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Abstract

The detection and classification of breast lesions in the early stages of its development may increase

patients’ chance of survival as well as the number of effective treatment options. With the intent of

improving the radiologists’ workflow in their effectiveness and efficiency, Computer-Aided Diagnosis or

Detection systems have been emerging alongside with Deep Learning. Challenges such as data insuf-

ficiency and lack of local annotations provided by experts are the main practical issues when applying

these systems in medical imaging. To handle these issues, this work proposes an autonomous sys-

tem that takes advantage of deep convolutional features for image analysis and the Multiple Instance

Learning framework for labeling a set of slices within volumes and/or a set of patches within slices. The

ultimate goal is to achieve classification based on the whole MRI and based on the slices, where the

former will permit to assess the slices that triggered the classification, and the latter will make possible

the visual explanation of the proposed diagnosis through the localization of the lesion in the image.
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Resumo

A deteção e classificação de lesões mamárias na fase inicial do seu desenvolvimento pode vir a au-

mentar as hipóteses de sobrevivência de uma paciente bem como o número de opções de tratamento.

Assim sendo, com o objetivo de melhorar o fluxo de trabalho dos radiologistas no que diz respeito à sua

eficiência e eficácia, os sistemas de Deteção Assistida por Computadores têm vindo a ganhar reputação

ao lado da Aprendizagem Profunda. Desafios como insuficiência de dados e falta de anotações locais

providenciadas por especialistas são as principais razões práticas aquando da aplicação desses sis-

temas em imagens médicas. Para que esses problemas sejam resolvidos, este trabalho propõe um

sistema autónomo que tira proveito de recursos convolucionais profundos para análise de imagem e da

ferramenta Multiple Instance Learning para rotular um conjunto de cortes dentro de volumes e/ou um

conjunto de patches dentro desses cortes. O objetivo final é alcançar classificação baseada na res-

sonância magnética como um todo e baseado em cortes dentro dessa ressonância magnética, onde

o primeiro permitirá aceder aos cortes que desencadearam a classificação, e o último possibilitará a

explicação visual do diagnóstico proposto através da localização da lesão na imagem.

Palavras Chave

Cancro da mama, Aprendizagem Profunda, Imagem Médica, Redes Neuronais de Convolução, Multiple

Instance Learning, Ressonância Magnética
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In agreement with the World Health Organization (WHO), by the end of 2020, Breast Cancer (BC)

was consider the world’s most predominant cancer, since there were 7.8 million women alive that con-

tracted this type of cancer in the past 5 years [3]. As a result, the number of new cases and deaths

in 2020 corresponds to a percentage of 11.7% and 6.9%, respectively, for all cancer cases in both

sexes [4]. Factors such as older age, family history of BC, dense breast tissue and overweight are some

of the main risk factors known to increase the likelihood of developing BC [5]. For this reason, regu-

lar screening has been considered extremely important when it comes to detect and treat BC in early

stages.

Mammography screening has been confirmed as the most effective method to produce significant

reductions in mortality rate of BC in women [6]. Nonetheless, Magnetic Resonance Imaging (MRI) has

been providing better results in women with dense breast tissue [7]. For instance, some studies have

shown that MRI is recommended along with a yearly mammography for some women with high risk for

BC [8,9] mainly due to his high sensitivity [10]. However, a larger sensitivity could also reveal things that

turn out not to be cancer (false positive findings), leading to unnecessary biopsies which not only cause

patient anxiety and morbidity, but also increase the money spent on health-care. Therefore, to avoid

this situation, improvements in screening and discovering other ways to complement the reviews of the

radiologists are truly important.

One way to meet this challenge is through Computer-Aided Detection or Diagnosis (CAD) systems

since, nowadays, they have been considered as a second clinical opinion, improving the radiologist

performance when used in the right way, not to decide but to counsel [11, 12]. At the same time, some

studies have shown that CAD systems increase the risk of false positives [13], and this is why they

cannot and should not replace a complete evaluation by the radiologist. The problem is, since it is

standard for MRI screening to take several volumes for each patient, the accumulation of radiologists’

scans increases and so does the complexity of their interpretation. Consequently, this can lead to a

decrease of performance due to their exhaustion/fatigue.

At the beginning, CAD systems were developed to operate has rule-based approaches, meaning

that given a feature extracted manually from the image - Region of interest (ROI), they would iden-

tify the existence of an anomaly or not. Nevertheless, recent enhancements in Deep Learning (DL)

methodologies have demonstrated revolutionary changes in radiology, making artificial intelligence and

human-computer interaction advance with big strides, especially with the usage of Convolution Neural

Networks (CNNs) [14–16]. Moreover, researchers found that the combination of expert radiologists and

CAD systems outperform both individual performance [17].

Despite the growth in Deep Learning, these models are dependent on massive sets of hand-labeled

training data. These hand-labeled training sets are expensive and time-consuming to create, especially

when domain expertise is required. However, deep architectures with a weak label approach can move
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past the constraint of data unavailability [18]. That said, it is of great importance to achieve performant

CAD models through weak label classification as it could have a positive impact on future employments

in medical facilities and DL research.

This work will be focusing in CAD systems applied to the MRI screening modality, aiming to differen-

tiate malignant from not malignant lesions in BC. By means of a weakly supervised learning approach,

it will be possible to obtain Volume-wise classification, extract the slices in which the lesion was found

and, finally, detect the lesions within the slices chosen.

1.1 Objectives

The purpose of this work is the development of an autonomous system capable of providing the diag-

nosis, the approximate slices containing the malignant lesion and, within each slice selected, the region

of the breast where the malignancy is found. This system was designed taking into account the large

number of slices within an MRI volume and how consuming their examination can be for the radiologists.

To accomplish the defined aim of this research, the following objectives are established:

1. Implement a model that predicts whether an MRI scan is malignant or not; Additionally, the model

should output the MRI slices where the lesion is most noticeable.

2. Implement a model that, given an MRI slice, classifies and localizes the lesion within that slice.

The classification task and the regions of the image that would justify this classification are going to

be achieved through a Multiple Instance Learning (MIL) architecture. The output will be distinguished

between two classes: malignant or not malignant.

This work will require a high computational power since it will be exploiting information from vol-

umes and images inside those volumes. Also, the global Breast Imaging - Reporting and Data Sys-

tem (BI-RADS) score is considered as the only ground truth information for both models, meaning that

more expert annotations such as ROIs were out of the scope of this work.

The system will be further explained in the proceeding sections as well as its evaluation parameters.

As for the proposed dataset, a description of its pre-arrangement efforts and preprocessing operations

will also be clarified.

1.2 Document Outline

The following topics present a brief summary of the discussed contents in each subsequent chapter to

provide the reader an overview of the organization of this document:
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1. Chapter 2 introduces the reader to the key concepts needed to comprehend this document. It also

discusses the present state of the art work, first in the domain of MRI screening and then in the

DL area, more specifically with the MIL approach.

2. Chapter 3 presents the general overview of the proposed solution as well as the details for each

of the models in order to achieve the objectives of this work.

3. Chapter 4 makes a brief introduction to the proposed dataset and to the pre-processing process

that was made at a image-level. It also describes the implementation efforts required to materialize

the proposed solution in Chapter 3.

4. Chapter 5 exhibits the experimental results made to pursue this work’s objectives. Following its

presentation, the results are analyzed and commented on in order to justify the expected and/or

unexpected outcomes.

5. Chapter 6 describes the illations of this work, concluding with its achievements and future work

propositions.
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2.1 Fundamental Concepts

In this section, some fundamental concepts will be addressed due to their pertinence for the compre-

hension of our problem as well as the proposed solution.

2.1.1 Computer-Aided Detection and Diagnosis Systems

CAD systems are a technology designed to assist doctors in the interpretation of medical images that

combines artificial intelligence with computer vision applied to radiology image processing. Although

these systems address observational oversights (false negatives) and share the same purpose, they

can be distinguished between detection (CADe) or diagnosis (CADx), based on the input and output

data. Particularly, while the former outputs the location of potential cancers, the latter performs the

classification of detected lesions, making the distinction, for example, between benign and malignant

tumors. [19].

When it comes to improving the radiologists performance in the evaluation of BC cases, previously

approaches relied on having two independent radiologists reviewing the same exams. In fact, there

are several studies focused on screening mammography that demonstrate a significant increase in BC

detection, with improvements around 9% [20] and 15% [21]. Obviously, with this type of approaches and

knowing the short period of time that radiologists have to make their decisions as well as how it could

overload them, it’s beneficial to have a system that fulfil those issues, being this one of the reasons for

the appearance of a new era, the CAD systems.

For many years, researchers have examined the performance of radiologists with or without CAD

systems and if their assistance make sense in terms of clinical usage [11, 22, 23]. The first versions of

CAD systems schemes relied on the analysis of hand-crafted features which compromised the classifi-

cation process as it inherits human bias.

To minimize human interference, and to bring CAD systems to high performance levels, recent DL

approaches were introduced. As a matter of fact, the necessity of hand-engineered features (traditional

models) was no longer acquired since training a model built under the right neural network architecture

can ”learn” discriminatory features not even anticipated by radiologists [24], proven to be effective in the

classification field when trained with large datasets [25,26].

Although DL-based CAD systems are accomplishing good performance in classifying/detecting ma-

lignant lesions with an acceptable false-positive rate [27], they still have limitations/challenges that pre-

vent their usage without a proper monitoring in terms of clinical practice. Nevertheless, their progress

is promising and is continuously giving opportunities for radiologists to be more self-confident in their

reviews by providing more accurate diagnosis and increasing efficiency by automating tasks [28].
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2.1.2 Supervised Learning and Weakly Supervised Learning

Supervised Learning (SL) is an important branch of machine learning. The purpose of SL algorithms is

to learn the mapping between the input and the output, based on a well-known training dataset. Each

model is trained until it can detect patterns and relationships between the input data and the output

labels. Typically, this is achieved by adjusting the model to minimize the error that was produced when

comparing the predicted label with the correct one. Finally, after sufficient training, the system will be

able to provide targets for new unseen inputs.

Although SL methods can offer new data insights and improve automation, they rely on massive

sets of manually labeled training data. These sets have an intrinsic problem since they are expensive,

time-consuming, and difficult to obtain due to the high cost of labeling the data. Thus, sometimes, it

is convenient to turn stronger forms of supervision into weaker ones. In fact, this was translated in

the foundation of a new subfield of Machine Learning (ML) called Weakly Supervised Learning that

is focused on working with incomplete, inexact, and inaccurate supervision [18]. Therefore, this new

thematic presents a specific goal: extract fine-grained information automatically from coarse-grained

labels.

2.1.3 Multiple Instance Learning

Multiple Instance Learning (MIL) is proposed as a weakly supervised learning strategy that deals with

collections of instances arranged in sets, called bags, where there’s only a label assigned for the entire

bag instead of individuals labels for each instance. In computer vision problems, these bags are usually

treated as images and the instances as patches.

MIL was first described and studied in the work of Dietterich et al. [29]. This study is motivated by

the problem of drug activity prediction where the goal is to determine whether or not a drug molecule

will bind strongly to a target protein. Even though a molecule may adopt a wide range of shapes, it is

only qualified if it presents at least one shape that can bind well. Through this problem, Dietterich et al.

introduced the standard MIL assumption, although alternative assumptions have been consider in recent

work [30,31]. This assumption corresponds to the typical binary problem in which a bag is positive if at

least one instance in that bag is positive, and the bag is negative if all the instances are negative. Let

Y be the single binary label of a bag X, defined as a set of instances, X = (x1, x2, ..., xN ), where N is

not necessarily equal among different bags. Each instance xn corresponds to a label yn, that remains

unknown during the training phase. Finally, the label of the bag Y can be summarized as follow:

Y =

{
1 , if ∃yn : yn = 1,

0 , otherwise.
(2.1)

Or even in a more compact way:
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Y = max
n

{yn}. (2.2)

This formula might be less intuitive but, in practical terms, this can be translated as taking the maxi-

mum over the instances labels that are presented in the bag, giving 1 as the label for the positive class

and 0 as the label for the negative class.

The goal of MIL is to either classify unseen bags or instances based on the labeled bags as the train-

ing data. Following the taxonomy present in [32], MIL methods can be distinguished in three categories,

based on how bags are represented. One of the methods operates directly on instances (instance-

level) where each instance is classified individually. At this level, it’s not only possible to identify positive

instances in bags individually, but also to classify bags by simply aggregating instance-level scores.

This has demonstrated a huge impact in some applications like object detection and tracking applica-

tions [33, 34]. The two other methods operate on the bag-level, since they rely on global information by

looking at the whole bag as one. While in one case each bag is mapped to a single vector that redefines

the MIL problem into a standard supervised classification problem, the other one compares the bags by

applying distance metrics.

Even though bag classification and instance classification appear to be similar, there are different

consequences in terms of misclassifying an instance. Under the standard MIL assumption, from the

moment a positive instance is found in a bag, the other instances can be ignored since the label was

already attributed. Under those circumstances, the remaining instances could be false positives or false

negatives, but that is not relevant in terms of bag-level accuracy which shouldn’t affect the loss function.

However, in instance-level, this is consider as a classification error and the loss function is changed.

Therefore, algorithms intended for bag classification are not optimal for instance classification, and vice

versa [35].

2.1.4 Convolutional Neural Networks

CNN is a deep learning architecture that has been widely used in many computer vision tasks, such

as image classification, face recognition, object detection, and so on. By receiving an image as input,

CNNs are capable of differentiating one object from the other by assigning different importance values

(learnable weights and biases) to those objects in the image. One of the major advantages of CNNs is

that the preprocessing needed is much lower when compared to other similar deep learning networks.

Where in other primitive methods filters were hand-engineered, in CNNs, filters/kernels are learned by

the network during the training phase. By applying these different filters to an image, the network is

suitable enough to capture the spatial dependencies from that image.

The CNN architecture includes several building blocks, such as convolution layers, pooling layers,
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and fully connected layers. In order to perform feature extraction, by taking images as input, the first

step of a CNN is to feed them into several convolution layers, followed by a nonlinear activation function.

While the first convolution layer is responsible for extracting low-level features, i.e. edges, color, etc.,

the following ones allow the model to learn high-level features, which are crucial to get the insights from

all the images in the dataset. The output of each layer is known as feature map, which is the output

activations for a given filter. For each feature map, normally, a pooling layer is applied for reducing

the spatial size of the convolved feature, decreasing the computational power required to process the

data. Finally, the output feature maps of the final convolution or pooling layer is typically flattened, i.e.,

converted into a single array. This 1D vector is then connected to one or more fully connected layers, in

which every input is connected to every output by a learnable weight. The last layer of the fully connected

layer is usually distinct from the others, since an activation function needs to be selected regarding the

target task [36] An example of the structure explained is shown in Figure 2.1.

The training process of a CNN is an optimization problem, where the goal is to find filters in convolu-

tion layers and weights in fully connected layers that optimize the model by making the system’s output

as close as possible to the ground truth. The training process can be divided in two main phases: the

forward phase, where the input is passed through the whole CNN and the backward phase, where gradi-

ents are propagated and weights are updated. The gradients can be obtained through back propagation

of the error and are used to update the network parameters using the gradient descent method, which

reveals the right direction for the next iteration, in order to achieve the minimum of the loss function.

Figure 2.1: Convolutional neural network architecture (adapted from [1]).
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2.2 State of the Art

Early detection of BC can significantly improve the outcomes of its treatment, reducing the mortality re-

lated to it [37]. Since different imaging modalities provide complementary information regarding lesions,

it is important that the workflow for radiologists involves the analysis of these modalities, such as mam-

mography, Ultrasound (US) and Magnetic Resonance Imaging (MRI). Although the combination of these

modalities may increase the accuracy of the diagnostic, this can overwhelm radiologists. Therefore, sev-

eral CAD systems using different breast imaging techniques have been developed for the detection and

diagnosis of breast masses. However, CAD systems for BC related to MRI are still limited. In general,

the existing approaches usually address the problem by a three-stage system: (i) identification of possi-

ble malignant ROIs by a candidate generator, (ii) computation of descriptive features for each candidate,

and (iii) labeling of each candidate (e.g., as benign or malignant) by a classifier. The main problem of

these systems is, before the classification procedure, they either rely on manually malignant regions

annotated by experienced radiologists [38–40] or they build an algorithm just for the ROI detection and

selection [41]. Thus, if only global labels were attributed for the whole image, they could not indicate

which parts of images induced the automatic diagnosis neither highlight abnormal regions in the image

whenever an abnormal examination instance is detected.

In order to identify regions of the image that justify the ground truth label, MIL was proposed and ap-

proaches around it have been explored to extract features from patches obtained from the entire image

without the need of lesion segmentation. Although the number of publications about MIL for medical

image analysis is limited, the target is broad: classification of dementia [42], diabetic retinopathy diagno-

sis [43], pulmonary embolism detection [44], tuberculosis detection [45], histopathological breast cancer

diagnosis [46], among others. MIL has also been used in BC, specially in mammography images, al-

though a few studies have already explored their potential in Ultrasound [47]. Related to mammography

images, some studies in this field took advantage of the MIL algorithms. As an example, Quellec et

al. [48] defined an anomaly detector by comparing a strongly-supervised approach where manual seg-

mentation lesions were used to train a standard SVM classifier with a weakly-supervised approach that

used several MIL-based algorithms, without manual segmentations for training. In the end, the weakly-

supervised approach outperform the strongly-approach, giving evidence that manual segmentation is

not really required in medical imaging.

Also, due to the emergence of deep features, some studies have been combining MIL with deep

neural networks. For instance, W. Zhu et al. [49] used a pooling function that involved ranking instances

with the goal of performing end-to-end mass classification for the whole mammogram. In their approach,

since each spatial location is a single instance associated with a score that is correlated with the exis-

tence of a malignant finding, they do not need an automated lesion detection stage, even though they

can detect lesions as a side effect of their approach. Conversely, Sarath et al. [50] proposed a two-stage
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MIL framework where a localization network (CNN) is trained in the first stage to extract local candidate

patches in the mammograms and, in the second stage, a MIL strategy is employed to obtain a global

image-level feature representation from the extracted image patches to classify the mammograms as

benign or malignant. Note that the purpose of the localization network in the first stage is not to get

an accurate semantic segmentation but to obtain an approximate localization of the masses in terms of

bounding boxes so that the second stage does not have to deal with irrelevant patches from the entire

image.

Despite the advantages above-mentioned related to MIL-based CNNs, these approaches have limi-

tations since they (1) rely on a fixed amount of patches (instances) to assign a classification to the whole

image and (2) they do not explore the potentiality of overlapped patches. With that being said, and given

the scarcity of MIL studies applied to the MRI modality in breast cancer, this work will aim to counter the

shortcomings mentioned by adaptively learning the number of instances needed to classify the whole

MRI and by performing classification at two levels: volume-level and slice-level. This first part is specially

important in order to avoid misclassification of some instances.
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This chapter contains a description of the objectives mentioned in Section 1.1. It will start describing,

in Section 3.1, the deep MIL system by detailing their respective models and the different manners of

extracting the information. In the end, Section 4.1.3 will introduce the measures that this work is going

to rely on when evaluating the performance of the models.

3.1 Deep Multiple Instance Learning System

Leveraging the insights from the advantages and disadvantages of the successful BC studies analysed

in the section above, this work proposes and combines MIL with Deep Learning in order to achieve

classification, slice-selection and patch-selection. To accomplish such a system, two different models

have to be considered: while the first one will classify the MRI volume as a whole and extract the slices

that triggered the classification, the second one will be fed with those slices and perform classification

in each slice and extract the patches that triggered the classification. Therefore, the first model will

be called from now on Volume-wise model, and the second one Slice-wise model. Nonetheless, both

models share similarities: (1) the reliance on the MIL approach and (2) the way of extracting deep

features from the images. Figure 3.1 illustrates the overview scheme of the system.

Figure 3.1: Deep MIL system overview

3.1.1 Volume-wise classification

As referred before, the Volume-wise model performs classification and slice-selection in MRI volumes.

In other words, this model diagnoses MRI volumes and selects the slices that contributed the most

for that diagnosis. For that purpose, this model is based on the assumption that a lesion in an MRI

volume typically remains (approximately) in the same spatial localization during a few continuous slices.

Consequently, exploring and comparing different manners of selecting those slices will be the main focus

of this model.

In terms of the MIL parameters, this model defines the whole MRI volume as the bag and the slices
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within that volume as the instances. Following the overview scheme present in Figure 3.2, the first step

is to extract the most relevant features from the slices in the volumes. For a given volume B containing

a set of slices (I1, I2, ..., Im), where m is the number of slices inside that volume, through the usage

of a CNN, it is possible to acquire features for all those slices. Thus, after multiple convolutional layers

and max pooling layers, a feature map fi that represents deep CNN features can be obtained for each

Ii. Then, since the goal of this work is to predict whether or not a slice contains a malignant mass,

this is a typical standard binary classification problem. Therefore, a logistic regression can be used for

classification with the weights shared across all values of f with a sigmoid activation function, whose

output represents the probability of a slice being malignant. Formally, the malignant probability of a slice

Ii can be given by:

ri = σ(w⊤fi + b) (3.1)

where w corresponds to the weights in the logistic regression and b is the bias. From the combination of

all ri, a general r can be defined as a one-dimensional vector, r = (r1, r2, ..., rm), corresponding to all

slices in a volume B.

Figure 3.2: Volume-wise model overview

Once the malignant probabilities are obtained, three different MIL approaches to combine multiple

instances (slices, in this case) can be explored: (1) the Max pooling-based MIL that only takes the largest

element from the ranking layer; (2) the Top-k pooling-based MIL, which consists on grabbing the first k
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largest probabilities; and (3) the Adaptive Top-k Pooling-based MIL that adaptively selects the optimal

number of slices for classification.

• Max Pooling-based MIL: Considering the general MIL assumption defined in Section 2.1.3, if

each image (a slice or a patch, depending on the model) Ii of B is treated as an instance, the

whole image classification problem can be seen as a standard multiple instance task. Hence,

positive bags are expected to have, at least, one ri close to 1 and negative bags with all values of

r close to 0. Consequently, the malignant probability of a bag B, can be translated by taking the

maximum over the r vector

p(y = 1|I, θ) = max{r1, r2, ..., rm} (3.2)

where θ represents the parameters of the CNN. The downside of this approach is that it only

relies on a single instance to classify a bag, which is not optimal for a model that operates at a

volume-level since, certainly, exists more than one image within a volume containing a lesion.

• Top-K Pooling-based MIL: In this case, after ranking the malignant probabilities r = (r1, r2, ..., rm)

for all the instances in the bag, a sort operation can be applied in descending order

{r′1, r′2, ..., r′m} = sort({r1, r2, ..., rm}) (3.3)

where {r′1, r′2, ..., r′m} corresponds to the descending ranked r. This approach is particularly good

for exploiting information from other instances, instead of only considering the instance with the

highest malignant probability, r′1. In fact, if the first k instances with the largest malignant probabil-

ities are considered, the general MIL assumption is no longer adopted, since now the assumption

is that each element of {r′1, r′2, ..., r′k} should be consistent with the label of the bag, while the

remaining instances should be labelled as negative.

The final malignant probability of the whole bag can be translated as

p(y = 1|I, θ) = r′1 + r′2 + ...+ r′k
k

(3.4)

where θ represents the parameters of the CNN and k > 1. The disadvantage of this method

is that a general hyper-parameter k is hard to estimate since it can vary from case to case. In

the experiments made the k was chosen in an arbitrary manner, which is not optimal. Thus, an

adaptive way to estimate the hyper-parameter k is preferred.

• Adaptive Top-K Pooling-based MIL: From a medical perspective, every lesion in an MRI volume

typically comprises a few continuous slices. That said, this approach was designed only taking

into account the Volume-wise model as it enforces choosing continuous instances inside a bag.
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Thus, after ranking the malignant probabilities r = (r1, r2, ..., rm) and normalize them so that the

sum of all the values were equal to one, a suitable approach to estimate the hyper-parameter

k would be to fit a Gaussian distribution to its probability curve. This way, the expected value

from the Gaussian distribution, µ, would give an idea of the lesion’s center position inside the

volume, and the standard deviation, σ, the rough amount of slices that the lesion occupies in the

volume. Formally, we assume that the position of the lesion, X, is a random variable with Gaussian

distribution, X ∼ N (µ, σ2), in which the probability density function, p(yn = 1|In, θ), represents

the probability of a slice, in position xn, being in conformity with the lesion. The mean (expected

value) and the standard deviation are given by

µ = E[X] =

N∑
n=0

xnp(yn = 1|In, θ) (3.5)

σ =
√
σ2 =

√
E[(X − µ)2] =

√√√√ N∑
n=0

(xn − µ)2p(yn = 1|In, θ) (3.6)

where N is the last slice present in a volume. The final malignant probability of the bag is given

by Equation 3.4. In theory, this parameters estimation would result in a Gaussian distribution per-

fectly fitted to the curve probability. However, in practice, this is not so simple as the probabilities

far from the peak are not close to zero as they should be (left graph from Figure 3.3). This leads

to the conclusion that the mean and standard deviation estimations are not noise robust. There-

fore, in order to address this problem, a variation of the Mean Shift [51] algorithm is going to be

implemented. This technique is particularly good since assigns a lower weight to data samples

(x - slice, y - probability) far from the peak, enforcing the Gaussian estimation to shift towards the

mean in an iterative way. Moreover, as illustrated in Figure 3.3, with this algorithm, it is possible to

ensure that the standard deviation of the Gaussian is being shrunk (or the opposite) in each step

by establishing acceptable limits to its value. These ’acceptable limits’ represent the minimum and

maximum number of slices in which a lesion can be found.

The mean and standard deviation updates are given by

µ = E[X] =

N∑
n=0

xnp(yn = 1|In, θ)wn (3.7)

σ =

√√√√ N∑
n=0

(xn − µ)2p(yn = 1|In, θ)wn (3.8)

where w is the probability of each slice according to the previous Gaussian distribution estimation.

Once the Mean shift algorithm finishes its estimation of the new mean and standard deviation,
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Figure 3.3: Example of a Gaussian distribution estimation before and after the Mean Shift application

the amount of slices that contains the lesion can be calculated. For instance, supposing that the

resulted standard deviation from the right graph in Figure 3.3 is 5 and the mean 65, it can be

assumed that the lesion is, approximately, between slice 60 (µ − σ) and slice 70 (µ + σ), causing

the number of slices to be k = 2σ, i.e., 10 slices.

By observing the graphs in figure 3.2, it is very clear that the Max and Top-k Pooling-based ap-

proaches select slices without concerning whether they are continuous, unlike the Adaptive Top-k Pooling-

based approach. Nonetheless, based on those slices, a binary classifier can be achieved by choosing

a threshold of 0.5 and classifying inputs with probability greater than 0.5 as malignant and smaller as

not malignant. Given that we are dealing with a binary classification problem, the loss function used for

training the model will be the binary cross-entropy:

L = − 1

N

N∑
n=1

yn log(p(yn|In, θ)) + (1− yn) log(1− p(yn|In, θ)) (3.9)

where N is the total number of MRI volumes, yn ∈ {0, 1} is the ground truth label and p(yn|In, θ) is

the predicted probability of the slice be malignant (yn = 1) or not malignant (yn = 0).

3.1.2 Slice-wise classification

The purpose of the Slice-wise model is to detect the lesions within the slices chosen by the Volume-wise

model. For that to happen, and based on Figure 3.4, the first step is to obtain patches from each of

the input slices. Only then, the process of getting features from all the patches begins. This process

is exactly the same one as in the Volume-wise model. In fact, for both models, the ”Feature Extraction

Block” is identical, but in this case patches from the slices are used as input instead of slices from the

volumes. Thus, once the probabilities of the patches are obtained through logistic regression, it is possi-

ble to classify the slice itself by using the Max Pooling-based approach, with the patches corresponding
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to the instances. Note that this model just needs to rely on the Max Pooling-based strategy because the

lesion could be too small and only visible on a single patch. Therefore, this model follows the general

MIL assumption that, if a slice has a lesion, at least, one patch contains it. Additionally, since each patch

has a probability of being malignant, a heat map can be computed based on those probabilities with the

same size as the input slices. The implementation of the heat map will be further explained in the next

section. In order to train this model, similar to the Volume-wise model, the binary cross-entropy function

(Equation 3.9) will be used.

Figure 3.4: Slice-wise model overview
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Following the suggested approach in the previous Chapter 3, this chapter describes the implemen-

tation details as well as the dataset used.

4.1 Experimental Setup

4.1.1 Dataset

In the hope of mitigating the lack of high-quality datasets in the BC field, this work proposes a new

private dataset for training its models. Beyond other BC screening modalities, this private dataset al-

ready contains a compilation of several MRI scans with a BI-RADS classification for each one of them.

Other expert annotations are unavailable for this dataset. Although each MRI scan comprises different

sequences, for this work, only the one that gives a clearer view of the lesions was selected, which corre-

sponds to the Dynamic Contrast Enhanced Subtraction (DCE sub) sequence. This MRI sequence is a

technique whereby a T1-weighted sequence is digitally subtracted from the post contrast DCE volume,

before the administration of the contrast agent. It is proven that this technique is accurate for detection

of subtle lesions, since it can remove high-intensity signal from background fat, ending up improving

lesion conspicuity and definition [52]. This statement is consistent with the medical practitioners from

the hospital where this dataset is being collected. Note that, the MRI sequences are, in practical terms,

a volume of 2D images (called slices) containing both breasts. Therefore, as different breasts may have

different BI-RADS, all the image volumes were divided into two different volumes: one containing the

right breast, and the other containing the left breast.

One of the main characteristics of this dataset is a strong class imbalance, with the majority of the

MRI scans being classified as BI-RADS 1 and 5. This occurs since only the exams with strong suspicion

of malignancy (observed in the mammography) are pursued for MRI. That said, the focus of this work

was to solve the Normal vs Malignant problem, which corresponds to {1} vs {4, 5} in terms of BI-RADS.

The dataset used contained 164 MRI scans. Figure 4.1 represents the distribution of the MRI scans

used for this work. In order to train and validate the model, 134 MRI scans (71 malignants and 63 nor-

mals) were collected from that dataset. The technique used to split the data was the random sampling,

which divided the data into training and validation sets in an 80%-20% ratio, respectively. Afterwards,

the remaining data (30 MRI scans) was used as a test set in order to evaluate the performance of the

models in their final version.

4.1.2 Dataset Pre-Processing

Pre-processing procedures were part of this work in the hope that the model could extract the most

relevant features, leading to a better performance in classification. The pre-processing made involved
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Figure 4.1: BI-RADS distribution for DCE-sub in the dataset

image normalization, cropping the image, resizing it and apply a grayscale contrast enhancement. A

common task when preparing datasets for training DL models is to normalize and standardize the data,

which means that all the samples should be centered and scaled according to the mean and to the

standard deviation of the dataset. Then, in order to remove the chest area, all MRI volumes were

cropped in terms of height so that the model could only focus on the area of interest (i.e. the breast).

However, since every patient has different physical characteristics, removing the chest zone resulted on

having image volumes with different sizes in terms of height. Therefore, all volumes were resized to the

same dimensions. The size of the volumes ended up with 192× 128 pixels.

Once the image volumes were cropped and resized, enhancement on each image’s contrast was

employed through Contrast Limited Adaptive Histogram Equalization (CLAHE) [53]. This technique

partitions the images into contextual regions, called titles, and then applies the histogram equalization

to each one of them. This way, the distribution of used gray values becomes more balanced and thus

hidden features of the image are more visible. Figure (4.2) illustrates two examples of original slices

before (left images) and after (right images) applying the CLAHE algorithm.

Once the pre-processing at image-level was made, the first fifteen and last ten slices were removed

from the volumes since those were volumes where the breasts were composing and fading, respectively.

Even with this reduction, each volume ended up with its slices still ranging from 106 to 170.
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Figure 4.2: Two examples of original slices enhanced by CLAHE algorithm

4.1.3 Evaluation metrics

In order to measure the performance of the system proposed, after training, metrics derived from the

confusion matrix (see Figure 4.3) will be used to assess both models quantitatively. Particularly, Sensi-

tivity (Equation 4.2) and Specificity (Equation 4.3) rates will be use to quantify the portion of correctly

classified positive and negative cases, respectively, Precision (Equation 4.1) to express the probability

of positive cases that, once classified by the network, actually reveals that classification and, finally,

the Accuracy (Equation 4.4), which will give the percentage of accurate predictions across all classes.

Also, to overcome any possibility of a class imbalance issue, the Balanced accuracy (Equation 4.5) will

be taken into consideration since it gives a more realistic picture of how well the models perform when

compared to the basic accuracy metric.

Figure 4.3: Confusion Matrix

Precision =
TP

TP + FP
(4.1)

Sensitivity =
TP

TP + FN
(4.2)

Specificity =
TN

TN + FP
(4.3)
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Accuracy =
TP + TN

TP + TN + FP + FN
(4.4)

BalancedAccuracy =
Sensitivity + Specificity

2
(4.5)

Moreover, given that the context of our work intends to deal with a binary classification problem,

based on the Receiver Operating Characteristic (ROC) analysis, another main metric of performance of

this work will be the Area Under the ROC Curve (AUC), since it is a widely used metric in other works

such as [48–50] and it is proven to be effective in these type of classification problems.

4.2 Architecture

For the overall performance of a system, the computational and power efficiency of the CNN architecture

is something to take into account. For this reason, the MobileNetV2 [2] was chosen as the target state-

of-the-art CNN for this work. The MobileNetV2, when compared with other CNNs, is an architecture that

has a relatively small model size and very low memory requirements, which is essential for this work as

it operates on volume-level instead of image-level.

After choosing a CNN architecture, the next challenge to implement both models was regarding the

bags representation and the composition of the batches. One of the requirements was to find a solution

that allows the model to process the instances all at once. As a result, for each batch, the instances were

concatenated in order to create a tensor of shape (Nx1xHxW), where H and W is the image height and

width, respectively, and N is the total number of instances of the various bags that are being processed

in that batch.

4.2.1 Volume-wise model description

This subsection contains the details of the implementation efforts to develop the Volume-wise model

proposed by this work. In order to accomplish the classification and the slice-selection on the MRI

volumes, three MIL implementation strategies were defined. Each of them used the same MobileNetV2

architecture, which corresponds to the original configuration, but with different input sizes as Figure 4.4

shows.

The defined hyper-parameters for the network are demonstrated in Table 4.1. It is worth mentioning

that the Batch Size number needed to be low due to the fact that each batch aggregates m images all

at once, where m is the number of slices within a volume. In practical terms, and considering 106 as
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Figure 4.4: Overall architecture of MobileNetV2 for the Volume-wise model (based on [2])

Hyper-parameter Spefication

Optimizer Adam

Loss Function Binary Cross Entropy

Number of Epochs 50

Batch Size 4

Learning Rate lr = 1e-3

Table 4.1: MobileNetV2 Hyperparameter Specification for the Volume-wise model

the lowest number of slices a volume can have (by Section 4.1.2), having a Batch Size of 4 means, at

least, 424 images (106 × 4) on a single batch, which is a massive amount of images to process. That

said, decreasing the Batch Size number was still not enough as calculating unnecessary gradients for

all those images can quickly consume all the GPU memory. Therefore, since each of the three MIL

approaches only selects a certain number of slices per volume, in the training phase, the network just

needs to calculate the gradients for the selected slices rather than all of them. This way, it is guaranteed

that the GPU is not occupied with irrelevant information regarding the calculations.

As referred before, the Volume-wise model explored three distinct MIL approaches. Once the chal-

lenges above-mentioned were solved and based on the proposal, the Max, the Top-k and the Adaptive

Top-k Pooling-based approaches were very straightforward to implement. It should be noted that, for

each MRI volume, the slices predicted by the Adaptive Top-k strategy were stored in a JSON file along

with their respective probabilities of malignancy. This was done so that the Slice-wise model could train

its model relying on the Volume-wise model.

4.2.2 Slice-wise model description

The Slice-wise model was implemented based on the slices outputted from the Volume-wise model.

In other words, this means that the Adaptive Top-k Pooling-based approach was the only one used to
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extract the interesting slices from the volumes in order to train the Slice-wise model. This decision was

made based on the fact that a continuous amount of slices adapted to each volume is more reliable than

an arbitrary k, at least in a medical perspective. However, relying on this approach to chose the slices

resulted in an unequal distribution of the input data for this model. In fact, the Adaptive Top-k Pooling-

based does not work so well for negative (not malignant) cases due to the probabilities being all closer

to 0, which most certainly will not follow a Gaussian Distribution. Hence, when the Gaussian distribution

was not fitted as desired, most of the negative volumes reached the maximum limit of slices that was

previously established by the Volume-wise model, causing a data unbalanced issue for the input data.

Note that, since the Max and Top-k Pooling-based approaches have a previously known value for the

hyper-parameter k, the input data for this model would be perfectly balanced. Nevertheless, the input

slices were gathered in three different ways: (1) by choosing the original interval of slices from the JSON

file even though that would make the input data not balanced, (2) by selecting a sub-interval from the

interval of slices in the JSON file and (3) by relying on the probabilities in the JSON file to select the

slices that were going to be used to train the model. Note that this last technique was implemented to

refine the training input data rather than making it more balanced.

Once the input data was collected, the next challenge was to partition each slice into overlapped

patches. The size of each patch was 32× 32 pixels, and the overlapped step was half of the patch size,

i.e., 16 pixels. Remembering that the size of each slice was previously defined as 192 × 128 pixels, this

means that all the bags for this model ended up with the exact same amount of instances (patches).

Furthermore, the MobileNetv2 architecture had to be adapted from its original form to be able to receive

32 × 32 patches. As illustrated in Figure 4.5, the first and the third layer were changed from stride 2 to

stride 1 so that the dimension of the patches was not reduced too early in the first layers.

Figure 4.5: Overall architecture of MobileNetV2 for the Slice-wise model (based on [2])

Once these modifications were made, the network was in conditions to be trained based on each of

the abovementioned strategies for the input slices. The defined hyper-parameters for the network are
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identical to those shown in Table 4.1, with the only difference on the Batch Size, which was raised from

4 to 8.

The last step concerning the implementation of this model was the heat maps construction. To

accomplish the heat maps, for each pixel i of the image, the probability of that region has a lesion, Pi, is

given by averaging the probabilities, pn, of the Ni patches that contributed for that region:

Pi =
1

Ni

Ni∑
n=1

pn (4.6)
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This chapter starts by demonstrating the obtained results from the experiments performed in the

validation set, following with a section dedicated to the final system composition and results. Lastly, an

interpretation from those results is made.

5.1 Results

5.1.1 Volume-wise model experiments

The experiments made for this model aimed to compare the Adaptive Top-k against the Max and Top-

k Pooling-based approaches. In that sense, the Volume-wise model was trained and validated with

different choices for the hyper-parameter k. The first attempt was with k = 1 to simulate the Max

Pooling-based approach, which in practical terms is the same as running the Top-k approach with one;

the second attempt was with k = 2, the third with k = 5 and then five by five until k = 50. As shown in

Figure 5.1, for this validation set, the Top-10 simulation outperformed the Adaptive Top-k Pooling-based

approach. However, the accuracy started to decline with the increase in the hyper-parameter k. This

behavior was expected since, for every volume, there is a limited number of slices where a malignant

lesion can be found.

Figure 5.1: Accuracy comparison between the Top-k and the Adaptive Top-k Pooling-based approach

Although the Top-10 simulation seems to be preferable in terms of classification, it does not enforces

a continuous selection of slices as the Adaptive Top-k does. Therefore, in order to fully assess the Top-10

simulation, the slices chosen for each of the malignant cases in the classification process were analysed.
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Hence, after sorting the 10 selected slices, two metrics were extracted: (1) the largest continuous sub-

interval (2) and the number of discontinuities between the 10 chosen slices. From 17 positive (malignant)

cases in the validation set, the mean of continuous slices chosen by the Top-10 simulation was 5.9 slices,

with none of the cases reaching the full continuity. These results are stated in Figure 5.2. Beyond that,

the mean number of discontinuities were 2.7 per case. This means that, despite the Top-10 simulation

reached a higher accuracy, it is not a trustworthy model when it comes to slice-selection. Therefore, we

chose the Adaptive Top-k strategy to extract the slices for the second model.

Figure 5.2: Top-10 analysis for malignant cases in the validation set

5.1.2 Slice-wise model experiments

As above-stated, the Slice-wise model relied on the JSON file provided by the Volume-wise model to

extract the relevant slices for its training and validation phase. As mentioned in Section 4.2.2, in order to

make the data more balanced and/or avoid misclassified slices from the previous model, three different

strategies were employed to the input slices used for training. In that sense, the validation set was used

to assess the behaviour of the model when trained with those different strategies. It should be noted

that, unlike the training set, this set ended up being balanced. In total, 221 positive slices (that contains a

malignant lesion) and 232 negative slices were selected by the Adaptive Top-k Pooling-based approach

from the former model. From the experiments made, despite all the results being very similar, the

approach that made use of the malignant probabilities in the training phase seem to slightly outperform

the other ones, reaching an accuracy of 84.3%. The results are stated in Figure 5.3. Note that the ”Data

unbalanced” strategy corresponds to the one that used the unfiltered slices from the volume-wise model

and the ”Data balanced” strategy the one that used a sub-interval of slices only for the negative MRI

cases.
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Figure 5.3: Validation results for the Slice-wise model

Although the approach that made use of the probabilities is the one that performs better when clas-

sifying a slice, other metrics have to be considered in order to fully understand whether the heat maps

produced for each slice are in conformity with the lesion position or not. However, as mentioned before,

the dataset used does not contain any annotations in terms of object localization within the image, which

prevents determining to which extent the lesion location is accurately predicted.

5.1.3 Final Results

The final system was composed by the Volume-wise model with the Adaptive Top-k Pooling-based ap-

proach and by the Slice-wise model with the strategy that exploited the malignant probabilities from

the Volume-wise model to select the slices for the training phase. The test set used contained 30 MRI

volumes, where 18 were diagnosed as malignant and 12 as normal. The evaluation process started

by giving those volumes to the Volume-wise model so that the chosen slices were given as input to the

Slice-wise model in a later stage. From the 30 volumes processed, the first model outputted 166 positive

slices (that contains a malignant lesion) and 254 negative slices, meaning that the Slice-wise model was

evaluated with 166 + 254 = 420 slices. The classification results for both models are expressed in Table

5.1.

Model Strategy Accuracy AUC Sensitivity Specificity Precision

Volume-wise Adaptive Top-k 96.67% 0.96 0.94 1.00 1.00
Top-10 86.66% 0.91 0.78 1.00 1.00

Slice-wise Using probs. 91.43% 0.98 0.82 0.98 0.96

Table 5.1: Classification results for the final versions of the models

In terms of lesion localization, Figure 5.4 presents four malignant slices with their respective heat

maps. As mentioned before, neither the slices selected by the Volume-wise nor the heatmps can be
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truly assessed since there is no access to annotations regarding the location of the lesions.

Figure 5.4: Detection results for four malignant predictions by the Slice-wise model

5.2 Concluding Remarks

In terms of the Volume-wise model, the Top-10 approach was the simulation that achieved better results

in the validation set, surpassing the Adaptive Top-k Pooling-based approach. However, when these two

approaches were later evaluated, the performance of the Top-10 turned out not to be so outstanding as

the Adaptive Top-k approach. This lead to the conclusion that a general hyper-parameter k optimal for

a dataset may not be as optimal for another different dataset. That said, relying on a fixed amount of

slices to classify future volumes is clearly not the best option, enforcing the idea that the Adaptive Top-k

Pooling-based strategy is the most convenient approach as its the one capable of finding an optimal

number of continuous slices adapted to each volume.

The Slice-wise model was trained, validated and tested with the slices provided from the Volume-

wise. In that sense, some of those slices were surely misclassified as the first model did not reach an

accuracy of 100%. Even if it did, there were no ground truth slices annotated to compare and confirm that

selection. In the end, even operating with uncertainty on the data, the Slice-wise model was still capable

of achieving positive accuracy results and a proper detection of malignant lesions, giving evidences that

the slices facilitated by the Volume-wise model were indeed in conformity with the malignant lesion.
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6.1 Conclusions

Breast cancer is the most common form of cancer affecting women. Its early detection has been proven

to be highly beneficial when found in its earliest and most treatable stages. For that, regular screenings

and different imaging modalities should be taking into account. Due to its sensitivity, MRI screening

has been used along side with mammograms to screen women who are at a high risk of having BC.

However, as screenings increases, the time spent in their analyses also increases, which could over-

whelm radiologists. In the attempt to overcome this problem, different types of CAD systems have been

emerging for a while, with recent developments promoting their usage with Deep Learning models.

In this work, a Deep MIL system is developed with the intention of helping radiologists in their work-

flow. The aim of the system is to diagnose MRI volumes, select the respective slices that triggered that

diagnosis and finally, within those slices, highlight the abnormal regions. Furthermore, this work also

explores a private new dataset that contains labelled MRI scans for several volumes, excluding more

robust annotations such as lesion location.

One of the problems with the MIL approaches is that the number of instances selected to classify

a bag is fixed and not adapted to each case. However, this work proposed a method that adaptively

selects a continuous amount of slices to classify an MRI volume. Since some of the MRI volumes

have more than one hundred slices, this accomplishment could be very helpful for radiologists as it

excludes irrelevant slices within those volumes. From the results obtained, this approach ended up

being more consistent and more reliable comparing to the general MIL approach — Max Pooling-based,

and comparing to the approach that relies on a fixed amount of slices to classify a volume — Top-k

Pooling-based.

Beyond volume-wise classification and slice-selection, another objective established for this work

was to perform slice-wise classification and lesion detection within the slices. Even though the dataset

only had weak-labels at a volume-level instead of a slice-level, this part of the work was still possible due

to the previous extraction of slices by the former model. However, as expected, the performance of this

model was not so outstanding as the former one in terms of classification. We do not consider this as a

problem since, from a medical perspective, the volume-wise classification is the one that truly matters.

Besides, it was still possible to highlight the abnormal regions of the slices through heat maps, meaning

that the radiologists could also reconfirm the position of the lesion within the slices when making their

final judgment.

6.2 Future Work

Due to the positive results achieved, this thesis can serve as a starting point for other works that may

want to explore the MIL framework.
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Remembering that this work only used the DCE sub sequence, one of the possibilities to extend it

would be to explore and compare the behavior of the proposed system with different MRI sequences as

input. Once this work is done, it also could be enlarged to another type of BC screening modality, such as

the Mammography or even the Ultrasound. This way, it would be possible not only to conclude whether

the DCE sub sequence is indeed the most reliable sequence but also to compare the performance of

the different screenings used in the BC field.

Another possibility to extend this work would be by adding benign cases to the dataset, with the

purpose of distinguishing Severe cases (malign) from Mild cases (no lesion or benign). In practical

terms, this is the same as establishing a binary classifier prepared to discriminate volumes with BI-RADS

{1,2,3} from {4,5}.

Finally, we believe that the progression of the dataset used is also of great importance. Despite

the results obtained, it would be worthwhile to understand the behavior of the models proposed when

trained and evaluated with more data. Furthermore, adding more annotations to the data regarding the

location and size of the lesions within the volumes would also be beneficial for future work. With this

type of additional information it will be possible not only to compare if the slices selected are indeed the

slices that justifies the classification but also to truly assess the lesion detection results.
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