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Abstract

Conventional object detection methods look at individual frames independently, ignoring temporal con-
text (memory) information that successive frames might possess. For object tracking, there are two types
of memory that should be considered to improve performance: memory of past observations and memory
of past detections. Taking into account past observations allows the algorithm to focus on the differences
between the current and past observations, effectively making moving objects stand out against the back-
ground. Memory of past detections allows the algorithm to more easily identify true objects and their
class, by having in mind the objects that previously occupied the same position.

This work presents a novel approach on the detection and tracking of Unmanned Aerial Vehicles
(UAVs), based on both types of memory, using consecutive frame subtraction and a new version of the
ByteTrack tracker. The final system merges the state-of-the-art detector You-Only-Look-Once (YOLOv7)
with the state-of-the-art tracker ByteTrack, with a new assignment metric, to achieve an F1-score taking
the track identification into account (referred to as IDF1) of 0.960, and a Multiple Object Tracking Accuracy
(MOTA) of 0.991, both on a test subset created from the Anti-UAV dataset. All the computations were
performed on a single Graphics Processing Unit (GPU) at a rate of 29.4 frames per second.
Keywords:Unmanned aircraft system, infrared imaging, object detection, YOLO, tracking

1. Introduction
With the advancement of technology, it is be-

coming ever so easier to acquire small aircraft pi-
loted by remote control or on board computers,
often referred to as drones or UAVs (unmanned
aerial vehicles). As the capabilities of these small
aircraft increase, so does their ability to operate
more effectively for both beneficial and harmful
purposes.

Due to their small size, affordability and versa-
tility, UAVs are becoming increasingly popular and
their applications are widening. However, this in-
crease in popularity has raised some concerns re-
garding safety and privacy. Small personal drones
can be controlled remotely, can be easily trans-
ported and can be modified to carry harmful pay-
loads, allowing them to target both individuals and
infrastructure. Their size and agility also makes de-
tecting and tracking them a very challenging task.

1.1. Project Overview
This work focuses on the detection and tracking

of small UAVs using an infrared camera. The pro-
posed method combines the YOLOv7 detector with
a new version of the Bytetrack tracker to achieve
reliable tracking at a rate of nearly 30 frames per

second. Other trackers like SORT (Simple On-
line and Realtime Tracking) and a modified ver-
sion of Deep SORT are also tested, as well as the
You-Only-Learn-One-Representation (YOLOR) de-
tector. The final system takes a continuous stream
of infrared frames, starts by aligning and subtract-
ing consecutive images (to highlight moving ob-
jects) and concatenates this result with the cur-
rent frame. This information in then scanned by
an object detector to find possible targets in the im-
age. The results from the detector are then aligned
to compensate for camera motion and given to a
tracker to improve the results, rejecting false posi-
tives and linking consecutive detections belonging
to the same object into a track with a unique iden-
tification (ID).

1.2. Related Work
Recently, empowered by the advances in com-

puter vision, several visual object tracking frame-
works have been proposed in the context counter
UAV operations. Detection based models are the
most common in the literature, mainly due to their
simplicity, as they just adapt other networks to the
task of object tracking.

In [1] common object detectors, such as Faster
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RCNN, SSD, YOLOv3 and DETR are combined
with trackers: SORT, Deep SORT and Tracktor
to establish a comprehensive performance bench-
mark for comparing these algorithms in the con-
text of Unmanned Aerial Vehicle visual detection
and tracking. In [2] the SSD detector is used to
detect persons, bicycles and cars in infrared (IR)
videos and in [3] YOLOv3 is trained to detect per-
sons and vehicles in search and rescue scenarios
using visible light and infrared images. Similarly, [4]
uses YOLOv4 on visible light and thermal images
for human detection from an aerial perspective. Fi-
nally, [5] uses the Faster-RCNN as a detector and
Multi-Domain Network (MDNet) as a tracker for vis-
ible and thermal drone monitoring, and [6] uses
YOLOv2 and a multi-object Kalman filter tracker,
similar to SORT, for real-time drone detection and
tracking with visible, thermal and acoustic sensors.

2. Theoretical Background
2.1. Anti-UAV Challenge Dataset

The 1st Anti-UAV Workshop and Challenge
(2020) [7] brought the release of the original Anti-
UAV dataset. The labeled part of this dataset is
comprised of 100 fully-annotated visible light and
IR unaligned videos, intended to provide a realis-
tic benchmark for object tracking algorithms in the
context of drone detection. It contains recordings
of six UAV models flying at different lightning and
background conditions.

2.2. Image Alignment
Image alignment is the technique of warping one

image (sometimes two) so that the features in both
images line up perfectly. Conventional algorithms
try to estimate the parameters of one of the follow-
ing motion models (in increasing order of complex-
ity): Translation, Euclidean, Affine or Homography.

2.3. ECC Algorithm
One algorithm that aims at estimating the motion

model between two given images, is the Enhanced
Correlation Coefficient Maximization (ECC) [8].
The ECC algorithm is a gradient-based iterative im-
age alignment algorithm which achieves high ac-
curacy in parameter estimation (i.e. subpixel accu-
racy) with relatively low computational complexity.
This algorithm is also invariant to photometric dis-
tortions in contrast and brightness since it consid-
ers the correlation coefficient (zero-mean normal-
ized cross correlation) as an objective function.

2.4. Visual Object Detection
To fully comprehend an image, precisely esti-

mating the concepts and locations of the objects
contained in it, is one of the core computer vision
problems. This task is referred to as object detec-
tion and its objective is to surround an object with
a bounding box and classify which type of object it

is.
You Only Learn Once (YOLO) [9], and its vari-

ants, are the current state-of-the-art in real-time
object detection. YOLO starts by dividing the input
image into an S × S grid, with each cell in this grid
being responsible for detecting the objects cen-
tered in that cell. Each cell outputs B bounding box
detections, with every detection consisting on the
probability that there is an object and the descrip-
tion of that object (i.e. center position (x, y), di-
mensions (w, h) and C values corresponding to the
conditional class probabilities Pr(Classi|Object)).
The output of this network is therefore a tensor of
size S×S×F , where S is a hyper parameter (orig-
inally S = 7) and F is the number of output filters:

F = B(C + 5). (1)

Several YOLO variations have been proposed
over the years. YOLOR [10] was introduced in
2021 and proposes a network that can encode ex-
plicit and implicit knowledge together, through the
use of parameters learned during training and in-
corporated into the CNN using addition, multiplica-
tion or concatenation.

YOLOv7 was introduced in 2022 and is now
the state-of-the-art in real-time object detection
[11]. The main features introduced or improved
in YOLOv7 are: model re-parameterization, model
scaling and an Extended Efficient Layer Aggrega-
tion Network (E-ELAN).

2.5. Multi-object Tracking (MOT)
MOT is the problem of automatically identifying

multiple objects in a video and representing them
as a set of trajectories with high accuracy.

Some MOT systems make use of pre-trained ob-
ject detectors to locate target objects within indi-
vidual frames, followed by trackers which connect
these sets of detections across time, forming tracks
with unique track IDs.

This approach is referred to as tracking-by-
detection and an example of one of these algo-
rithms is Simple Online and Realtime Tracking
(SORT) [12]. This algorithm works by describing
every track (and, therefore, every object) with a
unique ID and a Kalman filter containing the size
and position of the object (in pixel coordinates), as
well as its derivatives.

The tracker is updated for every frame in the
video, and the IoU metric is used to compute the
similarity between all the detections and all the tar-
gets being tracked. The assignment step is then
solved optimally via the Hungarian algorithm, us-
ing an IoU threshold (IoUmin) to reject unfit as-
signments. When a detection is paired with a tar-
get, the detected bounding box is used to update
the track state, with the velocities being solved op-
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timally by the Kalman filter framework. If no detec-
tion is associated to the target, its state is simply
predicted without correction using the linear veloc-
ity model.

Deep SORT [13] is an extension to SORT that
integrates appearance information to improve the
performance of the baseline algorithm. Due to
this extension, the system is able to track objects
through longer periods of occlusions and can more
easily differentiate objects even if they come within
extreme proximity of each other.

ByteTrack [14] is another multi-object tracker
heavily inspired by SORT. Where ByteTrack differs
from the previous methods, is how it keeps ev-
ery single detected box, unlike most trackers which
only keep the high score detections (with a confi-
dence greater that a threshold).

2.6. Evaluation Metrics
The Intersection over Union (IoU) is used to

measure the similarity between two bounding
boxes. Considering any two bounding boxes, B1

and B2, the IoU is given by:

IoU =
Area(B1 ∩B2)

Area(B1 ∪B2)
. (2)

The Precision, P , is defined as the number of
correct detections over the total number of detec-
tions predicted by the model:

P =
TP

TP + FP
, (3)

where TP is the number of true positives and FP
is the number of false positives.

The Recall, R, is defined as the number of cor-
rect detections over the total number of objects
present in an image:

R =
TP

TP + FN
, (4)

where TP is the number of true positives and FN
is the number of false negatives.

Changing the confidence score threshold of the
detector will result in a Precision-Recall trade-off
which can be plotted into a curve. The Average
Precision, AP , is defined as the area under the
Precision-Recall curve:

AP =

n∑
(Rn −Rn−1)× P, (5)

where Rn is the recall value of point n, and P is the
maximum precision for any recall value larger than
Rn, i.e., P = max{P (R) : R ≥ Rn}.

The mAP is the average across all classes of
the AP value per class,

mAP =
1

N

N∑
i=1

APi, (6)

where N represents the total number of classes
and APi the average precision of the ith class.

Since this metric depends on the IoU thresh-
old used to distinguish true positives from false
positives, it is common for the mAP to be fol-
lowed by the IoU threshold used. For instance,
mAP@0.5 means the threshold used to compute
the mAP was set to 0.5. Another common varia-
tion is mAP@[.5:.95], which is the average mAP
using IoU thresholds from 0.5 to 0.95, with a step
of 0.05.

Switching to the Multi-Object Tracking metrics,
the IDF1 is a score that balances identification pre-
cision and recall through their harmonic mean, sim-
ilar to other F1 scores. Is is given by:

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
, (7)

where IDTP refers to the true positives taking the
ID into account (i.e. the bounding boxes and the
IDs of the detections and ground truth must match).
The same goes for the ID false positives (IDFP )
and ID false negatives (IDFN ).

The MOTA is an alternative metric to evaluate
the performance of a tracker. It is given by:

MOTA = 1− FN + FP + IDS

GT
, (8)

where the denominator, GT , refers to the total
number of objects in the ground truth, and IDS
refers to the identity switches (occurrences where
the track ID for an object changes compared to pre-
vious frames).

3. Implementation
3.1. Previous Work

The work presented in this work carries on the
counter-UAV project developed at the Center for
Aerospace Research (CfAR) in the past two years,
with main contributions from Daniel Justino [15]
and Mariana Santos [16]. The previously devel-
oped system uses a LiDAR ((Light Detection and
Ranging) as well as a visible light camera to de-
tect, track and estimate the position of flying UAVs
in the world coordinate frame.

The detector chosen for their system was the
YOLOv4 (the latest YOLO version at the time their
algorithm was developed). As for the tracker, Deep
SORT was used, however the Re-ID network was
not included and the appearance descriptors were
always left empty. This edited version, very simi-
lar to SORT, was called modified Deep SORT and
used the cosine distance to measure the similarity
between the bounding boxes from the detector and
the tracker.

One of the restrictions of their system is that the
initialization solely relied on LiDAR data. This is a
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strong limitation given the fact that the LiDAR avail-
able has a small angular resolution in the elevation
plane, resulting in a significant volume not covered
by this sensor. Another limitation is that the previ-
ously developed system does not take into account
the camera’s or the tracking vehicle’s motion.

3.2. Proposed system overview
In order to tackle these limitations and improve

the performance of the overall algorithm, some key
changes are proposed. These include: replacing
the visible light camera with an IR camera, using
image alignment to compensate for camera mo-
tion, providing the detector with moving object in-
formation and upgrading the tracker from the mod-
ified Deep SORT to a new version of the ByteTrack
algorithm. A diagram of the proposed system is
presented in Figure 1.

Figure 1: Diagram of the proposed system.

The system starts by running the ECC algorithm
to compute the camera motion matrix between the
previous and the current frames, and, using this
transformation, both frames are aligned and sub-
tracted.

The detector then receives a concatenation of
the subtraction result with the current frame and
scans this image for possible UAVs using YOLO.

After this step, the detection results are all con-
verted to the same frame of reference, using the
accumulated results from the ECC algorithm, and
are then given as input to the tracker. For every
frame, the tracker receives all the detections, up-
dates its tracks using the new information and out-

puts a list with the bounding box and ID of every
UAV in the respective frame.

3.3. Enhanced Correlation Coefficient (ECC)
The first major step in the proposed method is to

compute the transformation matrix that aligns the
previous frame with the current one. This is done
using the ECC algorithm.

There are two key hyper parameters necessary
to guarantee a good performance of the ECC algo-
rithm: the transformation to be estimated and the
scale applied to its input images.

The selected transformation was the translation
for its faster inference speed when compared to the
alternatives. This choice also takes into account
the apparent movement of the background in the
dataset, which did not present significant rotation
or changes in magnification.

As for the scale used to reduce the size of the
ECC input images, after some experimentation, it
was set to 0.05. This value ensures that the al-
gorithm converges the vast majority of the times
(around 99.99%), keeping the runtime low and still
achieving good results on the videos from the Anti-
UAV dataset.

Another aspect to consider is that image align-
ment relies on having background visual features
rich enough to be tracked across frames, which
does not always happen on the Anti-UAV dataset.
Looking into the dataset reveals that some of the
videos were recorded with a clear sky as the en-
tire background. This could degrade the perfor-
mance, as the algorithm could use features from
the UAVs for alignment, effectively mistaking drone
movement for camera movement.

In the detection stage, this behavior could deteri-
orate the subtraction results, however, this isn’t ex-
pected to be a significant problem, since the lack of
background complexity also tends to make it eas-
ier for the detector to find the objects in the im-
ages. As for the impact of this effect on the tracker,
taking a UAV as reference for the alignment will
simply mean that the drone will appear to stay in
place, resulting in a perfect position intersection
across frames, actually simplifying the assignment
process of the tracker. It is therefore expected that
this behavior will not significantly impact the tracker
results either.

Another factor that could deteriorate the ECC re-
sults are features in the images that do not change
with camera position. These include characters
added to the images, sensor imperfections, dirt,
etc. To minimize this issue, the uppermost part of
the images with the frame and time stamps (visible
in Figure 2a) was cropped out of the ECC algorithm
(this procedure was always applied to the videos in
this dataset).
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3.4. Detector
The detectors chosen for this work are some

of the latest versions of the popular YOLO series:
YOLOR [10] and YOLOv7 [17] .

The authors of YOLOR present several models,
out of these, the YOLOR-CSP-X was selected for
its cross stage partial connections, allowing it to be
more compact (thus having higher image through-
put), while maintaining a good accuracy.

Some changes had to be made to its code avail-
able on github [18], to adapt its architecture to
the intended application. These changes centered
around changing the config file, which encoded the
entire neural network in a human readable format.
In this file, the number of classes was changed to
one, and, in the final layers, the number of filters
(or channels) was changed to 18, in accordance
with (1). Note that the YOLOR architecture predicts
three bounding boxes per grid cell.

The authors of YOLOv7 (some of whom worked
on the YOLOR project) also present several mod-
els. Out of these, the YOLOv7-X was cho-
sen for this work, for identical reasons as the
YOLOR-CSP-X. Similar to the procedure applied to
YOLOR, the number of classes in this model was
also changed to one.

3.5. Image Alignment and Subtraction
Since the YOLO variants are already very intri-

cate and optimized, the work developed focused
on the input given to the detectors and not on the
detectors themselves.

More specifically, to take advantage of the tem-
poral information present in videos, instead of look-
ing at every frame independently, information re-
garding moving objects was added to the input of
the network.

In practice, this information took the form of a
new channel, concatenated with the original grey-
scale image from the current frame to form the new
input to the neural network. This extra channel
contains the result of subtraction between the ma-
trix with the current pixel values and the same ma-
trix from the previous frame (aligned to the current
frame of reference). The absolute value of this ma-
trix was then taken, converting its values back to
the one byte interval [0; 255] standard in most im-
age formats.

The subtraction information was concatenated
with the current image to preserve its spacial re-
lation, making sure any transformations applied
to the dataset, like the image augmentation tech-
niques used during training, are applied to all the
information in the same way.

This implementation also benefits from the fact
that most image formats store pictures in three or
four channels, even the ones in grey-scale. It is for

this reason, as well as to enable the use of the pre-
trained weights, that the final tensors given as input
to YOLOR and YOLOv7 had the current frame on
the green and blue channels, and the subtraction
information on the red one. In Figure 2 it is possible
to visualize the original frame and the final input
given to the network.

(a) Original image with respective ground truth bounding
box.

(b) Result of concatenation between the original image
(on the blue and green channels) and the result of

subtraction (on the red channel).
Figure 2: Images used to train the neural networks.

As stated before, the previous image was
aligned to the current frame of reference before the
subtraction. The purpose of this alignment is to
compensate for the camera motion between both
frames, which would result in misaligned back-
grounds and a significant apparent noise in the
subtraction result. In Figure 3 is it possible to vi-
sualize the subtraction results with and without the
use of frame alignment. As evidenced by this fig-
ure, compensating for camera motion has a sig-
nificant positive impact on the subtraction results,
highlighting the real moving objects while fading
out the edges present in the background.

Bringing two images to the same frame of refer-
ence leads to undetermined borders on the trans-
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(a) Result of raw subtraction.

(b) Result of subtraction after alignment (padded).
Figure 3: Single-channel images containing the subtraction

results between two consecutive frames. Note that, for
visualization purposes, the pixel values of both images were

linearly re-scaled to the interval [0,255].

formed image, resulting in meaningless subtraction
results for these regions. This effect can be sup-
pressed by overriding part of the subtraction matrix
with zeros in these positions.

This practice was implemented for all the sub-
traction results, and the padded area also in-
cluded the topmost part of the frames containing
the stamped time and video information (as these
characters would become misaligned and disrupt
the subtraction results). In Figure 4 it is possible
to visualize a result of subtraction before padding,
as well as the padded borders; note that this re-
gion was colored in red for visualization, however,
it should be dark as presented in Figure 3b.

One obstacle found when storing the results of
image subtraction as a channel in the images, was
the image/video compression algorithms used to
store data more compactly, which were empirically
shown to significantly degrade the subtraction in-
formation. In order to provide the system with the
most accurate data possible, all the information
was stored and provided using the png format, a

(a) Before padding.

(b) After padding. For visualization purposes, the padded
borders are colored in red and a section is zoomed in.

Figure 4: Result of padding the frame of an image. The raw
result of subtraction is presented (without re-scaling).

lossless compression file format.

3.6. Training
For the process of training the models, first, a

new set of videos was created from the original
Anti-UAV dataset. The adopted procedure followed
the above mentioned methodology and resulted in
a replica of the original dataset, except for one of
the channels on all the images, which now con-
tained the subtraction results.

Both sets of videos were then converted to im-
ages and split into three sets: training, validation
and testing, in a respective 0.6, 0.2, 0.2 ratio.

Due to the high GPU and memory resources
such a large datasets would take to train, only 25%
of the training and validation datasets were actually
used to train the network. This effectively resulted
in two training sets, each with 14030 images, and
two validation sets, each with 4730 images. Since
there is a very strong correlation between consec-
utive frames in the videos, taking only one out of
every four frames should still preserve most of the
diversity present in both these sets.

All the models were trained for 100 epochs start-
ing from the weights provided by the authors (pre-
trained on the COCO dataset).
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3.7. Tracker
For the proposed system, it is necessary for the

tracker to be fast and online, in order to be used in
real-time applications. Three trackers meet these
prerequisites: SORT; the modified version of Deep
SORT (used in the previous work), and ByteTrack,
the current state-of-the-art in multi-object tracking.

In order to adapt the ByteTrack algorithm to the
developed system, some changes were made to
its code. First, the original implementation de-
fined a minimum bounding box area of 100 pix-
els and a maximum aspect ratio for the bounding
boxes equal to width/height = 1.6. Both these
restrictions served to filter out undesirable bound-
ing boxes, improving the results on the pedestrian
dataset where it was evaluated (i.e. the MOT17
dataset). On the problem at hand, UAVs tend to
appear as smaller objects and with larger aspect
ratios than pedestrians, which led to the removal of
these constraints.

Apart from these, two other changes are pro-
posed to the ByteTrack algorithm: detection align-
ment and a new similarity metric for bounding box
assignment.

3.8. Detection alignment
A brief analysis of the Anti-UAV dataset reveals

a considerable amount of motion present in its
videos. In order to improve the tracker’s results,
the apparent shift in the videos is estimated and
used to convert all the detections to a single frame
of reference, invariable to video shifts.

To achieve this, a matrix with the accumulated
affine transformation (since the first frame) is com-
puted by applying the ECC algorithm to every
frame between the current and the previous im-
ages and adding this result to the overall transfor-
mation. The inverse of this transformation is then
applied to every new detection, effectively convert-
ing it to the frame of reference of the first image in
the respective video.

3.9. New Similarity Metric for Bounding Box Assign-
ment

The original implementation of ByteTrack used
IoU to assign the new detections to the tracks in
memory. This poses a problem when dealing with
small, fast moving targets, as the IoU can easily
reach very small values, or, in the worst case, zero.

In the Anti-UAV dataset, the changes in angu-
lar position of the camera, paired with the motion
of the UAVs, results in significant object motion
throughout the videos, which deteriorates the ac-
curacy of the tracker predictions, making the as-
signment process of the tracker more difficult.

In an attempt to solve the problem of the IoU be-
ing null if there is no intersection, regardless of the
distance and size of the bounding boxes, a new

similarity metric is proposed.
Describing every bounding box by the coordi-

nates of its center (x, y), its width (w) and its height
(h); and using the subscript d to refer to the detec-
tions and t to the tracker predictions for the current
frame, the new similarity metric is defined as:

distance =

((xd − xt

wt

)2
+
(yd − yt

ht

)2) 1
2

,

similarity = e−distance · min(wd · hd, wt · ht)

max(wd · hd, wt · ht)
.

(9)

Equation (9) starts by calculating the distance
between the centers of the two bounding boxes,
relative to the size of the trackers bounding box.
The exponential of the symmetric of this value is
then used to transform the distance to the interval
]0, 1], where one corresponds to a perfect match
in position and zero corresponds to an infinite dis-
tance between the two boxes. This result is then
multiplied by the quotient between the area of the
smaller bounding box and the area of the larger
bounding box, again, keeping the overall result as
a number between zero and one. This multiplica-
tion is necessary for the similarity metric to take
into account, not only the relative position the the
bounding boxes, but also their relative size.

The euclidean distance between the bounding
boxes is taken relative to the size of the bound-
ing box of the tracker, since this is the result of all
the bounding boxes ever assigned to that object,
filtered by a Kalman filter, making it a less noisy
estimate of the actual object size, projected to the
camera’s 2D space.

Keeping the similarity metric in the interval ]0, 1]
(where one corresponds to a perfect match, and
zero to the worst possible match) was desirable to
make the choice for the matching threshold easier
and more intuitive, as well as to keep consistency
between the new metric and the IoU for future com-
parisons. This choice is also more compatible with
the algorithms used in most trackers.

A comparison between the IoU and the new as-
signment metric is presented in Figure 5. This
comparison consists on starting with two identical
bounding boxes and measuring their similarity as
a transformation is applied to one of them: offset
(Figure 5a) or scale (Figure 5b).

Note that for the same center position, changing
the scale of one of the bounding boxes will yield the
same result for both the similarity metrics, i.e. the
quotient of the two areas (a quadratic function of
the scale factor applied to the width and the height
of one of the boxes).
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(a) Similarity as a function of an offset applied to one of the
bounding boxes.

(b) Similarity as a function of a scale factor applied to one of
the bounding boxes (both lines overlap).

Figure 5: Comparison between the new assignment metric
and the intersection over union.

3.10. Method Limitations
It is also important to understand some of the

limitations of the presented algorithm.
First, the new assignment similarity can be used

to relax the assignment constraints, improving the
tracking results when there is a small number of
objects being tracked. This can, however, have a
negative impact in performance if there are plenty
of targets in the video, especially if their paths over-
lap. The new similarity metric is therefore pre-
sented as a way to have more control over the
matching threshold and not a complete solution to
the ID assignment problem in multi-object tracking.

Second, the added complexity of the proposed
algorithm comes at a cost: slower inference speed.
The tracker, alignment and subtraction all take a
non-negligible amount time to run which can limit
their use in a real life scenario, especially if the al-
gorithm has to run on an edge device (i.e. a CPU
or GPU aboard the patrolling UAV).

Third, image subtraction has some inherent lim-
itations caused by non-static backgrounds and/or
non-static cameras. Environments with a signifi-
cant amount of motion caused by vehicles, waves,
wind, etc, as well as blurry frames, will result in

noisy subtraction results, degrading the overall re-
liability of the algorithm.

4. Results
4.1. Detector

The results obtained using the best YOLOR and
YOLOv7 weights on the test set are presented in
Tables 1 and 2, respectively.

Table 1: YOLOR test results. Sub. refers to whether or not the
model has the subtraction information.

Sub. P R mAP@0.5 mAP@[.5:.95]

No 0.919 0.963 0.958 0.468

Yes 0.928 0.966 0.960 0.462

Table 2: YOLOv7 test results. Sub. refers to whether or not the
model has the subtraction information.

Sub. P R mAP@0.5 mAP@[.5:.95]

No 0.913 0.951 0.929 0.436

Yes 0.914 0.953 0.937 0.432

Comparing the models with and without subtrac-
tion information, it is possible to see a trend in both
detectors. Using YOLOR and YOLOv7 the models
with subtraction information outperform the mod-
els without subtraction information in precision, re-
call and mAP@0.5, only under performing in the
mAP@[.5:.95] metric. This means that the mod-
els with subtraction information are overall better
at detecting the drones present in the videos lead-
ing to fewer false positives and misses, however
the bounding boxes returned aren’t as tight around
the objects leading to poorer IoU between the de-
tections and the ground truth.

4.2. Tracker
To compare the performance of the trackers,

these were also evaluated on the test set, com-
prised of 20 videos - 18147 frames and 17784 ob-
jects. The results are presented in Table 3.

Table 3: Test results using different trackers.

Tracker IDF1 MOTA FP FN IDS

SORT 0.813 0.950 40 819 37

Mod. D. SORT 0.812 0.969 437 68 39

ByteTrack 0.897 0.979 249 113 20

New ByteTrack 0.929 0.980 249 101 12

In this table Mod. D. SORT refers to the mod-
ified version of Deep SORT (without the appear-
ance descriptors) and New Bytetrack refers to the
Bytetrack using the new assignment metric.
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From the results in Table 3 it is possible to see
that the SORT and Modified Deep SORT present
similar performance, trading off false positives for
misses. Both the original and the new ByteTrack
are able to outperform these trackers, as making
use of all bounding boxes, even the ones with very
low confidence scores, allows for these trackers to
follow the UAVs more consistently.

4.3. Image subtraction
To test the effect of using the image subtraction

information on a tracker, new data was collected.
This data, presented in Table 4, was obtained us-
ing the new version of the ByteTrack, with the two
different detectors (YOLOR and YOLOv7) trained
with the two different sets of data (with and without
the subtraction channel).

Table 4: New ByteTrack results.

Model Sub
Validation Test

IDF1 MOTA IDF1 MOTA

No 0.980 0.988 0.929 0.980
YOLOR

Yes 0.982 0.989 0.929 0.980

No 0.967 0.984 0.934 0.981
YOLOv7

Yes 0.981 0.989 0.960 0.991

From the results in the Table 4, it is possible to
verify that the subtraction information does have a
positive impact on the tracking results, improving
both the IDF1 and MOTA scores of the respective
models, with the exception of the YOLOR model
on the test set. In fact, the model that performs the
best on the test set uses the subtraction informa-
tion, as well as the YOLOv7 detector, to achieve an
IDF1 score of 0.960 and a MOTA of 0.991.

4.4. Detection Alignment
To measure the effect of using the ECC results

to align the detections before sending them to the
tracker, test results were collected with and without
this alignment. These results are presented in Ta-
bles 5 and 6, and were obtained for both the New
ByteTrack and SORT trackers.

Table 5: Effect of aligning detections on the MOTA.

Tracker with alignment without alignment

SORT 0.950 0.932 (-1.90%)

New Byte 0.980 0.979 (-0.1%)

Even though the alignment step does not boost
the performance of the algorithm by a large
amount, the cost associated with it is very small.
If the ECC results are available, aligning the detec-
tions takes two or four summations (depending on

Table 6: Effect of aligning detections on the IDF1 score.

Tracker with alignment without alignment

SORT 0.813 0.637 (-21.65%)

New Byte 0.929 0.921 (-0.86%)

the format of the bounding boxes), negligible when
comparing to the millions of operations performed
by the YOLO algorithm.

4.5. Inference time
Finally, to check the impact of all the steps on

the total runtime of the algorithm, the partial times
were measured. These results are presented in
Table 7 and were collected using the ByteTrack
tracker and a single graphics processing unit, the
NVIDIA GeForce RTX 2070 SUPER.

In Table 7, the term Inference refers to the execu-
tion of the YOLO algorithm, including both the CNN
and Non-Maximum Suppression. The term Sub-
traction is used to describe both the transformation
applied to the previous frame to bring it to the cur-
rent frame of reference, i.e. the translation, as well
as the actual frame differencing. Of the Subtraction
runtime, around 65% is used for the transformation
and 35% for the image differencing.

The final system can be considered real time,
with a frame throughput of 16.85 frames per sec-
ond using the YOLOR detector and 29.4 fps using
YOLOv7 .

4.6. Limitations
Even though the above mentioned models

achieved very satisfactory results on the validation
and test sets, there is a key limitation necessary
to point out. This limitation arises from the lack of
diversity on the Anti-UAV dataset, which results in
high validation and test scores, however, that does
not mean these models will generalize well to data
from other datasets. Dynamic background features
will introduce a substantial amount of subtraction
noise which the models were not trained to ignore.
The drones themselves were also relatively similar,
often close to the camera and with a clear sky as
background, which simplified the task of their de-
tection and tracking.

5. Conclusions
The presented work proposes a system for the

detection and tracking of non-cooperative UAVs
using a deep learning approach and a continuous
stream of images from an infrared camera.

The model with the best performance uses the
ByteTrack tracker, with the new assignment metric,
and the YOLOv7 detector to achieve a high IDF1
score of 0.960 and a MOTA score of 0.991 on a test
subset created from the Anti-UAV dataset, corrob-
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Table 7: Algorithm’s partial runtimes, in milliseconds. The percentage relative to the total is also presented in parenthesis.

Detector Inference ECC Tracker Subtraction Total

YOLOR 55.71 (93%) (1%) (2%) (4 %) 59.35

YOLOv7 29.56 (87 %)
0.97

(3 %)
1.17

(3 %)
2.33

(7 %) 34.03

orating the accuracy and reliability of the presented
algorithm. Furthermore, the system achieves real-
time capabilities, running on a single GPU (an
NVIDIA GeForce RTX 2070 SUPER), at a frame
throughput of 29.4 frames per second.
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