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Abstract

Centrality measures are a vital tool to study networks. After a new centrality measure is introduced, it

is important to be part of studies, to become relevant in the community. Spanning Edge Betweenness

was recently introduced, and this is one of those studies. An overview of network science concepts

and centrality measures is provided. A brief explanation of Spanning Edge Betweenness’ theoretical

concepts can also be seen in this work. The implementation options can also be consulted along with

practical experimentations to try to minimize the computational time cost of calculating such centrality

measure. These experimentations consist of either taking advantage of the parallelizable computation

algorithm, or preprocessing algorithms that could positively impact the calculation time. We achieved

promising results for both alternatives. Another method to reduce the computation time could be the

calculation of the approximated centrality values. This has been previously done for Spanning Edge

Betweenness in unweighted networks. In this work, we propose an implementation for this approximation

for weighted networks. This method also achieves promising results regarding the improvements in

computation time. Finally, we perform edge percolation, comparing Spanning Edge Betweenness to

Edge Betweenness regarding five metrics. For each centrality measure, we introduce two variations,

one where there is no recalculation between every edge removal, and one where there is. We observed

significant differences between both variations and between both centrality measures. This work makes

Spanning Edge Betweenness available to be used for large-scale graphs, while also contributing to a

bigger understanding of said measure, regarding the connectivity of a network.

Keywords

Spanning Edge Betweenness; Approximate centrality measures; Edge percolation.
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Resumo

As medidas de centralidade são uma ferramenta vital para estudar redes. Após a introdução de uma

nova medida de centralidade, é importante que esta faça parte de estudos, para se tornar relevante na

comunidade. Spanning Edge Betweenness foi introduzida recentemente, e este é um desses estudos.

Uma visão geral dos conceitos de ciência das redes e medidas de centralidade é fornecida. Uma breve

explicação dos conceitos teóricos da Spanning Edge Betweenness também pode ser vista neste tra-

balho. As opções de implementação podem ser consultadas juntamente com experiências práticas para

tentar minimizar o custo computacional do tempo de cálculo desta mesma medida. Essas experinências

consistem em aproveitar o algoritmo de computação paralelizável ou algoritmos de pré-processamento

que podem ter um impacto positivo no tempo de cálculo. Alcançámos resultados promissores para

ambas as alternativas. Outro método para reduzir o tempo de computação poderia ser o cálculo dos

valores de centralidade aproximados. Isso foi feito anteriormente para Spanning Edge Betweenness

em redes não pesadas. Neste trabalho, propomos uma implementação desta aproximação para redes

pesadas. Este método também alcança resultados promissores em relação às melhorias no tempo de

computação. Por fim, realizamos a percolação de arestas, comparando Spanning Edge Betweenness

com Edge Betweenness em relação a cinco métricas. Para cada medida de centralidade, introduzi-

mos duas variações, uma onde não há recálculo entre cada remoção e outra onde há. Observamos

diferenças significativas entre as duas variações e entre as duas medidas de centralidade. Este trabalho

disponibiliza a Spanning Edge Betweenness para uso em grafos de grande escala, além de contribuir

para um maior entendimento desta medida, no que diz respeito à conectividade de uma rede.

Palavras Chave

Spanning Edge Betweenness; Medidas de centralidade aproximadas; Remoção de arestas.
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Networks can represent everything in our life. They can describe the water infrastructure of a given

city, the air traffic between airports in different countries, or even the daily interactions between work

colleagues. This constant presence in our lives led to an interest in studying these networks and their

properties for multiple different purposes.

Graphs are one of the simplest ways of representing these networks. Nodes represent entities, and

edges represent the interactions/connections between them. There are networks of all kinds and sizes

from very different areas of society, such as Biology, Physics, Sociology, and many others, going from a

couple of nodes to millions, with even more connections. Graphs represent these networks, and there

are multiple ways of representing these graphs (see Section 2.1.2 for more information).

Studying graphs and their properties to try to draw conclusions regarding the networks they represent

is a science that has been around for a while now. This field of study is called Network Science and can

be described as ”an attempt to understand networks emerging in nature, technology, and society using

a unified set of tools and principles” [3]. The evolution of technology in the past decades allowed for

new types of studies in this field, where it is now possible to study bigger networks and take advantage

of the computational capabilities and accessibility to further develop this field by making these studies

available to anyone anywhere in the world.

One way to study this network is through metrics and measures, and based on the interpretation

of the values they return, conclusions can be drawn. Centrality measures are one of these available

measures to the user, that can use them for multiple purposes. They give each node/edge a value of im-

portance. There are many different centrality measures, some related to nodes and some others related

to edges. There are more centrality measures related to nodes than related to edges. Each measure is

distinct, attributing this value based on different characteristics of the node/edge in the network. In this

work, the values that the centrality measure provides are used for percolation. The process of (inverse)

percolation consists in ordering the structures based on the value the centrality measure attributed to

every single one of them present in the network, and then based on that order, remove the structures,

and study the impact that change causes to the network. Different measures produce different results.

Therefore each measure has its pros and cons.

1.1 Objectives

A considerable amount of measures have been proposed and continuously are throughout the years. A

part of their value comes from being publicly available and easy to use by anyone interested in pursuing

this field of study. An example of that is the Spanning Edge Betweenness, an edge centrality measure

[4]. For recent measures, such as this one, it is important that they are publicly available, so they can be

reviewed by the scientific community. With that in mind, it is important to make the measures available

3



in the most widely used technologies. Python is now the programming language of choice to study

networks, and for a centrality measure to be publicly available and easy to use it should be integrated

into a Python library (more details in Section 2.2.2). In this study we also explore the approximation

of centrality values, and if it is viable or not for Spanning Edge Betweenness. We also aim to compare

Spanning Edge Betweenness with other centrality measures, to better understand its characteristics and

contributions, using percolation.

1.2 Outline

In this thesis, in Section 2, basic concepts of Network Science, including graph definitions and represen-

tations while also presenting different network models, are introduced. A brief explanation of Spanning

Edge Betweenness can be found in Section 3, together with efforts to reduce the computational cost of

this centrality measure. In Section 4 is the calculation of the approximation of Spanning Edge Between-

ness for weighted graphs, along with results for such implementation. Finally, in Section 5, there is the

percolation process, where the results produced by Spanning Edge Betweenness are compared to the

ones produced by Edge Betweenness Centrality, another centrality measure also related to edges.
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A
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D

(a) Undirected graph

A

B

C

D

(b) Directed graph

Figure 2.1: Circles represent nodes and lines represent edges. Edges in Figure 2.1a are bidirectional, meaning
they connect both nodes to one another in both ways, while in Figure 2.1b every edge is unidirectional
connecting one node to another, just in that specific way, pointed by the arrow. In red we have the
shortest path between nodes A and D.

2.1 Network Science Concepts

In this section, some basic but fundamental Network Science concepts are introduced and briefly ex-

plained, to make the rest of the document understandable to the reader.

2.1.1 Graph Theory

Graphs are the mathematical representation of networks. These networks can come from all different

types of backgrounds, being able to represent the most diverse complex systems’ structure and dynam-

ics. A vertex/node represents an entity in a graph. This entity can be a person (social networks), a player

(game theory), a computer (IT networks), a neuron (brain networks), among others. An edge/link repre-

sents the connection between different entities. These connections can represent physical structures (a

pipe), social interactions (between different persons), co-fluctuations (brain activity), among others.

A graph, denoted as G = (V,E), is a tuple of sets, where V is a set of nodes(/vertices) and E is a

set of edges(/links), such that E ⊆ V × V . The size of the set V is denoted by N = |V | and indicates

the number of nodes in the graph. The size of the set E is denoted by L = |E| and indicates the number

of edges in the graph. Two nodes (i, j) are adjacent if there is an edge e ∈ E, between them. These

nodes are called neighbours.

A graph is called undirected if E is a set of unordered pairs, meaning that every edge is bidirectional,

therefore the edge (i, j) is equal to the edge (j, i). Oppositely, a graph is called directed if E is a set of

ordered pairs, so that the edge (i, j) is different from the edge (j, i). A tree is a graph with no cycles. A

spanning tree T (V,E′), where E′ ⊆ E, is a subgraph of G that is a tree and contains all nodes of G, with

L′ = |E′| = |V | − 1. A minimum spanning tree(MST) is a spanning tree in which
∑

e∈E′ w(e) is minimum

among all spanning trees of graph G.

A path is a sequence of x edges which joins a sequence of x + 1 nodes. A graph G is said to

7
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(a) Weighted graph

A
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C
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2

4

10

1

5

3

(b) Shortest path between A and D

Figure 2.2: Figure 2.2a represents a directed weighted graph, where a numerical value is attributed to every edge.
This values can have multiple different meanings, for instance it could represent the flow of a water
system. In Figure 2.2b we can see the shortest path between nodes A and D, different from Figure
2.1b because of the addition of edges’ weights.

be connected if there is a path between every two distinct nodes. Otherwise, graph G is said to be

disconnected. In disconnected graphs, there are connected components, denoted by C, where each

connected component is a maximal set of nodes, C ⊂ V , such that C forms a connected graph, i.e.,

there is a path connecting every two distinct nodes in C.

A weighted graph is a tuple G = (V,E,w), where v and E are sets of nodes and edges, respectively,

and w is a function that assigns to each edge e ∈ E a numerical value. These numerical values can

represent different things, based on what the network is about. One of the most intuitive is in a flow

network, where each weight represents the capacity of each edge.

In unweighted graphs, the shortest path between two nodes (i, j) is the path with the smallest size,

i.e., the path that contains the least amount of edges ∈ E and connects i and j. On the other hand, on a

weighted graph, the shortest path is not always the path with the least amount of edges, instead, it is the

path that minimizes
∑

e∈σ(i,j) w(e) where e is an edge in a path σ(i, j) between nodes i and j and w(e)

is the weight of edge e. In Figure 2.2b we can see an example of the case explained above, where the

shortest path between nodes A and D is not the most intuitive and direct path between the two nodes,

because the edge that is connecting them has a large weight. By comparing figure 2.1b to Figure 2.2b

we can see the impact a change from unweighted to the weighted graph can have in the shortest paths

of the graph. The distance between two nodes d(i, j) is the size of the shortest path between nodes i

and j. If there is no shortest path, then d(i, j) =∞. The greatest distance between any two nodes in G

is called the diameter, which can be a useful metric.

2.1.2 Graph Representations

A graph can be represented in different ways, with different data structures. Often, the option depends

on the context and the operations needed to be performed. Next, we present some possible represen-

tations:

8



Adjacency matrix of a graph G, is a matrix A = |V | × |V | that contains the information if two nodes i

and j are adjacent or not. The entries of the matrix Aij ∈ {0, 1}, are defined by:

Aij =

{
1, if (i, j) ∈ E

0, otherwise
(2.1)

Spectral graph theory studies the relationship between a graph and the eigenvalues and eigenvectors

of its adjacency matrix.

Incidence matrix of a graph G is a matrix F = |V | × |E| that encodes the relationship between the

nodes and edges of the graph, where each row represents a node and each column represents an edge.

The entries of the matrix F for a directed weighted graph are defined by:


Fie = w(e), if e = (i, j) ∈ E

Fje = −w(e), if e = (i, j) ∈ E

Fie = 0, otherwise
(2.2)

It is worth mentioning that for unweighted graphs, w(e) = 1.

Edge list of a graph G is a |E| × 2 matrix that is used to represent a graph as a list of its edges. If the

graph G is a weighted graph, a third column should be added to encode the weight of each edge in the

list.

Adjacency list of a graph G is a middle ground between an edge list and an adjacency matrix, where

there is a vector of size |V | representing every node on the graph, and for each node on that vector,

there is a list of adjacent nodes.

2.1.3 Network Models

Real networks are often analysed and used in studies, however, in the absence of the real structure,

it is possible to generate artificial networks based on specific models that try to reproduce the same

characteristics as of those networks/systems observed in the real world. In this section we approach

some of these models.

2.1.3.A Random Networks

Random Network was the first model proposed to mimic the properties of real networks. In this model,

the number of edges and/or nodes is fixed, the way that the nodes connect is random. There are two

different models, one by Erdős and Rényi [5]:

9



0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0




(a) Adjacency matrix

1 1 1 0 0 0
-1 0 0 1 1 0
0 -1 0 -1 0 1
0 0 -1 0 -1 -1




(b) Incidence Matrix

A B
A C
A D
B C
B D
C D




(c) Edge List

A

B

C

D

B C D

C D

D

(d) Adjacency List

Figure 2.3: Figures 2.3a, 2.3b, 2.3c and 2.3d are visual examples of the representations presented above for the
graph from Figure 2.1b.

• G(N,L) model where N labelled nodes are connected by L randomly chosen edges from the set

of all possible edges in the graph, regarding the existing nodes.

and other by Gilbert [6]:

• G(N, p) model where N labeled nodes are connected with probability p. On the other hand, one

could take the complete graph and erase edges with probability q = p− 1.

We should highlight that the network created by these models can contain isolated nodes, i.e., nodes

that are not connected to any other node, but that are still a part of the network. The network is called

completely connected if all its nodes are connected, i.e., there are no isolated nodes.

The networks generated by these models are truly random, however with the appearance of real

large networks, the characteristics of those did not coincide with the models, therefore they are not

adequate to represent real networks.

2.1.3.B Small-World Effect

The small-world property, also known as six degrees of separation, became very famous because of a

study regarding social networks, by Milgram [7]. According to this study, two individuals in the United

States of America, have six or fewer intermediates in their acquaintance chains using the ”small world

method”, introduced by Milgram [8]. This experimentation states that real networks show that people are

closer to each other than predicted. Knowing that real networks are not well represented by the random

network model, and considering Milgram’s findings, Duncan Watts and Steven Strogatz proposed an

extension to the random network models previously mentioned [9]:
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• Starting from a regular ring lattice with N nodes, every node has the same degree, k, and is

connected to the closest neighbours, then the procedure of random rewiring is applied to the

regular ring lattice, where each edge is rewired at random with probability p.

Notice that if p = 1 then we have a random network model because every edge gets rewired. This

model is closer to real networks regarding the clustering coefficient, however fails to explain the degree

distribution.

2.1.3.C Scale-free Networks

The increase of computational power led to the possibility of analysing many real large networks. To build

a network model that could accurately represent these large networks, the characteristics, specifically

degree distribution, should be taken into account. However, when the World Wide Web (WWW) got

sampled and mapped out [10], the conclusion reached was that the random network model was not able

to generate networks similar to the real large networks. The degree distribution of the WWW was well

represented by a Power Law distribution [10], defined as:

pk = k−γ (2.3)

A network with a Power Law degree distribution, also known as the 80-20 rule, has many small

degree nodes – the vast majority of nodes belong to this small degree part of the distribution (corre-

spondent to the 80% in the rule mentioned above) – while very few nodes have a very high degree value

– also known as hubs (correspondent to the 20% in the rule mentioned above). Since these hubs can

have a great impact on the system’s behaviour, this type of network gained an important role in the study

of complex systems.

The first scale-free network model was created by A.L. Barabasi and R. Albert, the B-A model [11]:

• At each time step, the network grows, adding a new node, connecting it to another m already

existent nodes. These connections are probabilistic, giving preference to nodes with a higher

degree, making big nodes even bigger, creating hubs. These two processes are called growth and

preferential attachment, two key features of real networks.

Another scale-free model was created by Dorogovtsev-Mendes-Samukhin, called DMS model [12]:

• In this model, as in the previous one, every time step a node is added to the network, but instead of

connecting itself to the already existent nodes, it randomly chooses an edge and connects to both

ends of it. As stated in [12], there is preferential attachment, but unlike the B-A model, it comes

naturally. The networks generated by this model also achieve a higher cluster coefficient than the

ones generated with the B-A model.
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2.2 Centrality Measures and Connectivity

2.2.1 Centrality Measures

This section is divided into two subsections. First, we present the centrality measures, and how to

compute them, regarding nodes and edges. We should note that not every formula was originally pre-

sented with the same notation, however, in the present work, this notation will be made uniform for better

understanding.

2.2.1.A Measures related to Nodes

Degree Centrality of a node i is the number of other nodes directly linked to node i:

D(i) =
∑
j

Aij , (2.4)

where Aij is the ij − th element of the adjacency matrix A of the graph. The degree centrality

could be normalized, by dividing the above expression by (n− 1) for each node, where n represents the

number of nodes in the graph. For directed graphs, the degree centrality is composed by the in-degree

centrality and the out-degree centrality, which can be computed similarly.

Eigenvector Centrality calculates the centrality for each node based on the centrality of its neighbours

[13]. The Eigenvector centrality of a node i is the sum of the centralities of i’s neighbours:

x(i) =
1

λ

∑
j

Aijxj , (2.5)

where A is the adjacency matrix of the graph, with λ being the largest eigenvalue of A. Alpha

centrality [14], can be seen as a generalization of Eigenvector centrality to directed graphs.

Katz Centrality introduced by Leo Katz [15], is similar to the Eigenvector Centrality mentioned above,

as the centrality of a node i depends on the centrality of its neighbours, but also on a constant value:

x(i) = α
∑
j

Aijxj + β, (2.6)

where A is the adjacency matrix of the graph. Both α and β are positive constants, and a < 1
λ , where

λ is the largest eigenvalue of A.

Katz centrality can be viewed as an improvement to the Eigenvector Centrality previously mentioned,

as it solves the problem of having a node with zero centrality, as β is a constant value.
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Closeness Centrality introduced by Gert Sabidussi [16], as the name suggests, represents how close

a node is to all reachable nodes. The higher the value of Closeness of a node the more central that node

is:

C(i) =
n− 1∑n−1

j=1 d(i, j)
, (2.7)

where n represents the number of nodes and d(i, j) the shortest-path distance from i to j. A measure

related to this one, called global reaching centrality, can be found in [17].

Betweenness Centrality of a node v is the sum of the fraction of all shortest paths that pass through

node v for every combination of start node and end node on the graph:

B(v) =
∑
i,j∈V

v ∈ σ(i, j)

σ(i, j)
, (2.8)

where v ∈ σ(i, j) represents the number of shortest-paths between (i, j) that goes through the

node v, and σ(i, j) represents the number of shortest-paths between (i, j). Betweenness centrality

measure was originally introduced by Linton C. Freeman [18], however a more recent algorithm was

proposed [19].

Percolation Centrality is similar to the aforementioned Betweenness centrality, in the sense that it is

also calculated based on the paths that go through some node v regarding all possible paths for each

possible pair of start and end nodes. However, these paths, unlike in the Betweenness centrality, are

not shortest paths but ”percolated paths”, meaning that the ”source is percolated” [20]. The Percolation

centrality for a node v at timestamp t can be calculated by:

P (v) =
∑

i ̸=v ̸=j

v ∈ σ(i, j)

σ(i, j)

xt
s

[
∑

xt
i]− xt

v

, (2.9)

where xt
s

[
∑

xt
i]−xt

v

represents the relative importance of each path originated from the source to the

centrality of node v. For weighted graphs the edge weights must be greater than zero.

Harmonic Centrality was presented as an improvement to the Closeness centrality [21], as it allows

to have an accurate centrality measure for nodes in a network that has pairs of unreachable nodes:

H(i) =
1∑

d(i,j)<∞,i̸=j d(i, j)
, (2.10)

where d(i, j) represents the size of the shortest-path from i to j.
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PageRank Centrality is a measure based on the citation/links on the Web [22], that looks at nodes

of the graph as pages on the web. It is used to calculate a page’s importance or value. Similarly to

the Eigenvector centrality measure, the PageRank centrality of a page also depends on other pages

that point towards this page, not only on their PageRank centrality value but also on the number of their

outgoing links. PageRank centrality of a node represents the fraction of time a random walker would

spend on this node. The walker follows out-edges with probability proportional to their weight. In this

context of following links going from page to page, it is possible that a user stops following links and

stops on a page, the probability of that happening in each step is the damping factor d. The PageRank

centrality value for each node can be calculated with:

PR(i) = (1− d) + d

(
PR(P1)

L(P1)
+ ...+

PR(Pn)

L(Pn)

)
, (2.11)

where P1...Pn are all different pages, pointing/linking to page i and L(P1)...L(Pn) is the number of

different links going out of page 1...n, respectively.

2.2.1.B Measures related to Edges

Edge Betweenness Centrality is very similar to the Betweenness centrality, but in this case instead

of nodes we are focused on the edges. The Edge Betweenness of an edge e is the sum of the fraction

of all shortest paths that pass through e for every pair of start and end nodes on the graph:

E(e) =
∑
i,j∈V

e ∈ σ(i, j)

σ(i, j)
, (2.12)

where e ∈ σ(i, j) represents the number of shortest-paths between (i, j) that goes through the edge

e, and σ(i, j) represents the number of shortest-paths between (i, j). It was first introduced in [23].

Degree Product Centrality The Degree Product centrality of an edge is based on the degree of its ad-

jacent nodes. This measure is used for assortative graphs, however, can be misleading in disassortative

graphs as nodes are connected to other nodes with very different degree values. It can be calculated

as:

Dp(e) = D(i)D(j) (2.13)

where D(i) represents the degree of node i, and edge e is the edge that connects nodes i and j. A

concrete literature reference for the definition of this measure was not found, however as it is exclusively

based on the degree of the nodes, which is a concept from graph theory, it is natural to assume that this

measure is also from graph theory. This measure, and variants, have been widely used throughout the
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years [24–26].

Bridgeness Centrality looks onto sizes of cliques, more specifically the cliques’ size of the two ad-

jacent nodes of an edge, and also to the clique size that the edge belongs to. It can be calculated

by:

B(e) =

√
SiSj

Se
, (2.14)

where i and j are the two nodes connected by e, and Si represents the size of the clique that contains

i.

K-Path Edge centrality in contrast to the edge Betweenness centrality mentioned earlier, the K-Path

Edge centrality measure does not look into the shortest paths between two nodes that cross an edge,

instead, it looks into the k-sized paths from a node that cross an edge. The centrality value for each

node can be calculated by:

K(e) =
∑
i∈V

e ∈ σk(i)

σk(i)
, (2.15)

where σk(i) represents a path with length k from node i. The notion of K-Path centrality was intro-

duced in [27].

Spanning Edge Betweenness unlike other measures already mentioned, the Spanning Edge Be-

tweenness centrality measure [4], does not take into account the shortest paths of a graph. It looks into

which links are fundamental to keep the network connected and which are not. To do so, it takes into

account the Minimum Spanning Trees (MSTs) of the graph, and the Spanning Edge Betweenness of an

edge is the fraction of minimum spanning trees that edge is a part of, and can be calculated by:

S(e) =
e ∈ τG
τG

(2.16)

where e ∈ τG represents the number of MSTs that contain edge e, and τG represents the total number

of MST of graph G. This measure is bound to be between 0 and 1. For unweighted graphs, a value of 1

means that if the edge is removed the network breaks apart.

In table 2.1 there is complementary information regarding each metric presented above.
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2.2.2 Libraries

NetworkX (https://networkx.org) [33], is a Python package oriented to networks, as the name suggests. It

is useful for the creation and manipulation of the structure, dynamics, and functions of complex networks.

Not only have many of the centrality measures that were referred to in this paper implemented, but it

also has generators for graphs based on the best-known models, high tolerance for different types of

nodes, and both nodes and edges can hold arbitrary extra data. It is constantly updated, making it as

up-to-date as possible. This flexibility of NetworkX allows for the representation of different types of

networks, while also, as a Python package, being very attractive for all kinds of users – not only for the

ones more familiar with programming but also for those with all sorts of different backgrounds. NetworkX

is also able to perform numerical linear algebra and drawing by making use of multiple Python packages.

Another very famous network tool is igraph (https://igraph.org). Unlike NetworkX, igraph is not only

a Python package, it can also be used in other programming languages such as R, Mathematica and

C/C++. It focuses on efficiency, portability and ease of use. The fact that it provides APIs for different

languages allows for people of different programming backgrounds to be at ease with the preferred

language, besides choosing the most optimal implementations. igraph and NetworkX should not be

seen as competitors but rather as complements, each one having unique functions implemented when

compared to each other. Just like NetworkX, igraph is also updated very regularly.

Python (https://www.python.org) is a very well known programming language. Its easiness and ac-

cessible characteristics are what makes it so good and widely used. To start it is very easy to learn, it

can easily be an entry language into the programming world, or if that is not the goal, one can stick to it

and still do almost anything, making it a very powerful programming language. It runs everywhere and

it is very easy to set up, which is a big plus for everyone that uses it. The fact that it is open-source is a

plus for someone that wants to dig deeper into this programming language.

Taking into consideration everything that was just stated, about the importance of those two libraries

on making working with networks much easier. Also, the fact that Python is such a good programming

language for this same subject, not just because it is very powerful but also because it is easy to use.

One can easily understand the importance of a centrality measure being publicly available to everyone

in one of those libraries that take advantage of a language such as Python.

2.2.3 Robustness

Networks represent real-life entities and connections. Therefore networks are susceptible to events, as

the real world is continuously changing. A network that can withstand these events is said to be robust.

These events can be represented by the addition or deletion of network structures, such as nodes or

edges. In a citation network, every time a new paper is published there are new edges and a new node
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that have to be added to the network. In a water supply network if a pipe is broken an edge has to be

deleted from the network.

The study of robustness can be done with two different perspectives – increasing the resilience of

a network or fragmenting the connectivity of a network. Here the questions are: for a given graph G,

which modifications in its structure (adding or removing elements such as nodes and/or edges), possibly

restricted by a budget or other constraints, resulting in the highest increase of robustness, or lead to the

most broken graph? The type of events in which elements are added to the graph is often more related

to the first perspective, while on the other hand, the type of events that delete elements from the graph

is more related to the second. There are multiple different available measures/methods to assess the

robustness of a network. Naturally, each one of these serves different background areas, with different

purposes.

The deletion events, also known as faults, can either be random failures or targeted attacks. As

the name suggests, a random failure can affect any edge or any node that belongs to a network. On

the other hand, in a targeted attack, the attacker relies on a certain strategy to pick the most important

elements to cause the most damage to the network. The modeling of repeated deletions and their effects

is known as percolation [34].

One way of attributing values to network elements relative to their importance is by using centrality

measures. Centrality measures attribute a numerical value to each node or edge, that allows for them to

be ordered. There are some centrality measures specific for nodes and others specific for edges. The

choice between focusing on the nodes or the edges, and corresponding measures, depends on the type

of the network and on the context of the event. In the next section, some measures are reviewed.

Since there are many definitions for robustness, in this work we define robustness as the capability

of the network to remain connected, or be highly connected, after events occur. The size of the GCC

(giant connected component), number of Connected Components, a fraction of nodes/edges belonging

to the GCC, normalized susceptibility, among others, are available measures to assess such capability

of a network, as percolation is performed on the network.

2.3 Related work

2.3.1 Networks

When researchers first started using networks in their studies the computational power did not allow for

real-world large networks to be studied. Therefore they had to either use networks created based on

models (briefly explained in Section 2.1.3) or small real-world networks. In both [29,35] the authors stud-

ied and compared the robustness of the different network models, when confronted with both random

failures and targeted attacks, and reached interesting conclusions where some models are more robust
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Figure 2.4: Image retrieved from [1], illustrating correlation between different studied centrality measures. A color
scale was used, where green represents less similarity and red represents more similarity. The three
similarity clusters are: betw-pr15, katz-eig and deg-cc.

to a type of event and others perform the other way around. However as the years went by the com-

putational power increased a lot and for some time now it is possible to work with very large real-world

networks, like the ones used in [30], where the largest has millions of nodes.

Even with this huge growth in computational power, followed by the growth in the networks’ size

there are measures that are still unviable to calculate, by being too computationally expensive. However

it would be very clever to study similarities between centrality measures, where one centrality measure

could be closely approximated by another one much cheaper, that would be viable to be calculated. A

study in this area was performed [1], reaching interesting results, by being able to create three clusters

of similar centrality measures, where the cheaper measures can be used instead of the similar but more

expensive ones (see Figure 2.4 for more information).

2.3.2 Nodes vs Edges

As stated before, every study in this area considers some type of changes or perturbations inflicted

on the network. The name given to these occurrences in this work is events. The adequate events

for a network vary with the type of network and the context/area of the study to be performed. As

an example, in a contacts network where the nodes represent humans and edges represent face-to-
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face interactions, and the objective is to study epidemics, it does not make sense to remove nodes, as

humans cannot simply disappear, instead it makes sense to remove edges, by reducing face-to-face

interactions between humans, represented by the nodes. It is important then to categorize papers, in

those that target nodes and those that target edges. In [30, 36–38] edges are the target of the events.

On the other hand in [1,29,35,39] nodes are the target.

2.3.3 Approximating Centrality Measures

Centrality measures are widely used in Network Science. This fact, together with the continuous growing

size of the networks studied, leads to the necessity that these centrality measures are computationally

cheap to calculate. The best way of achieving such goal is, instead of calculating the exact measure,

algorithms to calculate approximations are created.

An example of this can be seen in [40, 41], where based on a randomized approximation algorithm

the centrality measure values are calculated for the given networks. Another example of a similar method

can be found in [42], where the algorithm is based on ”an adaptive sampling technique” which allows

for better computational times. The multiple different proposed algorithms have their pros and cons, i.e.,

there are differences between each proposed algorithm, and the authors always argue why their method

is better from the ones already proposed. For example, in [43], the authors state ”...we also get good

approximations for the betweenness of unimportant nodes” as an advantage over the methods that were

already introduced at that time.

With the evolution in technology, new methods for approximating centrality measures’ values were

developed. An example of this is the use of machine learning. By using neural networks, the authors

state tat they can achieve results that are very close to the exact ones only using a fraction of the

time [44,45].

2.3.4 Robustness

Robustness is a well-known topic in the network area of interest. It is not a recent subject of study, in fact

the first works date to more than 50 years ago [46]. This first work was in the area of network reliability,

taking into consideration connectivity measures. Since then this topic has received much attention from

researchers from all kinds of different fields. These can be so heterogeneous that some look to study

robustness as a way of increasing the capabilities and resilience of a network (telecommunications,

power grid), and some others are interested in this same subject with the intent of breaking the network

apart (epidemics). There are multiple different definitions for robustness, some examples are: ”fault

tolerance against random failures of network components” [47], ”we define a robust network as one

where the total throughput degrades gracefully under node and link removal” [48], ”we interpret network
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robustness as a measure of the network’s response to perturbations or challenges [...] imposed on the

network” [49] and ”Robustness is the ability of a network to continue performing well when it is subject

to failures or attacks” [36].

As the differences seem obvious there is also something in common to all these definitions provided

by all these different authors. By studying what happens to the network when it faces some events

(addition or deletion of elements) that alter the network, and based on the network’s behaviour when

affected by those events, the authors are able to argue if the network is considered robust or not.

The contribution from [47] on robustness is very valuable. In this paper, the authors focused on

reviewing robustness. It groups measures, that attribute numerical values to the network in order to ad-

dress robustness, by ”graph-theoretical concepts” such as components, paths, degrees, among others.

Being this work a review, those measures are not proposed there. The authors present a table with the

name of the measures and the references to where they were originally proposed, along with the year,

the name on the available repository and the asymptotic worst-case complexity. Another analysis worth

mentioning in this work is a comparison of cited work in terms of the type of disturbance (failure or at-

tack, isolated or sequential), the structure of the network that is affected (nodes or edges) and in which

of the groups mentioned above the impact is quantified. Additionally, the authors analysed the Pear-

son correlations among the measures. Together with runtime analysis for the measures for the same

networks, it suggests that is possible to replace an expensive measure with a very similar and much

cheaper to compute measure, a possibility that is increasingly under study. However, further theoretical

analysis is necessary to assure the similarities obtained practically between measures. It is important

to note that some measures have a prohibitive runtime and others fail to differentiate graphs with very

different structures. Still, this study differs from my work proposal because percolation is not applied to

the used networks, instead these networks are used with the intention of comparing the robustness of

the underlying models that were used to create them.

As stated above there are many different measures available to assess robustness, from the most

different theoretical concepts, however, regarding the definition of a network as being robust, researchers

have not yet, and maybe will never, reach a consensus on how to correctly assess that. As the first

works on this subject, also [50] defends that connectivity is the most appropriate measure for modelling

the robustness of networks, an idea that is also present in [35], by targeting the nodes with higher

connectivity.

In [2], to assess edge significance on maintaining global connectivity, edge percolation was per-

formed, making use of seven different centrality measures, one of which, link entropy, was introduced in

this work. Two indices are used to capture critical points: the fraction of nodes belonging to the largest

connected component and normalized susceptibility. Regarding this last index, often a peak can be

observed, it corresponds to the point the network disintegrates, i.e., the threshold of edge percolation
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(see Figure 2.5 for more details).

In social networks, it is usual to have connections between similar individuals, however there are

some connections between less similar individuals, that are weaker. ”The weak ties phenomenon refers

to the fact that these connections may play crucial roles in maintaining the global connectivity and holding

key functions, such as the flow of new information and knowledge” [31]. This work focus on Bridgeness

centrality, which is inversely proportional to similarity. The same indices are used in this work to as-

sess robustness: the fraction of nodes belonging to the largest connected component and normalized

susceptibility. Bridgeness is compared to another three centrality measures and performs better in char-

acterising edge significance, according to the authors and the indices chosen. The authors recognize

that more large-scale networks should be used in future works [2,31].

A different approach is used in [32], in which to evaluate the behaviour of the network after a set of

events it is used global efficiency, a measure that was introduced in [51], as a measure of how efficiently

a network exchanges information. A different perspective is given in [39] where k-robustness is defined

as a measure that reflects the minimal fraction of residual edges after removing k nodes. This paper is

different to the previously mentioned in the sense that it takes the network attacker’s perspective, where

it aims to disconnect the network, by trying to remove as many edges as possible when targeting a

fixed number of nodes. Another perspective is presented in [48], where the authors propose a metric,

called elasticity, defined as a relation between throughput and nodes remaining in the network after

events occur. Another measure was proposed in [49], called R-value, that reflects the robustness of the

network. Curiously this measure is not defined as a single measure, instead it is defined as a weighted

linear norm of a set of measures or a constrained model, where some or all the measures belonging to

the set can be upper and/or lower bounded. The goal is to pick measures that are independent of one

another to best reflect the different characteristics of a network.

Also on the topic of network robustness, a different approach is given in [36], where the criteria for

a measure being useful to assess network robustness is that it needs to reflect the addition of edges to

the network and take into account alternative paths, where it states that ”the only measure that gives

the desired evaluation for the example graphs and also measures back-up paths in the graph, is the

effective graph resistance”, that was proposed by the same author [52]. As stated in [37, 38] effective

resistance is related to Spanning Edge Betweenness, proposed in [4]. Different ways of calculating

Spanning Edge Betweenness are proposed with the objective to make this measure viable to be used in

real-world networks, as the exact value is stated to be too costly to calculate [30,53]. Both works focus

on an approximation as it is cheaper to compute. It is important to state that these studies differ from

my work proposal because I aim to implement the exact measure. An interesting study was made [53],

where a fraction of the edges/vertices with higher centrality numerical value were protected and only the

edges/vertices that were not protected could be removed. Then the authors examined the probability
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that the network remained connected. The authors also applied node percolation by deleting the most

important nodes, where the node’s importance was calculated using different centrality measures, to

a network and measured the number of connected components. The conclusion that can be reached

is that the measure that creates more connected components is better at identifying the critical nodes.

In [30] the authors compared the noise resilience of different centrality measures when the network

was subject to addition or deletion of edges, which follow three different strategies. The resilience was

measured by comparing the evolution of two distinct measures: average relative change and Jaccard

similarity.

Epidemics simulation is one area where these two metrics are used [37, 38], where the objective is

to sparsify the network to decrease the computation cost while maintaining the network’s characteristics

by removing edges that are not important for disease spreading. In both works, the measure was

compared against other methods of sparsification with multiple evaluation criteria and performed better

in every category, allowing the authors to argue that it is a good measure to perform sparsification based

on.
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Figure 2.5: Image retrieved from [2], illustrating edge percolation on twelve different networks with seven different
structural measures. Each plot has two parts, the top one for the fraction of nodes belonging to the
largest component and the bottom one for the normalized susceptibility.

24



3
Spanning Edge Betweenness –

Implementation and Parallelism

Contents

3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

25



26



In this Chapter there is a brief introduction to the theory behind Spanning Edge Betweenness cen-

trality. After that, we will take a closer look into the implementation of the aforementioned measure,

where there were proposed a couple of methods to improve the calculation time of said measure, and

finally compare the results for the methods tested. The code referenced in this chapter is published in

an online repository1.

3.1 Theory

SEB is a centrality measure that calculates how strongly connected a network is, i.e., which links are

fundamental to keep the network connected and which are redundant. This metric can be defined as

the fraction of Minimum Spanning Trees (MSTs) where a given edge is present. This metric was initially

developed to be used in phylogenetic trees [4], but quickly other applications started to emerge, one of

them being the study of network robustness.

SEB can be formally defined as:

SEB(e) =
e ∈ τG
τG

(3.1)

where G = (V,E) is a connected, undirected and weighted graph, V is the set of nodes and E ⊂

V × V is the set of edges of the graph, and e ∈ E. e ∈ τG represents the number of MSTs where edge

e occurs, and τG is the total number of MSTs of the graph. To count how many MSTs exist in G, and in

how many e is present we can rely on Kirchhoff’s matrix tree theorem [54] for unweighted networks and

on Eppstein [55] for weighted networks.

In [4] is explained how to compute both e ∈ τG and τG, by using both aforementioned theorems.

Computations can however be resumed to calculating determinants of matrices, as these take most of

the computation time and are predominant throughout the implementation.

3.1.1 Determinants

The determinant can be seen as a scalar value that is a function of the entries of a square matrix. A

minor of a square matrix is the determinant of a smaller square matrix obtained from the first by deleting

one or more rows or columns. There are multiple ways to calculate a determinant directly, such as

using the Leibniz’s formula for determinants, based on permutations of matrix elements or using the

Laplace expansion, based on minors. However, these methods are inefficient, therefore new methods

of calculating determinants have been developed.

1https://github.com/ASTeixeira/SpanningEdgeBetweenness
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These are called decomposition methods, and they calculate the determinant of a given matrix by

writing the matrix as a product of matrices whose determinants can be more easily computed. Examples

are the LU decomposition or the QR decomposition.

The QR decomposition decomposes a matrix into a product of an orthogonal matrix and an upper

triangular matrix. This decomposition was published in 1961 by both John G.F. Francis [56] and Vera N.

Kublanovskaya [57], independently. The LU decomposition was introduced by Tadeusz Banachiewicz in

1938 [58]. This decomposition factors a matrix as the product of a lower triangular matrix and an upper

triangular matrix. This decomposition is particularly useful because the determinant of a triangular matrix

is the product of the elements of its diagonal. This property is used throughout the implementation.

3.2 Implementation

In this section we look into the implementation of SEB. We chose to implement SEB using the Python

programming language, specially because we aimed to integrate this measure in NetworkX, a Python

package.

In Algorithm 3.1 there is pseudocode regarding the SEB calculation for weighted networks. One must

start by ordering the edges by their weights, in increasing order. Then, for each connected component

formed by edges with the same weight, calculate SEB for each edge in each connected component.

After that, contract all edges such that each connected component becomes a single vertex. Repeat

until all edges are processed.

Algorithm 3.1: Weighted Network
1 begin
2 edges←− sortEdgesByWeight(G.edges())
3 Laplacian←− laplacianMatrix(G)
4 LaplacianToKirchhoff ←− RemoveRowColumn(Laplacian, 0, 1)
5 TotalMSTs←− CalculateDeterminant(LaplacianToKirchhoff)
6 n←− 0

7 while True do
8 if StillInTheSameWeightValue() then
9 AddEdgeToLaplacian(edges[n])

10 n←− n+ 1

11 if AnyEdgeProcessed() then
12 BuildSCCs()
13 CalculateSEBEachSCC()
14 if NoMoreEdges() then
15 break

16 ContractEdgesEachSCC()

17 else
18 IncreaseWeightV alue()
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The calculation for SEB values of an unweighted network can be seen as a specific case of a

weighted network, where all the edges have the same weight, therefore having only one connected

component, so the calculation is more direct. Pseudocode for such cases is available in Algorithm 3.2.

Algorithm 3.2: Unweighted Network
1 begin
2 Laplacian←− laplacianMatrix(G)
3 LaplacianToKirchhoff ←− RemoveRowColumn(Laplacian, 0, 1)
4 TotalMSTs←− CalculateDeterminant(LaplacianToKirchhoff)

5 for edge in G.edges() do
6 SEB ←− CalculateSEB(edge, Laplacian)
7 updateEdgeSEB(G, edge, SEB)

As stated before, conventional methods of calculating the determinant of a matrix are not optimal,

because they are very inefficient. It is reasonable to expect that packages for scientific computing for

Python, such as SciPy2 [59] and NumPy3 [60] use more efficient options for calculating determinants,

such as decompositions. With that in mind, a possible solution for the problem of calculating determi-

nants would be to use built-in functions from those packages, however when calculating the determinant

of a matrix of a relevant size, built-in functions may cause overflow, so a solution to this problem would

be to use built-in functions from the same packages to factorize the initial matrix, and then perform the

calculations using logarithmic properties, which allow to represent bigger numbers easier, mitigating the

risk of overflow. The decomposition that best fits this use case is the LU decomposition, as it possibili-

tates the easiest method to calculate the determinant of a matrix, hence it is the one that will be used.

Pseudocode exemplifying these operations is available in Algorithm 3.3.

Algorithm 3.3: Calculate Determinant
1 begin
2 LU ←− LUFactorization(Laplacian)
3 Determinant←− 0

4 for entry in Diagonal(LU) do
5 Determinant←− Determinant+ Log10(Absolute(entry))

The calculation of the exact SEB value for every edge can be heavy and expensive. With that in

mind, there is a possible preprocessing that would make the computations faster. As stated before,

the SEB value of an edge is the fraction between the number of MSTs that such edge is present and

the total number of MSTs of the graph. A bridge on a network is by definition an edge whose deletion

increases the graph’s number of connected components, therefore this edge has to be present in every

MST of the network, and so it is possible to set the SEB value of such edges a priori, and temporarily

2https://scipy.org/
3https://numpy.org/
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remove them from the network, creating subgraphs, which are smaller than the initial graph, making the

Laplacian matrix for each subgraph smaller and making the decomposition faster, so the calculation for

the remaining edges is lighter and faster. Pseudocode in Algorithm 3.4.

Algorithm 3.4: Unweighted Preprocessing
1 begin
2 Bridges←− GetBridges(G)
3 RemoveEdgesFromGraph(bridges,G)
4 SCCs←− GetSCCsFromGraph(G)

5 for SCC in SCCs do
6 CalculateSEB(SCC)

7 SetEdgeAttribute(G,Bridges, SEB = 1)

The same preprocessing does also apply to weighted networks, because no matter the weight of a

bridge it will always be in every MST. The only difference between this preprocessing and the one stated

above is that for a weighted network it is crucial to also keep the weight of the bridges, so when they are

being added back to the graph, no information is lost. Pseudocode in Algorithm 3.5.

Algorithm 3.5: Weighted Preprocessing
1 begin
2 Bridges←− GetBridges(G)
3 Weights←− GetWeightsFromEdges(G,Bridges)
4 RemoveEdgesFromGraph(bridges,G)
5 SCCs←− GetSCCsFromGraph(G)

6 for SCC in SCCs do
7 CalculateSEB(SCC)

8 SetEdgeAttribute(G,Bridges, weight = Weights, SEB = 1)

Another attempt at making SEB faster to calculate led to the use of PySpark. PySpark is a Python

interface for Apache Spark. It allows to easily use the available cores of a machine, with little changes

to the implementation.

In the implementation of SEB, the calculation of the value for each edge is independent, therefore it is

possible to easily parallelize the calculation. Taking advantage of the capacities of the PySpark interface

it is possible, with minimal changes to the code, to implement such improvement.

Relying on PySpark ’s Resilient Distributed Dataset(RDD) and the MapReduce programming model

the modifications above can be implemented, as seen in Algorithm 3.6.
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Algorithm 3.6: PySpark SEB calculation
1 begin
2 Laplacian←− laplacianMatrix(G)
3 LaplacianToKirchhoff ←− RemoveRowColumn(Laplacian, 0, 1)
4 TotalMSTs←− CalculateDeterminant(LaplacianToKirchhoff)

5 EdgeList←− parallelize(G.edges())
6 SEB ←− EdgeList.map(CalculateSEB(edge, Laplacian)).collect()
7 updateEdgeSEB(G,SEB)

3.3 Results

In this section we look at the results of the decisions made for the implementation, where the aim is to

minimize the calculation time of SEB for a network. The machine used to obtain these results has the

following specs: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz, 24 cores and 64GB of RAM.

The following list contains the name and a small description of the networks, real world networks and

generated, used to perform tests and obtain results.

• PowerGrid(Infrastructure) - A representation of the Western States Power Grid of the United

States, compiled by Duncan Watts and Steven Strogatz.

• Facebook(Social) - A social friendship network extracted from Facebook, where nodes represent

people and edges represent friendship ties.

• Dolphins(Animal Social) - A social network of bottlenose dolphins where links represent frequent

associations.

• C.elegans(Biological) - In this network nodes represent substrates and edges represent metabolic

reactions.

• NetScience(Collaboration) - A co-authorship in network theory and experiments, where nodes

represent researchers and edges co-authorship.

• Web(web) - In this network nodes represent web-pages and edges represent hyperlinks between

web-pages.

• ER(Random) - A random network generated from the Erdős-Rényi model.

• NWS(Small-World) - A small-world network generated from the Newman-Watts-Strogatz model.

• BA(Scale-Free) - A scale-free network generated from the Barabasi-Albert model.
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Table 3.1: Real world networks’ characteristics

Network # Nodes # Edges Clustering
Coefficient

Assortativity Average
Degree

PowerGrid 4941 6594 0.080 0.003 2
Facebook 2888 2981 0.027 -0.668 2
Dolphins 62 159 0.258 -0.043 5

C.elegans 453 2025 0.646 -0.225 8
NetScience 379 914 0.741 -0.081 4

Web 3031 6474 0.564 -0.168 4

In Table 3.1 there are some important characteristics from each real world network, such as num-

ber of nodes and edges, clustering coefficient, assortativity and average degree. By looking at these

characteristics it is possible to acknowledge that the networks are quite different from each other.

As stated before, conventional methods of calculating the determinant of a matrix are too inefficient,

therefore a better approach is to use decompositions, that decompose the original matrix in multiple sub-

matrices allowing for a faster calculation. It is reasonable to assume that built-in functions would use

these or even better methods for determinant calculation. However when using those built-in functions,

they may overflow, when applied to the bigger networks used. The solution is then to use the same

packages, but to use the decomposition built-in functions instead. Also stated before was the use of the

LU decomposition to calculate the determinant of a matrix. This decomposition is available and easy to

use in SciPy.

SciPy is a Python package for scientific computing that has its own group of algorithms and functions

regarding linear algebra, but in addition to that, it also has a module that contains low-level functions from

the LAPACK library, that stands from Linear Algebra PACKage, originally written in the programming

language Fortran 90. The time comparisons between the two different modules can be seen in Table

3.2.

Table 3.2: Time that different decompositions take to calculate SEB for each network, in seconds. ”scipy’s de-
composition” stands for the native linear algebra function, and ”lapack’s decomposition” represents the
function from the LAPACK module inside Scipy.

Network lapack’s
decomposition

scipy’s
decomposition

PowerGrid 7936 9182
Facebook 1502 1741
Dolphins 0.60 0.60

C.elegans 307 316
NetScience 78 78

Web 3696 4227

In Table 3.2, both decomposition functions are being compared. When looking at the smaller net-
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works, there are no time differences, which could lead to conclude that there is no difference between

using one or another, however when looking to the biggest networks, such as PowerGrid or Web there

is a considerable difference between functions, with LAPACK’s being the best option. It is then possible

to conclude that LAPACK’s function is faster than Scipy’s, justifying our choice of use for the remainder

of this work.

As previously stated, a potential improvement to the time duration to calculate SEB for a network

would be to find bridges a priori, so that edges no longer need to be processed, as the SEB value

is known for such cases and also to break a bigger graph into smaller subgraphs, so their Laplacian

matrices are also smaller and therefore faster to decompose. Related to this matter, two main questions

can be made: does preprocessing improve the calculation time when there are bridges present in the

network? and does the preprocessing worsens the calculation time when there are no bridges on the

network? The results of this preprocessing for the real world networks is presented in Table 3.3.

Table 3.3: Real world networks SEB calculation time without and with preprocessing applied, time in seconds.

Network # Edges # bridges Without
preprocessing

With
preprocessing

PowerGrid 6594 1611 7936 3126
Facebook 2981 2796 1502 0.8
Dolphins 159 9 0.60 0.35

C.elegans 2025 8 307 212
NetScience 914 30 78 63

Web 6474 512 3696 1134

By looking at Table 3.3 there are some conclusions that can be drawn. We can in fact answer to the

first question we stated, the preprocessing is worth with the presence of bridges in the network. This

holds true both for networks with a small portion of bridges and networks with a high portion of bridges.

Let us take as an example the C.elegans network for the small portion of bridges. This network has

2025 edges and out of those only 8 are bridges, and the calculation time goes down almost a third of

the original time, which shows that even for a network with a percentage of edges being bridges so low

it does still pays off to apply the preprocessing.

An example on the other side of the spectrum, i.e., a network with a high percentage of bridges is

the Facebook network, with 2796 bridges out of 2981 edges and the effect on the calculation time is

tremendous with the time going from 1502 seconds to 0.8 seconds, which leaves no doubts about the

value of preprocessing when the network has a significant amount of bridges.

After analyzing the results of the real world networks it is also important to analyze and draw con-

clusions from generated networks, based on well-known models. In Table 3.4 the same comparison

is made for networks generated from the Newman-Watts-Strogatz model, considering different sets of
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parameters.

By looking at the mentioned table it is obvious that there is not a single generated network with a

bridge. So now it is not possible to draw any conclusions regarding the first question, but it is possible to

address the second, does the calculation time get a lot worst when no bridges are present? By looking

at the values present in the two most rightward columns, it is expected that without preprocessing the

time is better, because there is no advantage in preprocessing such networks and time is spent in this

process. However, it is also possible to see that the calculation time does not increase significantly,

which allows us to conclude that with networks generated from the Newman-Watts-Strogatz model, the

time lost in preprocessing is not relevant enough that this process should be discarded.

Table 3.4: SEB calculation time for networks generated from the Newman-Watts-Strogatz model with and without
preprocessing, time in seconds. n:number of nodes; k:joined with k nearest neighbours; p:probability of
adding a new edge. Networks generated using the NetworkX package.

n k p # edges # bridges Without
preprocessing

With
preprocessing

10 2 0.1 10 0 0.0064 0.0069
100 2 0.1 111 0 1.11 1.13
1000 2 0.1 1095 0 200 205
10 4 0.1 22 0 0.006 0.014
100 4 0.1 219 0 2.15 2.17
1000 4 0.1 2203 0 414 417
10 4 0.5 27 0 0.0070 0.0077
100 4 0.5 303 0 3.01 3.03
1000 4 0.5 2988 0 562 567

Another useful model to analyse is the Barabási–Albert model. The results for networks generated

from such model can be seen in Table 3.5. As before the parameters were changed one at a time

to better compare the results. It is possible to divide the results, and therefore the networks, into two

categories: m = 1 and m ̸= 1.

When m = 1 every edge is a bridge, so it is possible to draw conclusions regarding the first ques-

tion: does preprocessing improve the calculation time when there are bridges present in the network?

By looking at the table, the answer is clearly yes, improving the time significantly. This is even more

noticeable when looking at the biggest network, when n = 1000, and notice that the calculation time with

preprocessing is almost nonexistent when compared to without preprocessing.

When m ̸= 1 the number of bridges is always close or equal to 0. Once again, knowing that there

are no bridges it is expected that the calculation time does increase, and in fact, that can be seen on

the table. In this case the second question is appropriate: does preprocessing worsen the calculation

time when the network has no bridges? Once again, it is possible to argue that the time lost with

preprocessing is only a small fraction of the time spent with the calculation. Therefore it is possible to
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conclude that with networks generated from the Barabási–Albert model, the preprocessing should also

not be discarded. Based on these results it is reasonable to defend that preprocessing is always worth

to be part of the calculation, because on the worst case, when there are close to 0 bridges, it does not

affect significantly the calculation time, but in the best case it greatly reduces the computation time.

Table 3.5: SEB calculation time for networks generated from the Barabási–Albert model with and without prepro-
cessing, time in seconds. n:number of nodes; m:number of nodes to attach from a new node. Networks
generated using the NetworkX package.

n m # edges # bridges Without
preprocessing

With
preprocessing

10 1 9 9 0.007 0.002
100 1 99 99 1.012 0.0089

1000 1 999 999 185 0.08
10 2 16 0 0.004 0.006

100 2 196 0 1.24 1.29
1000 2 1996 0 463 488

10 4 24 1 0.006 0.006
100 4 384 0 2.49 2.51

1000 4 3984 0 729 760

Another potential improvement that was previously suggested was the use of PySpark, a Python

interface for Apache Spark. The aim of using such interface is to parallelize the calculation, as edges

are independent of each other. Apache Spark is a rather complex tool, with multiple modes that best-fit

different use cases. The correct mode for this application is the cluster mode, however it is still complex

to define the correct infrastructure for the machine that is being used. Therefore, in the first experiment

the system configuration was not defined, letting the interface choose the best configuration. The results

of this experiment can be seen in Table 3.6.

Table 3.6: Comparison between original serial calculation times to the use of PySpark, for each network. Time in
seconds

Network Serial PySpark

PowerGrid 7936 26830
Facebook 1502 10109
Dolphins 0.60 21

C.elegans 307 3016
NetScience 78 1171

Web 3696 22306

By analyzing the results, it is obvious that PySpark is much slower than the original implementa-

tion, which can mean that this is not a good solution, or that it is necessary to try to better define the

configuration, knowing the machine that is being used.

It is also important to mention that Scipy ’s LAPACK module does already use parallelism in the
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built-in function to perform the matrix decomposition. However, the implementation should be module

agnostic. Because if to be replaced by another module or package that does not take advantage of

parallelism, it is important to control the parallelism. This can be achieved by implementing it where it is

more useful, such as the independent calculation for each edge.

To better take advantage of PySpark ’s capabilities it is important to understand some of the inner

workings of said interface. On cluster mode, the one suited for this application, Spark applications run

as independent sets of processes, coordinated by the SparkContext object. To run on a cluster, the

SparkContext connects to a cluster manager, in this case, the Standalone, a cluster manager included

with Spark. After this connection is set up, Spark acquires executors on nodes in the cluster, that receive

tasks from the SparkContext to run. Each executor in each worker node then has access to a certain

number of cores. The number of worker nodes and the number of cores available to each one can both

be defined.

The machine used to perform these calculations has 24 physical cores, therefore the m =

#ofworkernodes×#ofcores should not exceed 24. Based on this number the next experiments consist

in starting with 1 worker node and increase this number until 24, and adjust the number of cores each

worker node has at its disposal such that m ≤ 24. The results of such experiment can be seen in Figure

3.1.

By looking at Figure 3.1 it is possible to see a very abrupt decrease in time from 1 worker node to 2

worker nodes, and then in almost every network, a slower decrease until a somewhat stable value for the

time is found. The case of the dolphins network, Figure 3.1b should be interpreted carefully, since every

minor perturbation can disrupt the results by increasing just slightly the time. However, because the time

is low in every different configuration those disruptions seem to be bigger than they really are. Resulting

in some unexpected increases, but even with that the evolution of time is obvious and similar to all the

other networks. The most obvious conclusion that can be made is that computation time decreases with

increasing number of workers.

Another less obvious conclusion can be drawn by looking at Figure 3.1. The time, in almost every

configuration, for all the networks except the dolphins network, is faster than the serial time. The dolphins

network is the smallest, and is so small that the possible time won does not compensate the added

complexity from parallelizing the calculation. However, when looking to the other networks, the best

times show incredible progress in the quest to minimize the time spent in the calculations, showing that

PySpark is a valid option, it just needs to be appropriately parameterized.

36



1w
,2

4c
2w

,1
2c

3w
,8

c
4w

,6
c

5w
,4

c
6w

,4
c

7w
,3

c
8w

,3
c

9w
,2

c
10

w,
2c

11
w,

2c
12

w,
2c

13
w,

1c
14

w,
1c

15
w,

1c
16

w,
1c

17
w,

1c
18

w,
1c

19
w,

1c
20

w,
1c

21
w,

1c
22

w,
1c

23
w,

1c
24

w,
1c

pyspark config

0

50

100

150

200

tim
e 

(s
)

(a) C.elegans Network

1w
,2

4c
2w

,1
2c

3w
,8

c
4w

,6
c

5w
,4

c
6w

,4
c

7w
,3

c
8w

,3
c

9w
,2

c
10

w,
2c

11
w,

2c
12

w,
2c

13
w,

1c
14

w,
1c

15
w,

1c
16

w,
1c

17
w,

1c
18

w,
1c

19
w,

1c
20

w,
1c

21
w,

1c
22

w,
1c

23
w,

1c
24

w,
1c

pyspark config

1.7

1.8

1.9

2.0

2.1

2.2

tim
e 

(s
)

(b) Dolphins Network

1w
,2

4c
2w

,1
2c

3w
,8

c
4w

,6
c

5w
,4

c
6w

,4
c

7w
,3

c
8w

,3
c

9w
,2

c
10

w,
2c

11
w,

2c
12

w,
2c

13
w,

1c
14

w,
1c

15
w,

1c
16

w,
1c

17
w,

1c
18

w,
1c

19
w,

1c
20

w,
1c

21
w,

1c
22

w,
1c

23
w,

1c
24

w,
1c

pyspark config

200

400

600

800

1000

1200

1400

tim
e 

(s
)

(c) Web Network

1w
,2

4c
2w

,1
2c

3w
,8

c
4w

,6
c

5w
,4

c
6w

,4
c

7w
,3

c
8w

,3
c

9w
,2

c
10

w,
2c

11
w,

2c
12

w,
2c

13
w,

1c
14

w,
1c

15
w,

1c
16

w,
1c

17
w,

1c
18

w,
1c

19
w,

1c
20

w,
1c

21
w,

1c
22

w,
1c

23
w,

1c
24

w,
1c

pyspark config

200

400

600

800

1000

1200

1400

tim
e 

(s
)

(d) Facebook Network
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Figure 3.1: Real world networks calculation times with multiple different PySpark configuration. w: worker nodes;
c: cores.
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4.1 Algorithm

In the previous chapter we discussed some possibilities to try to reduce the computational effort, mostly

related to time, spent when calculating the SEB values for a given graph. This was attempted by trying

to divide the effort by multiple cores or by introducing preprocessing that could actively mitigate the

calculation time.

Another way to reduce the computation time is by computing an approximation instead of the exact

SEB values. This was done in [30] for unweighted networks. The authors took advantage of the relation

between SEB and the effective resistance concept [61]. Effective resistance, R(e), is calculated by

looking to a graph as an electrical circuit and is equal to the probability that the edge is present in a

random spanning tree of the graph [61,62], therefore R(e) = SEB(e). Effective resistance can be seen

as pairwise distances between vectors [30]. This allows us to use the Johnson-Lindenstraus Lemma

[63], as the pairwise distances are still preserved if we project the vectors into a lower-dimensional

space. From the above observations we can extract Algorithm 4.1, that was first proposed by Spielman

and Srivastava [64].

Algorithm 4.1: SEB approximations for unweighted networks.
1 begin
2 Z ←− [], L←− laplacianMatrix(G), B ←− IncidenceMatrix(G)
3 Q←− RandomProjectionMatrix(k,m)
4 Y = QB

5 for i=1 ... k do
6 Solve Lzi = Y [i, :]

7 Z = [Z; zTi ]

8 For every e=(u,v), return R(e) = ∥Z[u, :]− Z[v, :]∥22

By looking at Algorithm 4.1 it is possible to see that Q is the random projection matrix, and Y is

where the projection applies. It allows to lower the dimensional space, because if instead of this we do

Y = BB and k = m, there is no reduction in calculation cost. For the random projection matrix’s entries

it is possible to use either probability distribution mentioned in Theorem 2 from [65]. In this case the

second option was chosen.

Another fundamental property is the value of k, and it can be calculated using:

k0 =
4 + 2β

ϵ2/2− ϵ3/3
log(n) (4.1)

where β controls the probability of success and ϵ the accuracy in distance preservation, in other

words, the error parameter. We can now define k ≥ k0, where k is an integer.

It is now possible to assure that with probability at least 1− n−β , for all u, v ∈ E
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(1− ϵ)R(e) ≤ ER(e) ≤ (1 + ϵ)R(e) (4.2)

where ER(e) is the estimate of R(e).

It is important to remember that is not always worth to use the projection to a lower-dimensional

space, if the dimensional space is not lower after all, as it has to respect the formula present in equation

4.1. By looking at this equation it is possible to understand that k0 scales logarithmically with n, that is

the number of nodes of the graph. However the multiplicative constant part of the equation should not

always be disregarded. This part depends on both ϵ and β, and depending on the values chosen for

both variables the impact of this part will change accordingly. This can be called a threshold. Therefore,

if the value of k does not represent a lower-dimensional space, it is better, from a computation cost point

of view, to use Y = BB.

Moving on to line 6 in Algorithm 4.1, for a better understanding it is necessary to explain the notation

used. Y [i, :] represents the i-th row of matrix Y . Z = [Z, zTi ] represents the addition of column to

matrix Z. As stated in [30] the aim is to compute QBLP where LP is the pseudoinverse of L, but if

computed directly the computation cost is high, and does not offer any improvement over the exact

measure calculation. Therefore in line 6 an approximation for this value is computed by approximately

computing Lzi = Y [i, :]. The solver used for this operation is a Symmetric Diagonally Dominant matrix

(SDD) solver [66]. The result of this calculation is then stored in a placeholder matrix, Z. After this

procedure has been repeated for every line of Y , it is necessary to compute the L2
2 distance between

the vectors corresponding to nodes u and v, for every edge on the graph e = (u, v).

We should keep in mind that it is possible to optimize this algorithm space-wise by instead of gen-

erating an entire matrix Q, in each iteration of the cycle a 1 ×m vector, q, is generated accordingly to

the distribution previously mentioned. In the same manner it is also possible to store the results in a

placeholder 1×m vector, z, calculating the SEB value for each edge iteratively.

A SSD solver is used to solve equations of the form Lx = b where L is a laplacian matrix, so it is

symmetric, its off diagonals are non-positive, and all rows sum to 0, and b is in the span of the matrix.

The above method allows the calculation of the SEB values for an unweighted network. We can

use this method to calculate the SEB values for weighted networks, with little adaptations. By looking

at Algorithm 3.1 the necessary change is in line 13, where instead of calculating the exact measure,

the method above is used, for the approximated measure. As in Algorithm 3.1 the SEB values are also

calculated for each connected component and afterwards, each node inside each connected component

is contracted into a single node.

By looking into the explanation above it is possible to conclude that this algorithm scales logarithmi-

cally with the number of nodes and linearly with the number of edges. Because of the way k is calculated

it only makes sense to use the approximated version of the calculation when the number of edges, m,
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is high. Therefore if m is not high it is better to use Y = BB and k = m. In that case the complexity of

the approximated measure is O(m2 log n log 1
ϵ ). The naive method has a complexity of O(n3), or even

O(n2.5) if the theoretic limit is considered. So for the approximated method to compensate m2 has to be

inferior to n3(or n2.5) and that only happens if m = O(n), i.e., if the graph is sparse.

4.2 Results

As stated before, the primary reason for the introduction of an approximated measure is to reduce

the computational time. Theoretically the threshold for the approximation measure to be better than the

exact measure was stated before to be considerably high, as it increases with the accuracy of the results

and becomes more irrelevant the more nodes a network has. It is however important to have empirical

results. This results can be seen in Table 4.1, where there is a comparison between the time spent for

the calculation of the exact measure and for the approximated measure. The networks used are all real

world unweighted networks and some of theirs properties can be consulted in Table 3.1.

Table 4.1: Comparison of times between approximated and exact SEB values, time in seconds. ϵ = 0.01 and β = 1.

Network exact approximated

PowerGrid 7936 7069
Facebook 1502 1303
Dolphins 0.60 51

C.elegans 307 426
NetScience 78 259

Web 3696 33302

Before looking into Table 4.1 and the results it shows it is crucial to mention that for reasons of

integration into Python’s network libraries the entire implementation of the exact measure is done in the

programming language Python. On the other hand, for the approximate implementation, the SDD solver1

was only available in the Julia programming language, therefore the calculation of the SEB values for

each connected component is performed using Julia, that is known to be faster than Python, however

the rest of the algorithm is still done in Python. This difference obviously has an impact in the calculation

time, but in spite of that, conclusions can still be made.

By analyzing the results in Table 4.1 we can see that there are very different results from network to

network, i.e., there are networks where the time got significantly worse, there are networks where the

time got a little worse and then there are networks where the time improved. This calls for a deeper

analysis of the results, where it is taken into consideration the properties of the network. These proper-

ties can be seen in Table 3.1 where it is possible to observe for each network the number of nodes and

1https://github.com/danspielman/Laplacians.jl/blob/master/docs/src/usingSolvers.md
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edges, the clustering coefficient, the assortativity and finally the average degree.

For the Dolphins network, the increase in time is expected, because of the constant calculation time,

that is more noticeable in smaller networks, as stated before and as observed here, with the other

characteristics of the network not having much impact on the calculation time. The other network which

also shows a far worse result is the Web network. This network has a high number of nodes and edges,

but also a high clustering coefficient value. The threshold where it is better to approximate, for the

values used for ϵ and β, is quite high, so it is expected that the time spent would be worse than for the

exact calculation, and together with the high value for the clustering coefficient can justify the increase

in running time. Both networks show a nearly 10 times worse calculation time for the approximated

measure than for the exact measure, but for different reasons.

Moving on to the networks where the time got slightly worse, there are the C.elegans and NetScience

networks. Both networks are not big enough that it should compensate to use the approximated measure

and by looking at the running time it is possible to see that, indeed, it does not compensate. However,

the time does not get worse by the same factor as the case aforementioned. In this case there is a factor

of 1.5-3 in the time difference. It is expected that this time factor is inversely proportional to the size of

the networks, i.e., as the size gets bigger the factor tends to become smaller, as it gets closer to the

threshold where the approximated measure is more worth to use. It is also worth to point out that the

clustering coefficient for both networks is pretty high, which is another reason for the time to be so worst

when compared to the time from the exact SEB values calculation.

Finally, but not least, there were networks in which the time improved. This happened for the Power-

Grid and Facebook networks. These networks are both in the range of thousands of nodes and edges,

so it is possible to affirm that they have a considerable size. It is necessary to interpret this results

carefully. As mentioned before the calculation part of the approximated measure is done in the Julia pro-

gramming language, that is faster than Python, and that definitely contributes to have a lower calculation

time than if everything was done in Python, however if we are not over the threshold we are definitely

close to it, and it is lower than expected. This can be justified by the low clustering coefficient that both

networks have.

The networks used for these results are all unweighted, however the conclusion about the importance

of the clustering coefficient can be extended to weighted networks but for the giant connected component

formed with edges all with the same weight. This and the relative size of the giant component to the

rest of the network are two of the most important characteristics that contribute to lower the threshold

where it is worth to use the approximated measure. This can only be seen for networks with somewhat

homogeneous weights, so it is possible that a giant component exists, because otherwise if there is too

much heterogeneity in the weight values a giant component will never be formed. In this later case the

time would then increase linearly with the number of edges, but with the addition of the constant part,
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and this would never go beyond the threshold, making it always worth to use the exact measure. This

topic needs further investigation, and unfortunately there was not enough time for it now, but it is left as

a suggestion for future work.

45



46



5
Edge Percolation

Contents

5.1 Number of Connected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Size of the Giant Connected Component . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Diameter of the Giant Connected Component . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Median of Connected components’ size . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Average path length inside the giant connected component . . . . . . . . . . . . . . 59

5.6 Number of connected components and the giant’s connected component size . . . 61

5.7 Conclusions for each network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

47



48



For context is important to clarify two aspects related to percolation. In many backgrounds percola-

tion represents the addition of structures to a network, and reverse percolation the removal of structures.

In this work, specially in this chapter the word percolation is used to represent the removal of structures

from a network. The second aspect is that percolation is usually related to nodes, but in this work and

specially in this chapter, edges are the removed structures, as SEB provides a value of centrality for the

edges.

In this section edge percolation was performed on real world networks. It is important to recall the

networks’ characteristics, that can be seen in Table 3.1. The aim of this chapter is to compare SEB

to Edge Betweenness Centrality(EBC) when percolation is performed on a network based on the value

that both these centrality measures attribute to each edge.

In each plot there are 4 lines, where 2 represent SEB and the other 2 represent Edge Betweenness

Centrality. Out of those two lines for each measure, one represents the measure with recalculation after

removing an edge and the other represents the measure without recalculation between iterations. This

is interesting as it allows to draw conclusions if the recalculation can have an impact and if so which

metrics does it impact the most. Speaking of metrics, there are 5 metrics that were recorded. First is

the number of connected components; Second is the size of the giant connected component; Third is

the diameter of the giant connected component; Fourth is the median of the connected components’

size; Fifth is the giant’s connected component average path length. All of the plots mentioned before

have each metric represented in the yy axis and the percentage of edges removed on the xx axis. Last

but not least there is another plot that relates the number of connected components with the size of the

giant connected component. Each figure on this chapter contains the aforementioned plots grouped by

metric, therefore each subfigure contains the results for said metric for a specific network.

It is important to take into consideration each network’s characteristics for a better analysis of the

results, which can be done by consulting Table 3.1. The results for the NetScience network are repre-

sented in every (a) subfigure. This network is not particularly big, however its number of edges is almost

the triple of the number of nodes, which then leads to an high clustering coefficient. In every subfigure

(b) it is possible to see the results for the C.elegans network, which has a relevant size, with only a few

hundred nodes but a couple thousand edges, also with an high clustering coefficient, and the highest

average degree of all the networks, which is expected when there are 5 times more edges than nodes.

Now moving on to subfigures (c), they show the results for the Facebook network, which can be con-

sidered to have a relevant size, with almost three thousand nodes and edges, with a very low clustering

coefficient, and an average degree of 2, which is expected when the number of nodes is almost equal

to the number of edges. Subfigures (d) show the results for the Dolphins network. This network is very

small, with only around half a hundred nodes and one hundred and a half edges, also with a quite low

clustering coefficient, and an average degree of 5. In subfigures (e) are the results for the Web network.
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This network is the second largest used in this study, with over three thousand nodes and six and a half

thousand edges, also with a quite high clustering coefficient, and an average degree of 4.

5.1 Number of Connected Components

The first metric to be analyzed is the evolution of the number of connected components. This evolution,

for every network, can be seen in Figure 5.1.

By looking at Figure 5.1a it is possible to observe a clear difference between SEB and EBC, and even

between EBC with recalculation and EBC without recalculation. In the early stages of percolation, both

SEB variations have similar results in the number of connected components that each produces, but as

more nodes are removed, specially after around the 60% value, there starts to exist a slight difference

between these two metrics. Regarding both EBC variations, it is possible to see that at the start they are

quite similar, and then from around the 25% spot to the 75% spot a difference starts to emerge and then,

when reaching the end of this interval, they come back to be very similar again. It is also observable that

at the end, after about 90% of nodes have been removed, that SEB without recalculation and EBC with

recalculation produce the same amount of connected components.

Moving on to Figure 5.1b it is possible to see that there is a big gap between different centrality

measures. Both SEB variations are quite similar for the whole duration of the process and both have

a close to linear growth in the number of connected components they produce. In fact, also both EBC

variations are quite similar during the whole percolation process, but they generate a very few number of

connected components until around the 55% mark for EBC with recalculation and around 70% for EBC

without recalculation, but after this point both show a big growth until the end of the percolation.

By looking at Figure 5.1c, it is possible to see that there is no real difference between any of the

measures and neither the variations, as they all show a linear growth.

In Figure 5.1d is perceivable that SEB variations start quite similar and gradually diverge more and

more to the end of the percolation process. EBC variations are, however, similar for only a few iterations

at the very start, then proceed to diverge, to then switch places on which generates the lower number of

connected components until they converge, very close to the end.

By looking at Figure 5.1e it is possible to see that there is a big difference between both SEB vari-

ations in this metric, with them starting quite similarly and then quickly being very far apart to then

converge again very close to the end. Regarding EBC variants, they cannot be considered similar but

the gap is never as big as it is between SEB variants, however they are only similar very close to the end,

after the 90% mark. SEB with recalculation achieves higher values all the way through the percolation

process. SEB without recalculation almost always achieves higher values than both EBC variations.
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(a) NetScience network.
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(b) C.elegans network.
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(c) Facebook network.
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(d) Dolphins network.
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(e) Web network.

Figure 5.1: Evolution of the number of connected components with the removal of edges, for every real world
network studied.

It is curious to see that the most similar plots are the ones from NetScience and Dolphins networks,

even if these networks have very little in common. In fact, from the characteristics present in Table 3.1,
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the only one that are close is the assortativity and the number of edges being approximately two and a

half times the number of nodes, and in this case, that seems to be enough to produce similar results. In

every network except Facebook, there are noticeable differences between the centrality measures used,

but not so much between variations inside each centrality measure, which can indicate that there is no

great benefit from using the most computationally expensive variation(with recalculation).

5.2 Size of the Giant Connected Component

The second metric to be analyzed is the evolution of the size of the giant connected component. This

evolution, for every network, can be seen in Figure 5.2.

In Figure 5.2a there is also relevant differences between SEB and EBC and at some points also

between with and without recalculation inside the same centrality measure. Looking into both SEB

variations it is possible to perceive that they are pretty similar until the 20% point at which a big gap

emerges, where SEB with recalculation shows a lower size of the giant connected component, that

then gradually gets smaller until they back to being similar at about the 60% of nodes removed mark.

Now about EBC, it also starts quite similar until about the 5% mark where they split. The EBC with

recalculation variation continues the trend coming into this mark and keeps dropping the size of the

giant connected component until it stabilizes at the 10% mark with a size of 25 nodes, and EBC without

recalculation only catches up to this size value at around the 45% mark, from where both variations

are very similar until the end. In general EBC achieves a lower size for the giant connected component

than SEB throughout the whole process of percolation, however there is a small gap, where SEB with

recalculation shows a lower size for the giant connected component than EBC without recalculation, and

this happens from around the 15% mark up until the 40% mark.

At a first glance to Figure 5.2b it is possible to see that each measure behaves differently than each

other, and also that there is a big difference between variations of the EBC measure. It is possible to

see that both variations of the SEB measure start and stay quite similar all the way to the end. On the

other hand there is a very big difference between each variation of the EBC measure, that starts around

the 20% point. They show opposite behaviour from each other, as EBC with recalculation drops the size

of giant connected component quite a lot after this point, EBC without recalculation produces a close to

constant giant’s connected component size, only dropping the same as the other variant a lot later.

Figure 5.2c shows that both SEB variations still are an almost perfect match to each other, but the

same cannot be said to EBC variations, as they are different from one another almost the entire duration

of the process. SEB with recalculation starts by dropping the giant’s connected component size from

almost 3000 to around 750 nodes, whereas SEB without recalculation only drops the size by close to

half of that. EBC with recalculation then slowly decreases the value until the end of the process.
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Figure 5.2: Evolution of the size of the giant connected component with the removal of edges, for every real world
network studied.

Now moving on to Figure 5.2d it is possible to see the results for the evolution of the size of the

giant connected component. Once again, the similarity between both SEB variants is clearly higher than
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between EBC’s variants. In fact, both SEB variations start quite similar and stay like that for half of the

process, and then start to differ more and more by each iteration, quite similar to the previous plot. On

the other hand, EBC variations differ quite a lot throughout the whole process, only converging near the

end, at the 90% mark.

Looking into Figure 5.2e it is possible to see big differences between both centrality measures. Both

EBC variations are very quick to drop the size of the giant connected component, where SEB variations

are much slower, taking at least half of the process to reach the same values, where SEB without

recalculation has a huge drop at about 45% mark and SEB with recalculation has a more linear decrease

in the value it produces. It is also important to mention that EBC with recalculation is the variation that

produces the lower values, after the first iterations all the way to the end.

The results can be grouped into two groups: the one where both SEB variations produce the highest

values and the one where EBC without recalculation provides the highest values, obviously not for the

entirety of the process, but for the major part. Even though this similarities exist, they are only for relative

values, because the lines display different behaviours between different networks even if the relative

order is the same. There are bigger differences between variations for the EBC centrality measure than

for the SEB centrality measure.

5.3 Diameter of the Giant Connected Component

The third metric to be analyzed is the evolution of the diameter of the giant connected component. This

evolution, for every network, can be seen in Figure 5.3.

In Figure 5.3a it is possible to see that there is a big difference between both variations of EBC,

that starts right at the beginning and lasts almost all the way to the end. This plot is a good example

on the impact the recalculation or not of a measure after each iteration can have to a metric. In fact,

the impact is so substantial that EBC without recalculation results in the lowest giant’s connected com-

ponent diameter out of the 4 variants and EBC with recalculation shows the biggest giant’s connected

component diameter for close to 50% of the percolation process. For the SEB variations, they start quite

similar up until around the 20% mark, but after, there is always some difference between them, with SEB

with recalculation being the variation that shows lowest values for the diameter of the giant connected

component, inside the SEB centrality measure.

By looking at Figure 5.3b is perceivable that both variations of the SEB measure show similar results,

and both produce almost always lower diameter values than the EBC variations. Alternatively to that, it

is observable that EBC variants are not at all similar. EBC with recalculation shows a behaviour that is

more similar to both SEB variants, starting off with an average value and after half the edges have been

removed, gradually decreases until the end. On the other hand EBC without recalculation starts with an
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average value, which then increases after the 50% mark and then suddenly drops at around the 85%

point. There are a lot of spikes on this plot, that at a first glance may seem kinda odd, but they can be

explained by the change of the giant connected component, where after an iteration there is a change

on the connected component that has the biggest size, and therefore there is a sudden change in the

diameter value.

In Figure 5.3c there is no real difference between both SEB variations. On the other hand, EBC

variations are quite different throughout almost the entire percolation process. EBC with recalculation

quickly drops the diameter to 2, then stays constant for 99% of the process and then right at the end

drops to 0. EBC without recalculation goes through some ups and downs but never goes lower than the

other EBC variant.

Looking into Figure 5.3d, the SEB variations are quite similar for the majority of the process and EBC

variations not so much. As can be seen, EBC with recalculation produces the lower diameter values,

where on the other hand EBC without recalculation produces the higher diameter values out of the 4

variants. Both SEB variants and SEB with recalculation produce average to low diameter values, where

EBC without recalculation produces average to high diameter values, for the greater part of the process.

In Figure 5.3e, once again, both SEB variations are quite similar, producing very low values when

compared to EBC without recalculation, that produces the highest values by far. EBC with recalculation

produce values much closer to SEB, but shows a different behaviour, where it starts with a lot of spikes,

and then drops to a very low value and has some more spikes at the end. All the other variations show

little to no spikes.

From all the plot in Figure 5.3 it is possible to conclude that this metric produces relative behaviours

similar for all the networks. EBC without recalculation is always the measure who achieves the high-

est values. Both SEB variations are quite similar throughout the entire process, and finally, EBC with

recalculation always produces the lowest values for at least a considerable part of the process. It is

also arguable that, for at least EBC, recalculation has a big impact in the results obtained, however for

percolation purposes, the higher the diameter is the better, and if before there was a doubt regarding

the benefit/cost relationship of performing recalculation, for this metric there is absolutely no doubt, that

for every network used here, it is not worth to spend more computationally because the results achieved

are worst.
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(b) C.elegans network.
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(c) Facebook network.
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Figure 5.3: Evolution of the giant’s connected component diameter with the removal of edges, for every real world
network studied.
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5.4 Median of Connected components’ size

The fourth metric to be analyzed is the evolution of the median of the connected components’ size. This

evolution, for every network, can be seen in Figure 5.4.

By examining Figure 5.4a it is possible to see that there are no big differences between all variations.

However there are some worth pointing out. There is a sight difference between SEB and EBC results.

SEB starts at half the EBC value, then quickly drops to 1 and stays that way the entire process. EBC

starts at a higher value, as was just stated, then drops for a few iterations to the initial SEB value. So far

both iterations are very similar, however some differences start to emerge. They both show a curvature,

when dropping to the value 1, however EBC without recalculation reaches this value at the 15% mark,

but EBC with recalculation only reaches this value at the 35% mark.

In Figure 5.4b it is possible to see that there are no big differences between any of the 4 variations as

they all quickly go to 0 or very close to it in case of the EBC with recalculation variant. This shows that

for this network all variations very fast create a majority of single node connected components, contrary

to what was observed on the previous network.

By looking at Figure 5.4c it is possible to see that once again there is no real difference between any

of the 4 variations displayed, if not the one that can be seen in the very beginning of the process, where

it is possible to perceive that EBC variations take a little more iterations to get to the 1 value, where EBC

with recalculation is the slowest, then comes EBC without recalculation, and SEB variations are equally

quick to get to the 1 value.

In Figure 5.4d at first sight this plot might seem drastically different from the ones from the previous

networks. However, after a closer look it is possible to perceive that both SEB variations immediately

go to 1, and EBC variations take a little while longer to get there. Because this network is so small

compared to the previous ones it may look that it takes many iterations for EBC variations to get to 1, but

this may as well be the same value of iterations that took on the previous networks, but because they

were big, this number of iterations represent a much less percentage of the whole process.

The results in Figure 5.4e are pretty similar to the ones from Figure 5.4b and 5.4c, where both

centrality measures show some differences in the early stages, but then they are equal all the way to the

end. There is also no difference between variations inside each centrality measure. The only difference

between centrality measures is that EBC only converges to 1 at about the 5% mark.

The conclusions that can be drawn after analyzing the plots from Figure 5.4 are that there is no

big difference between networks for this metric. Also there is no big differences between with or without

recalculation, where in the previous metrics they were clear, and when both variations produce the same,

or very close, values it is never worth to use recalculation as it increases by a lot the computational cost.
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(b) C.elegans network.
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(c) Facebook network.
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(d) Dolphins network.
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Figure 5.4: Evolution of the median of the connected components’ size with the removal of edges, for the real world
networks studied.
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5.5 Average path length inside the giant connected component

The fifth and last metric to be analyzed is the evolution of the average path length inside the giant

connected component. This evolution, for every network, can be seen in Figure 5.5.

Figure 5.5a shows very similar results to Figure 5.3a. A big difference between both EBC variations

and a smaller between both SEB variations also exists here. Likewise in Figure 5.3a, also here EBC

with recalculation shows the lower average path length value, with EBC without recalculation showing the

highest value for almost half of the percolation process. In the same manner SEB without recalculation

also shows higher values than SEB without recalculation.

In Figure 5.5b as in the previous network there are similarities between Figure 5.3b and Figure 5.5b,

but in the latter the changes are not as sudden. Both SEB variants are quite similar throughout the

entire percolation process, starting at an average length and slowly going down. On the other hand,

there is a big difference between both EBC variations, where the one with recalculation trends in the

same direction as the SEB variations, and the one without recalculation also starts at an average length

value, but it instead of going down, starts to go up hitting the highest value at around the 85% mark and

then going down, catching up with the rest of the variants.

Figure 5.5c can once again be compared to Figure 5.3c, where both SEB variations are a perfect

match for almost the entirety of the percolation process, and alternatively to that, the EBC variations

barely match throughout the process, with EBC without recalculation producing the lowest values of all

the variants and EBC with recalculation has some ups and downs until almost the end where it catches

back up with every other variation.

Looking into Figure 5.5d it is possible to see that both SEB variations start quite similar and as the

percolation process occurs they start to grow apart. Both variations produce intermediate values. For the

EBC variations they are, again, very different from each other, where EBC with recalculation achieves

the lowest values and EBC without recalculation produces the highest values. After the 80% mark, SEB

without recalculation does take this later spot and produces the highest values, until the end.

Figure 5.5e can also be compared to Figure 5.3e because both show very similar behaviour. Once

again both SEB variations stay similar throughout the whole process and produce results in the middle

of EBC variations. On the other hand, EBC variations are not similar at all, with EBC with recalculation

producing the lowest values and EBC without recalculation producing the highest values. In fact, there is

a time during the process where EBC without recalculation produces values that are at least four times

bigger than the maximum values produced by all the other measures. This happens from the 50% mark

up until the 90% mark.
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(b) C.elegans network.
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(c) Facebook network.
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(d) Dolphins network.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of edges removed

0

5

10

15

20

av
er

ag
e 

pa
th

 le
ng

th
 o

f G
CC

SEB no recalculation
EBC no recalculation
SEB recalculation
EBC recalculation
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Figure 5.5: Evolution of the average path length inside the giant connected component with the removal of edges,
for the real world networks studied.

To conclude, this metric shows very similar results to the diameter, in Figure 5.3. There is no much

impact using recalculation for the SEB centrality measure, as the results produced are similarly enough
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to not be worth the extra cost of applying recalculation between every iteration. Contrary to that, EBC

variations show a big difference between themselves. However, for this metric, from a percolation stand-

point a better result is the one that produces higher values, and EBC without recalculation is the one that

achieves that from the two variations, so it is possible to say that, without a doubt, EBC with recalcula-

tion is not worth its cost. The results are similar, when looking at the relative values, to all the networks,

except for Facebook.

5.6 Number of connected components and the giant’s connected

component size

In Figure 5.6a there is a substantial difference between SEB variations and EBC variations. For the SEB

variations they start identical, and stay like so until there are 100 connected components, after which

SEB recalculation suddenly decreases by a lot the giant’s connected component size while SEB without

recalculation only does this about 50 connected components after. They then stay quite similar all the

way to the end. For the EBC variations stay similar for the initial and final part of the percolation process,

but the key difference to the SEB variations is that they require the formation of much less connected

components to effectively break the giant connected component.

In Figure 5.6b is possible to perceive that both SEB variations are almost perfectly linear, where EBC

variations are not and are also very different from one another. EBC with recalculation drops the size

of the giant connected component a lot with the formation of only a few connected components and

after this big drop it goes very slowly down all the way to the end, where EBC without recalculation is

slower to achieve the same giant’s connected component size, and only gets there halfway through the

percolation process.

As in Figure 5.6c the evolution of the number of connected components is linear, this figure is basi-

cally the same as Figure 5.2c. EBC variations produce less connected components while lowering the

giant’s connected component size, and inside the EBC measure, the EBC with recalculation variant is

the one that achieves the lower value for the size of the giant connected component.

In Figure 5.6d both SEB variants are pretty similar from start to end of the process, but not only

that, also EBC without recalculation starts very similarly to both SEB variations, until the moment that

it achieves a lower giant’s connected component size, while creating a lower number of connected

components. As always, EBC with recalculation stands out by achieving the lowest size for the giant

connected component while also creating the fewest connected components.
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(b) C.elegans network.
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(c) Facebook network.

0 10 20 30 40 50 60
number of connected components

0

10

20

30

40

50

60
gi

an
t c

om
po

ne
nt

's 
siz

e
SEB no recalculation
EBC no recalculation
SEB recalculation
EBC recalculation

(d) Dolphins network.
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Figure 5.6: Relation between the evolution of the number of connected components with the evolution of the giant’s
connected component size, for all the real world networks studied.

Figure 5.6e shows interesting results. Starting by the EBC variations, they are quite similar for the

whole process. After only a few connected components were formed, the size of the giant connected
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component is already very low, with there being a small difference between variations in the early stages

of the process, but they quickly disappear and then they stay close to equal for the rest of the process.

SEB variations start equal, and need more connected components to decrease the size of the giant

connected component, however around the 750 connected components point, SEB without recalculation

drops the size of the giant connected component by a lot, equalling the values from EBC variations. On

the other hand, SEB with recalculation decreases the size of the giant connected component in a slower

way, while creating more connected components than all the other variations

To conclude, it is possible to see a pattern in every plot from Figure 5.6. SEB variations always pro-

duce an higher value for the number of connected components for the same size of the giant connected

component value. SEB variations are also quite similar throughout the whole process for all the net-

works, except for Web. EBC variations always produce lower values for the size of the giant connected

component for the same number of connected components. Even though variations are also quite simi-

lar, there is a bigger difference between EBC variations than SEB variations, except again for Web. EBC

with recalculation always achieves the lowest values, even for Web.

5.7 Conclusions for each network

From all the plots in subfigures (a) and the analysis made above, conclusions can be draw, regarding the

differences between centrality measures and even between variations inside the same measure, for the

NetScience network. It is possible to state that there are differences between both centrality measures,

where SEB originates a bigger number of connected components but it is not that effective at breaking

the giant connected component, and on the other hand, EBC does not generate as much connected

components as quickly as SEB but it does break the giant connected component much faster, specially

on the recalculation variation. It is also possible to see the impact of recalculation or not of a measure,

specially in the metrics within the giant connected component, however it is important to have in mind

the cost/benefit relationship to decide if it is worth or not to recalculate between each iteration, which

can be worth for some metrics but not for some others.

To conclude, by looking at all the plots from subfigures (b), it is possible once again to point out

differences between both measures, because also in this C.elegans network SEB variations are better

at creating more connected components, however EBC variations form less connected components

while more effectively lowering the giant’s connected component size(Figure 5.6b) but only the most

computationally expensive EBC variation achieves a lower giant’s connected component size for the

same number of edges removed as the SEB variations(Figure 5.2b), and only after the 25% mark. Also

for this network EBC variations achieves higher values for metrics taken inside the giant connected

component. As before, there is a bigger difference between variants in the EBC measure than in the
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SEB measure.

The Facebook network can be fit into the scale-free network’s type, as it has a few very high degree

nodes and the majority are low degree nodes, which can be seen in the very high negative assortativity

value. Based on the plots from subfigures (c), it is possible to conclude that there is basically no differ-

ence between EBC and SEB regarding the creation of connected components, however there is a big

difference regarding the giant’s connected component size, with EBC measure being better at breaking

it down. For the metrics inside the giant connected component there are differences to the previous net-

works. For the diameter one variation of EBC produces higher values for the bigger part of the process

and the other produces lower values for the entire process. The variation that produces the lower values

is EBC with recalculation, that is also the more expensive to calculate, out of the two. For the average

path length both SEB variations produce an higher value for most part of the process than both EBC

variations.

When applying percolation to such a small network, like Dolphins is, weird and unexpected be-

haviours could occur, since every little aspect has more impact than when in a bigger network. With that

being said and comparing the plots from subfigures (d) and comparing them to the previous networks,

it is possible to say that the results are quite similar to the bigger networks, namely the NetScience

network. Once again there are key differences between SEB and EBC, where SEB is better at dis-

integrating the network into multiple connected components and EBC is better at breaking the giant

connected component apart. Also as before, there is a big impact, specially in the metrics inside the

giant connected component, between recalculation or not of a measure between every iteration. There

is no big difference between both SEB variants in any of the plots, however the same cannot be said for

the EBC variants, where there is a big difference in the results produced. It is important to be careful

and not jump into decisions about which variant to use without considering the cost/benefit relationship

between each choice, because a variant can produce better results, but be much more expensive to

calculate, and therefore it is not viable to use such variant.

For the Web network, whose results can be seen in subfigures (e) there is also a considerable

difference between both centrality measures, specially for the metrics outside of the giant connected

component. For the metrics inside the giant connected component, EBC with recalculation produces

results closer to the SEB centrality measure, similarly to the C.elegans network. The difference between

using or not recalculation for each centrality measure is more impactful for the EBC centrality measure,

since the differences are much more noticeable, than for the SEB variations. In fact, EBC with recalcu-

lation does not produce good results, certainly not better than EBC without recalculation, so the extra

computational cost is not worth, for this specific network. The same logic can be extended to the SEB

centrality measure, because if both variants produce similar values, for most metrics, it is not worth to

choose the most computationally expensive.
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This work focused on Spanning Edge Betweenness, a centrality measure related to edges. Firstly

some concepts were introduced to better understand this field of study. We then proposed an imple-

mentation using Python. Also, an attempt to lower the computational time was conducted, as SEB can

become quite expensive to calculate, especially for bigger networks. This attempt consists in taking

advantage of the calculation being highly parallelizable or applying preprocessing in a way that would

lower the calculation complexity. This attempt led to interesting results, which showed that it is possible

to achieve lower calculation times if the right choices are taken, heavily dependent on the network’s

characteristics.

Another possibility of lowering the computational cost was thought to be by calculating the approx-

imate measure and not the exact measure. This alternative showed to have a high threshold of when

it does actually compensate regarding the computational cost. However, there are networks present in

this work, which are not that big, where it compensates to use the approximate measure.

Finally, percolation was performed for unweighted networks. The results originated by Spanning

Edge Betweenness are compared to those from Edge Betweenness Centrality. There are clear dif-

ferences between the two centrality measures, as expected since they rely on different attributes and

characteristics to assign each edge its value. It was also studied the impact of recalculating these values

for both measures after each edge removal. The results show, for most metrics, a considerable differ-

ence between applying or not recalculation, especially for Edge Betweenness Centrality. If the difference

makes up for the increase in calculation cost depends on the usage of such values.

6.1 Future Work

It is always possible to go deeper in every study. This one is no exception. Regarding Spanning Edge

Betweenness implementation, there may be more options available to parallelize the implementation that

were not taken into consideration. It is also possible that anytime after this work is published, some other

option is created, which may achieve better results. The same goes for the preprocessing applied, where

new and better ways may become available to use. It is also possible that some different preprocessing

methods may be applied, either exclusively or together with the one already done.

For the weighted approximation, it is necessary a deeper analysis of the proposed implementation,

where bigger and more networks are used for this purpose. It is also important to study generated net-

works and try to find relations between the calculation time and the characteristics of such networks. It

is also possible to implement the full algorithm using the Julia programming language, which is expected

to be much faster than the Python programming language, achieving better empirical results, even if the

theoretical complexity stays the same.

For percolation, it would be interesting to include more edge-related measures in these types of
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studies. However, these centrality measures are unavailable in network-related packages, making it

almost impossible to integrate them. Hopefully, in the future, they do become available, and studies

like this can include them. It is also important to extend these studies to weighted networks. However,

to use Spanning Edge Betweenness in these studies, it first needs to be studied the different possible

meanings of the different values that can be assigned to an edge, and taken into consideration when

performing such studies.
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