectiveness in a
mixed-autonomy traffic micro-simulation. We then study the
proportion between the two behaviors that allows for the best
performance in the joined scenario, noticing the AVs’ best-
learned behavior to be different from our envisioned strategy.
As such, we document this alternative behavior and how it
developed from our implementation, so that in the future it
may be reproduced and possibly optimized.

From the simulations, this autonomous vehicle control so-
lution, at a 10% AV penetration rate, is shown to allow for a
28% increase in the average vehicle speed and a 5% increase
in the network’s outflow, with the AVs effectively minimizing
the consequences of the merge section and utilizing both
lanes to better prepare the vehicles for the merge. Therefore,
this work effectively presents an autonomous vehicle control
approach that minimizes traffic congestion on a multi-lane
merge, proving the potential benefits of designing autonomous
vehicles to improve traffic conditions.

Our solution is unfortunately limited from only being tested
and proved to work on a two-lane scenario, and therefore
we see it as future work to expand it to the context of
more lanes. Furthermore, it does not account for every human
being unique and ultimately assumes that every human’s
behavior in traffic will be similar, which leaves a significant
gap between our solution’s effectiveness in the simulator and
its true effectiveness in real-life traffic. Knowing that the
optimal learned strategy was actually very different from our
envisioned one, we additionally suggest re-implementing the
solution to reward those optimal behaviors, simplifying it and
possibly even achieving better results.
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