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Abstract

Artificial intelligence (AI), namely its sub-fields machine learning and deep learning, have demonstrated im-
pressive outcomes in a variety of scientific research domains, such as medicine, security, and finance. However,
complex AI systems, despite demonstrating great results and accuracy performances, are seen as black-boxes that
suffer from lack of explainability. Therefore, as AI systems continue to grow, it becomes important for humans to
understand how each black-box arrived to a certain result. This way, the field of eXplainable artificial intelligence
(XAI) arose from the necessity of solving the black-box problem. XAI field has been growing fast, but in different
directions, revealing the difficulty the scientific community faces to agree on common definitions and evaluation
criteria, which are often formulated in a subjective manner. To overcome this gap in research, the present disserta-
tion proposes a benchmark framework for XAI methods, which is designed based on a methodological systematic
literature review in order to derive objective and measurable performance indicators in a comprehensive and
consensual manner. This framework is then applied to compare 9 well-known or promising XAI methods con-
sidering a tabular dataset from the medicine domain (heart disease prediction). This benchmark study showed
the relevancy of the CIU method, which covers to a better extent the 10 selected properties of explainability,
when compared to other methods. Moreover, the proposed framework contributes to the settlement of common
formalism and taxonomy, which promotes the uniformity that is lacking in the XAI field.

Keywords: eXplainable Artificial Intelligence, Machine Learning, Trustworthy Artificial Intelligence, Black-
boxes, Evaluation Criteria, Benchmark Framework

1. Introduction
Artificial intelligence (AI) and machine learning (ML)
have demonstrated impressive outcomes in a variety of
scientific research domains, especially with the emer-
gence of deep learning (DL) [1]. Simple models like a
linear regression or a decision tree show a clear relation-
ship between input data and model output, being seen
as white-box models. Complex models like deep neural
networks usually outperform the previous ones, showing
significantly higher performance in terms of model accu-
racy [2]. However, these are considered black-box mod-
els, as they suffer from a lack of explainability, meaning
they lack interpretable tools for humans to understand
the model working logic and outputs [3]. This is a huge
barrier for their application in real world systems.

Explainable artificial intelligence (XAI) is an emer-
gent field that refers to methods and techniques in AI
application which focuses on solving the lack of explain-
ability present in black-boxes. It implements several
approaches to better understand a system’s underlying
mechanisms and outputs. Many governmental, non gov-
ernmental and standards organizations have launched
initiatives to establish ethical principles for the devel-
opment of AI. In the EU, this step was taken by the
High-Level Expert Group on Artificial Intelligence (AI
HLEG), who wrote and published ”Ethics Guidelines
for Trustworthy AI” [4]. This document lists several
ethical principles and requirements that should be ad-
hered when developing, deploying and using AI systems.
Although explainability is included in the transparency
requirement, most of the mentioned trustworthy AI re-
quirements guides directly the XAI approach as a cru-

cial component to consider and include in AI systems.
The authors state that “for a system to be trustworthy,
we must be able to understand why it behaved a certain
way and why it provided a given interpretation”.

A large number of different XAI methods have been
proposed in the literature. Accordingly, the research
activity in this field has been growing very fast, but
in different directions, demonstrating a lack of common
formalism to define XAI related concepts and identify
the essential properties scholars should consider when
developing or choosing methods for explainability. It is
crucial that XAI methods themselves are understand-
able and easily accessible for end-users, and, most im-
portantly, non-experts [5, 6]. The task of evaluating
the explainability of a model is not simple, as there is
no accessible ground truth explanation and therefore
no direct way of evaluating and comparing different ex-
planations. This task becomes even more challenging
due to the lack of consensus among the research com-
munity on the definition of the term explainability and
other related concepts [7, 8]. In this sense, there is the
need to build a comprehensive and consensual bench-
mark framework for XAI methods that can integrate
ML workflows and allow for their comparison and, ul-
timately, selection of the most appropriate method(s).
This is the main goal of the present work.

2. Literature Review

2.1. XAI: What, Why, and Where?
The term XAI was introduced by DARPA (Defence Ad-
vanced Research Project Agency), as a research pro-
gram that focuses in producing more explainable mod-
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els, while maintaining a high level of learning perfor-
mance (prediction accuracy) and consequently enabling
their understanding by human users so that they can
gain trust and effectively manage the emerging of AI
[9]. Bibal et al. [10] stated that XAI should cover four
levels: “(i) providing the main features used to make a
decision, (ii) providing all the processed features, (iii)
providing a comprehensive explanation of the decision
and (iv) providing an understandable representation of
the whole model”.

Figure 1 shows the need for XAI in a wrap, listing four
main reasons for why explanations are needed [5]. Jus-
tification is one key reason for XAI, as it allows the user
to understand why (and why not) a certain output was
given (or not), especially when unexpected decisions are
made. Control is important, as having a greater un-
derstanding about a system behavior helps to rapidly
identify when the system might fail and correct errors,
which leads to the next reason for XAI: the need to con-
tinuously improve the AI system. The more explainable
and understandable a model is, the easier it is to cor-
rect it and improve it. Finally, explanations can aid in
the discover of new (hidden) insights. The same Figure
presents application domains for AI systems that repre-
sent potential domains where there is a need for research
activity on explainable models. XAI approaches are
particularly relevant in areas of social impact, such as
medicine and healthcare, criminal justice (legal domain)
and autonomous vehicles (transportation domain).

Besides being considered in line with the specific ap-
plication, the development of models and methods in
XAI should also consider and be assessed by different
groups of stakeholders. These groups are: the devel-
opers, who should implement and apply XAI methods,
the deployers (e.g., a hospital), who should ensure that
the systems they use meet the trustworthy AI require-
ments, and the end-user (e.g., a doctor or a patient)
and broader society, who should be informed. Conclud-
ing, the XAI stakeholders includes everyone who “either
want a model to be “explainable,” will consume the
model explanation, or are affected by decisions made
based on model output” [11]. This is line with the idea
that, beyond improving model understandability as a
goal in itself, it is necessary to integrate the deployers
and end-users (specially domain experts) in the design
of explainability strategies. Otherwise, machine learn-
ing is unlikely to become a part of real-word applica-
tions, such as clinical and healthcare practice [12].

After carefully analyzing the SoTa literature, it be-
came clear that, despite its fast emerging, XAI is still
not a well-established field, demonstrating a lack of
common formalism and taxonomy. Scientific research
around XAI has produced different definitions of ex-
plainability and has identified various concepts related
to it that most often overlap with each other, namely in-
terpretability, transparency, intelligibility, comprehensi-
bility and understandability. Therefore, the first chal-
lenge arising from the rapid growth of the research activ-
ity in XAI is the establishment of a common formalism
to define XAI related concepts. Scholars should work on
an agreement regarding what explainability is, so that
the research around this subject becomes clearer and
organized. That being said, this section provides suc-

cinct, unambiguous, and non-overlapping definitions, in
the XAI context, of transparency, interpretability, and
explainability, which are related to the ability to ob-
serve the processes that lead to the decision making of
a model [2]:

• Transparency: A model is considered to be trans-
parent if its decision making is by itself understand-
able [13], meaning a user can see and understand
the mathematical mechanisms that map inputs to
outputs [14]. This applies to white-box models,
such as linear regression. Black-box models are the
opposite, being seen as opaque systems.

• Interpretability: A model is considered inter-
pretable if it is described in a way that can be fur-
ther explained. The more interpretable the model,
the deeper the extent to which cause-effect rela-
tionships can be observed within a system [2].

• Explainability: A model is considered explain-
able if it enables the achievement of a deep under-
standing in terms of the internal procedures that
take place while the model is training or making
decisions [2].

The concepts above are introduced here as similar,
yet distinct concepts. Transparency is about being able
to automatically understand the decision making of an
AI system; interpretability is about being able to dis-
cern the internal mechanics without necessarily know-
ing why; explainability is being able to explain what is
happening, i.e., the system’s reasoning [14].

2.2. XAI: How?
Here, focus is given to how XAI methods and techniques
are being proposed and used by researchers, i.e., how
XAI is being deployed.

The complexity of a ML model is directly related to
its interpretability and explainability. Generally, the
more complex the model, the more difficult it is to inter-
pret and explain [5]. This is related to the accuracy vs.
explainability trade-off, which has led to the establish-
ment of two explainability strategies: intrinsic and post-
hoc methods. Intrinsic methods correspond to explain-
able by design methods, where explainability is directly
achieved through constraints imposed on the model dur-
ing training (white-box models are intrinsically explain-
able). Post-hoc methods are used to provide black-
box explanations after model training [13, 15], therefore
avoiding the explainability vs. accuracy trade-off. The
latter strategy is the focus of the second stage of this
systematic review and, from the SoTa surveys, a total
of 131 post-hoc XAI methods published were identified,
this allowing a depth analysis of the main trends regard-
ing their approaches and characteristics.

Regarding the scope of explainability, there seems to
be a preference among scholars for local explanations,
focusing on single predictions. Nevertheless, methods
that can provide both local and global (explaining the
entire model behavior) perspectives are ideal. Regard-
ing the portability of explainability, methods that can
be applied to all types of black-boxes are preferred, as
these agnostic approaches “provide crucial flexibility in
the choice of models, explanations, and representations,
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Figure 1: The need for XAI. This figure was adapted from [9] and [5].

improving debugging, comparison, and interfaces for a
variety of users and models” [16]. However, model-
specific methods are more common, which is associated
with the fact that images are the most widely used data
type. The three input data types mostly recognized
in the literature are tabular (regression or classifica-
tion problems), images, and text. For these, different
types of explanations can be given as an output. In the
present work, focus will be given to tabular data, where
3 types of explanations are typically provided [17, 13]:

• Feature Summary (FS) explanations provide sum-
mary values for each feature, usually together with
a visualization plot. These values can be a single
number per feature (most common), such as fea-
ture contribution, a simpler one, like a model pre-
diction, or a more complex one, like a number for
each feature pair, representing their pairwise fea-
ture interaction strength.

• Explanations can be presented as Rules, which are
a set of conditions that an instance must satisfy
in order to meet the rule’s decision. This type of
explanations is popular due to their logic structure.

• Some methods return Data points (already existent
or newly created). These can be prototypes, which
are examples that characterize the predicted out-
come, or counterfactuals, which are examples sim-
ilar to the input data instance, that are found by
making the smallest change to some feature values
that changes the prediction to a predefined (rele-
vant) output.

2.3. XAI: Evaluation
Recently, with a large number of XAI methods avail-
able, the subject of publications around XAI has shifted
towards categorization and discussion articles, as a con-
sequence of the need for organization in this area of
scientific research. In particular, there has been an in-
creasing research in the evaluation and comparison of
XAI methods, which can be effectively performed if the
relevant properties all the methods are meant to cover
are correctly identified.

There are two main ways of evaluating XAI systems:
objective evaluations (i.e., without user-study), usually
using quantitative measures, and human-centered eval-
uations, involving user-studies with either domain ex-
perts or lay persons [8]. According to [18], objective
evaluations are lacking, stating that there is missing in

the literature “a standard procedure to measure, quan-
tify, and compare the explainability of enhancing ap-
proaches that allows scientists to compare these dif-
ferent approaches”. This does not mean that human-
centered evaluations should not be considered, in fact,
they can be an additional and integrated evaluation ap-
proach [19].

From the SoTa analysis, 60 XAI evaluation properties
were identified. Having this number of proposed prop-
erties in the literature raises a big misunderstanding re-
garding this topic. From its analysis, it became visible
the lack of a systematic organization of the properties
devoted to XAI evaluation, and the lack of quantifiable
and objective metrics. Concluding, it is important to
define a set of evaluation criteria that allows researchers
to benchmark and select the best method to use (con-
sidering different contexts and target groups). There
is the need to build a comprehensive and consensual
benchmark framework for XAI methods that can inte-
grate ML workflows and pipelines, which is the main
goal of this thesis.

3. Framework Implementation
In this section, property selection is completed, present-
ing an aggregated view of what to evaluate by arriving
to 10 concrete properties on explanation quality and val-
idation. This selection was achieved by reviewing all the
properties found in the literature, and ”merging” them
together in a non-overlapping, clear and consensual way.
Each property is succinctly described in each of the sub-
sections, where both quantitative and qualitative met-
rics are suggested. It is important to underline that
only objective measures (i.e. without user-studies) are
used here, which have been mentioned among the XAI
community as important to adopt and not sufficiently
studied [20, 15]. Although the proposed framework is
application-agnostic (in terms of application domains),
some metrics depend on the type of method or data.
For that reason, Table 1 formalizes the metrics specifi-
cally for tabular data, which, when necessary, can be ac-
cordingly adapted to other data types. The first column
refers to the property, the second column introduces the
metric (Q - qualitative, q - quantitative), and the third
does the respective metric formalization (when a metric
is specific for a type of method, it is stated in italic).
The code developed in R to implement the quantitative
metrics is available as opensource on Github and ready
to be used for tabular datasets and both classification
and regression problems - see file ”Benchmark.R”. All
metrics, whether qualitative or quantitative, should be

3

https://github.com/DCanha/XAI_BenchFramework


accompanied by careful and relevant discussion. It is
notable that FS methods are more easily compared, as
these provide attribution values for each feature.

3.1. Representativeness
This property assesses the extent to which the gener-
ated explanation addresses the entire model behavior
considering its scope and portability. The former indi-
cates if the method aims at explaining the entire model
behavior (global explanation) or a single prediction (lo-
cal explanation) [5], while the latter indicates the level
of dependency from the black-box model f , i.e., the
extent to which the explanation relies on looking into
the internal dynamic of the model, such as the model’s
parameters [21, 22]. The portability of a method can
also be assessed by considering if it needs access to the
training data to compute an (new) explanation. Fur-
thermore, the applicability of the method, is also used
here has a metric to evaluate representativeness, but
in terms of type of input data the explanation can be
applied to. A design choice needs to be made by devel-
opers regarding the representativeness of the method
by selecting an explanation type suited for a specific
context. For this reason, this property is only evaluated
qualitatively [22]. The metrics presented can be directly
formalized to compare and categorize any type of XAI
method.

3.2. Structure & Speed
The structure property assesses the composition of the
explanation, considering it should be presented in a
way that increases its clarity to the user [22]. Four
qualitative evaluation metrics are suggested: expressive
power, graphical integrity, morphological clarity, and
layer separation [21, 19]. The first can be used to assess
and make a comparison between different methods, as
some representation formats are usually considered to
be more easily understandable than others [22]. For ex-
ample, rules and counterfactuals, by providing a logic
structure, are often seen as more suitable for the lay
end-user [13]. Another preferred format is textual ex-
planations [23]. Morphological clarity and layer separa-
tion are particularly relevant to consider when dealing
with image data. Speed of the explanation is also in-
cluded together with this property, as it concerns how
much time the explanation takes to be generated, bear-
ing in mind that this should be fast enough to be em-
ployable in real-world applications [7]. A good struc-
ture leads to user efficiency and good understandability
of the method. A fast method leads to computational
efficiency and practical usability of the method.

3.3. Selectivity
This property assesses the size of the explanation, bear-
ing in mind the human cognitive capacity limitations.
It is a common view among scholars that XAI methods
should be able to provide selective explanations, mak-
ing the explanation very short, even if the world is more
complex [19, 17]. The selectivity of a method is often
evaluated by directly measuring the explanation (abso-
lute or relative) size [22]. This metric depends on both
the type of explanation (expressive power) and on the
type of data. A qualitative metric should be added,
which consists in assessing whether XAI methods have

a parameter to tune the explanation size. This is rele-
vant because the end-user can be an expert or a lay-user
who may want access to the complete set of reasons for
a particular decision or just part of it.

3.4. Contrastivity
Contrastivity studies the discriminativeness of an ex-
planation in relation to a ground-truth event or target,
aiming to facilitate comparisons between them [22]. Hu-
mans tend to think in counterfactual cases, i.e. ”How
would the prediction have been if input X had been dif-
ferent?” [5, 17]. In this sense, explanations that present
some contrast between the instance to explain and a
point of reference are preferable. A way of present-
ing contrastive explanations is to use a standard ref-
erence point. Methods that present counterfactuals ex-
planations are gaining a lot of attention because they
are contrastive to the current instance [8], being this
the predefined reference point. Another way is to com-
pare to a predefined output, like the average prediction.
In this sense, a qualitative metric should be included,
which consists in assessing whether the generated ex-
planation provides some contrastivity, considering the
mentioned criteria. Nauta et al. [22] suggest using a
quantitative metric, Target Sensitivity, which assesses
the contrastivity relative to another class, bearing in
mind that class-specific features highlighted by an ex-
planation should differ between classes. This is par-
ticularly relevant when an adversarial attack happens,
which fools the underlying model f such that it makes
a different prediction for a slightly perturbed input. In
that case, a different prediction should also lead to a dif-
ferent explanation. Nauta et al. [22] reported that Tar-
get Sensitivty metric has only been used for heatmaps.
Here, it is extended for tabular data, particularly for
classification problems. For FS methods, the distance
between explanations before and after (the ”new” in
Table 1) the adversarial attack can be computed.

3.5. Interactivity
Interactivity assesses if the explanation is displayed in
an interactive form, bearing in mind the user social
context [23, 18]. This property is linked to the idea
that explanations are social. They should be seen as a
conversation between the explainer (XAI system) and
the explainee (end-user), ”implying that the explainer
must be able to leverage the mental model of the ex-
plainee while engaging in the explanation process” [5].
This property is application-dependent, and the way to
build meaningful and controllable explanations should
be discussed and agreed between the AI developer and
the AI deployer, where the final goal is the creation of
an interactive tool with the specific XAI method and
dataset. If possible, it is helpful to include experts from
the humanities (e.g., psychologists, sociologists, and an-
thropologists) [17]. The majority of the methods does
not provide any interactive (demo) tool. Firstly, it is
important to assess whether the XAI method provides
any possibility of interaction, and how favorable it is for
its creation.

3.6. Fidelity
Fidelity assesses if the explanation is created by a sur-
rogate model or system g or if any linearity assumptions
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Table 1: 10 selected properties for evaluation/benchmark of XAI methods and respective metrics formalization for tabular data.

regarding the underlying model f are made. It is impor-
tant to consider this property because methods that use
a surrogate model, just by using it, are decreasing the
fidelity, and therefore degrading the accuracy of the ex-
planation provided [5]. When this happens, the extent
to which g can accurately cover the black-box decisions
should be evaluated [6, 13]. High fidelity is one of the
most desired properties of an explanation because an
explanation with low fidelity is not in agreement with
the original predictive model, and therefore it becomes
useless [21]. Surrogate Agreement (SA) and Preserva-
tion Check (PC) metrics in Table 1 are the suggested
quantitative metrics to directly evaluate fidelity. This
is a validation property that is crucial for AI develop-
ers to consider when employing an XAI method in their
model design.

3.7. Faithfulness
This property assesses the capacity of an XAI method to
faithfully represent the black-box behaviour (globally or
locally), i.e., to reliably describe the underlying decision
structure of the analyzed model [24]. It is important to
emphasize that fidelity and faithfulness are not the same
although sometimes presented as such; a developer can
always build another model that gives the same predic-
tions as the original one for all instances (high fidelity)
but has arbitrarily manipulated explanation maps (low
faithfulness) [22]. Therefore, both properties should be
evaluated separately. Faithfulness can be evaluated re-
garding different model tasks. Two used metrics are
Incremental Deletion (ID) and RemOve And Retrain
(ROAR) - see Table 1. Note that these metrics can actu-
ally be seen as XAI methods themselves, using a similar
idea to permutation feature importance methods: mea-

sure ”the increase in the prediction error of the model
after we permuted the feature’s values, which breaks the
relationship between the feature and the true outcome”
[17]. In this sense, this analysis should be taken care-
fully. Another way to evaluate the faithfulness of a XAI
method is training a white-box model as the black-box
model - White-Box Check (WBC). This way, the expla-
nation can be compared with the true reasoning of the
predictive model to evaluate how similar they are [22].

3.8. Truthfulness
Truthfulness assesses whether the explanation is in con-
cordance with the user’s true world. This includes being
accordant with prior relevant domain knowledge and be-
liefs of the explainee [22], but also being able to detect
models with bias [25] and discover new insights. Here,
two objective metrics are suggested: Methods Agree-
ment and Models Agreement. By comparing methods
and evaluating how consistent they are and how similar
their results are, it is possible to create a measurement
of confidence regarding their use. Furthermore, com-
bining various techniques can provide more additional
insights [25]. By comparing different models, it is possi-
ble to understand how they differ from each other, even
when they offer similar performance measures, probably
because their outputs are based on different features and
relations extracted from the same data. This is useful
to reveal the capacity of an XAI method to detect bias
or missed relationships and discover insights about the
black-box model [25]. Note that an explanation that
looks reasonable to a user is not guaranteed to also be
correctly reflecting the behaviour of the model. An ex-
planation that is true in reality, may not be true to the
model (unfaithful), and vice-versa [17].
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3.9. Stability

Stability assesses how stable and consistent the method
is. Identical data instances must produce identical ex-
planations [26]. Similar data instances (input samples
with the same label and slightly different feature) must
produce similar explanations [21]. These axioms to-
gether ensure the coherency of explanations [18]. If this
does not happen, then the XAI method is unstable,
which can be the result of a high variance associated
with non-deterministic components [7]. A determin-
istic method will give the same explanation given the
same instance. Conversely, a non-deterministic method
may give different explanations for the same instance.
For example, random perturbation and feature selection
methods used by some XAI methods may result in un-
stable generated interpretations. Consequently, differ-
ent explanations can be generated for identical data in-
stances, which is problematic for deployment [24]. Sev-
eral metrics have been proposed to evaluate stability,
particularly to measure the similarity between neigh-
bouring input samples. The selected metric usually
depends on the type of explanation and/or data in-
put. Here, feature-variability (shapash python library)
is suggested.

3.10. (Un)Certainty

Besides explanations, providing prediction uncertainty
regarding both the black-box model and the XAI
method has been identified as an important factor for
both developers, deployers and end-users [27]. On a first
level, the explanations should reflect the certainty of the
machine learning model. On a second level, and most
importantly, the explanations should reflect their own
certainty. Not only the ML itself, but also its expla-
nations, are computed from data and, hence, are sub-
ject to uncertainty [8, 15]. Moreover, it is important
to consider how the explanation was generated, such
as the presence of random generation or sampling [13].
In this sense, providing explanations together with a
measure of their uncertainty is a desired property for
XAI. This can be qualitatively evaluated by assessing
if the method provides any (un)certainty measurements
together with the explanations, i.e., the level of trans-
parency.

4. Framework Application

This section provides an example of how the developed
benchmark framework can be used to compare XAI
methods, showing the extent to which the selected prop-
erties and respective evaluation metrics can assist in a
more comprehensive, inclusive, and consensual bench-
mark study.

4.1. Experimental Settings

All used software and code was written in R and is avail-
able as opensource on Github. The experiments were
run using R JupyterLab 5.0.11 (with R version 4.2.1),
available for general use in JupyterHub for anyone at
Aalto University (where this work was developed, inte-
grated in a research team).

Heart Failure Prediction Dataset

A tabular dataset from the medical domain is con-
sidered: the heart failure prediction dataset (heart
dataset), which is publicly available in Kaggle. The
variable of interest is HeartDisease, which is a factor;
there are 5 numerical features (Age, RestingBP, Choles-
terol, MaxHR, and Oldpeak); and 6 categorical features
(Sex, ChestPainType, FastingBS, RestingECG, Exer-
cise Angina, and ST Slope) which were converted to
factors. After cleaning the data, i.e., removing out-
liers and null values, the heart dataset was divided into
training and testing datasets, for further machine learn-
ing modelling. The final size is 527 and 175 observa-
tions, respectively, and in both sets the binary target at-
tribute (HeartDisease) is balanced. Data preprocessing
results and the main conclusions drawn after perform-
ing an exploratory data analysis (EDA) on the training
data can be assessed (and visualized) in the R notebook
“01 Data.ipynb”.

Machine Learning Models

The following ML models were trained for the present
binary classification problem: logistic regression (LR),
random forest (RF), and support vector machine
(SVM). The first is a simple (white-box) model, the
second and the last are more complex (black-box) mod-
els and were chosen because they use different ap-
proaches (tree and statistical-based respectively). The
“stats” (glm() function with parameter family = bi-
nomial(link = logit)), “randomForest” (randomFor-
est() default function), and “e1071” (svm() function
with parameter type = C-classification and probabil-
ity=TRUE) packages were used for the LR, RF, and
SVM models, respectively. The model accuracy ob-
tained is equal to 82%, 83%, and 85%, respectively,
computed using the testing data. The implementation
of these 3 models, together with other evaluation met-
rics can be assessed in notebook “02 Models”. In the
medical domain it is especially important to have a high
recall, as it is crucial to develop a ML model that has
the minimum number of false negatives.

Selected XAI Methods

Besides Contextual Importance and Utility (CIU) [28],
developed by Kary Främling, the supervisor of this the-
sis, other 8 well-known methods were chosen with the
purpose of selecting popular methods that cover all
outputs mentioned in section 2. These methods are:
Partial Dependence Plot (PDP) [29], Individual Condi-
tional Expectation (ICE) [30], Permutation Feature Im-
portance (PFI) [31], Local Interpretable Model-agnostic
Explanations (LIME) [32], Anchors [33], Shapley values,
[34], SHapley Additive exPlanations (SHAP, a surrogate
approach to compute shapley values) [35], and Coun-
terfactual Explanations (CFEs) [36]. To “get inside” a
black-box, the approach adopted by these methods is
to change the input space and observe what happens to
the outputs. From here, importance, utility (how good
or favorable a feature value is), and influence (when
compared to a baseline) values can be calculated and
studied. The selected XAI methods perform this study
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in different ways. The IML package is used for PDP,
ICE, and Shapley values; the ‘lime’ package for LIME;
the ‘anchorsOnR’ package for Anchors; the ‘shapper’
package for kernelSHAP1; the ‘counterfactuals’ package
for CFEs; and the ‘ciu’ package for CIU. The default
parameters are used for all packages except for An-
chors and kernelSHAP (the parameters associated to
the number of perturbations, were reduced to 500 and
100, respectively, to decrease the running time and for
consistency with other methods). The “randomForest”
package computes PFI. The “03 Explanations.ipynb”
notebook provides all the source code to produce the ex-
planations (including the associated visualizations) for
3 patients (with heart disease, healthy, and one with an
uncertain prediction). “Global.R” script contains the
code to compute the global feature importance values
for shapley values, kernelSHAP, and CIU.

4.2. XAI Benchmark Framework Results
Here are provided the results obtained from applying
each of the metrics described in Table 1 (to which the
reader is referred to for labels clarification) to the XAI
methods used to explain the predictions given by each
ML model for the heart dataset. A brief discussion is
made, the main conclusions are drawn, and the rele-
vancy of the CIU method is shown. All the results from
the application of the quantitative metrics, together
with provided visualization plots are publicly available
on Github, in R notebook “04 Benchmark”.

Representativeness

Table 2 contains the benchmark results for this prop-
erty. Regarding the scope, ICE has L/G, as, although
being considered a local method, it provides a partial
dependence (PD) plot considering all instances. Shap-
ley, SHAP, and CIU methods have L/G, as it is possible
to compute global importance measures as suggested
by the respective authors. This was performed for the
heart dataset, and Shapley and kernelSHAP gave iden-
tical results, and were also closer to the values given by
PFI for the RF model (RF-specific method). It is not
possible to conclude which is the most “correct” one.
However, as shown by theory and results (see section
4.2), contextual importance (CI) is a “true” importance
measure, rather than the influence values given by Shap-
ley values. This is why L/G is in bold for CIU method
in Table 2. Regarding the portability metric, CFEs and
CIU methods are in bold, in both rows, due to the fact
that they do not require access to the data or the model
itself. Both methods only require access to the model’s
prediction function, which is possible to provide via a
web API, for example. This is attractive for compa-
nies that are interested in protecting model and data,
due to data protection reasons or interests of the model
owner, for example [17]. Finally, regarding the appli-
cability metric, agnostic-data (A) methods are usually
preferred.

1Currently, this package only works with a lower version of R
than the one provided by JupyerLab. Therefore, all the source
code for producing the results for kernelSHAP was written us-
ing Anaconda 2.3.2 (with R version 3.6.1 and python version
3.7.13, which is also needed because “shapper” is an R wrapper
of SHAP python library). Because of this, the running time is
considerably slower.

Structure & Speed

Table 3 contains the evaluation results for this property.
The speed was evaluated quantitatively; a conclusion is
made weather each method is slow or fast based on the
runtime analysis made during the methods implemen-
tation (elapsed time). CIU seems to be the preferable
method for this property, as the levels of structure are
covered to the maximum extent. CIU can provide con-
textual influence (CInfl) bar plots, which are compara-
ble to those provided by LIME and SHAP(ley). Fur-
thermore, it provides explanations using CI and con-
textual utility (CU) alone and prioritizing CI or CU
depending on the purpose of the explanation, which is
not possible for the other methods. CIU can also plot
PD profiles, which consist in input-output values from
where CIU values can be “read” and validated directly.
Moreover, CI and CU values can be translated into tex-
tual explanations (like Anchors), which are seen as more
easily understandable by lay-users. In general, methods
that provide influence/importance (FS) values seem to
cover to a better extent the levels of structure included
here, which contradicts the fact that anchors and CFEs
are preferable over these. For all methods, a good struc-
ture should be included, leading to end-user efficiency
and good understandability of the method. It is im-
portant to mention that the aspects related with the
structure of each method can always be further devel-
oped, when necessary, considering specific necessities or
desires of a specific AI deployer.

Selectivity

For this particular dataset, the maximum number of
features is 11, so, even when all features are present in
the explanation, it is already quite selective. All the re-
sults for the explanation size metric, not depicted here,
showed that giving a selective explanation mostly de-
pends on the model being explained, on the data (i.e.,
the feature values), and also on the type of explanation
output. PDP and ICE are selective by default. Anchors
are usually selective by default. The other methods are
not, which does not mean a selective explanation can-
not be provided, depending on the end-user. It is better
for an explanation to be non-selective, than to show an
untruthful or unfaithful explanation. A trade-off should
be made, bearing in mind that sometimes it might not
be possible to give a selective explanation without seri-
ously compromising the truthfulness property. In this
sense, the most relevant metric to consider is the size
parameter. The methods which allow the possibility of
changing the explanation size are preferable. For CFEs,
it is not possible to set a maximum number of changed
features, but it is possible to choose the number of coun-
terfactuals to generate. For a lay person, it is possible
to generate just one counterfactual as an explanation.
For LIME and CIU, it is possible to select the number
of features to display in the bar plot. For this reason,
the T is in bold for these two methods, being the pre-
ferred ones for this property. For LIME and Anchors,
it is also possible to choose multiple (or just one, of
course) instances to compute an explanation, which is
an advantage.
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Table 2: Results of representativeness property. In bold are the best results.

Metric PDP PFI ICE LIME Anchors Shapley SHAP CFEs CIU

Scope G G L/G L L L/G L/G L L/G
Portability (1) A S (RF) A A A A A A A
Portability (2) T T T T T T T F F
Applicability S S S A A S A S A

Table 3: Results of structure & speed property. In bold are the best results. PFI has an asterisk in the last row because this
method is included in the RF R package, so its results are immediate.

Metric PDP PFI ICE LIME Anchors Shapley kernelSHAP CFEs CIU

Expressive Power FS FS FS FS Rules FS FS Data points FS
Graphical integrity F F F T F T T F T

Morphological clarity T T T T T T T T T
Layer separation N/A N/A F T F T T T T
Runtime Analysys Fast Fast* Fast Fast Slow Fast Fast Fast Fast

Table 4: Results of selectivity property. In bold are the best results.

Metric Anchors CFEs LIME Shapley SHAP CIU PFI

Size parameter T T T F F T F

Contrastivity

Table 5 contains the evaluation results for this prop-
erty. The level of contrastivity is a qualitative metric
that should always be considered, and that assesses how
contrastive the explanations are to a predefined output
or/and to the current instance. Global methods (PDP
and PFI) are not included here, as they are not con-
trastive. CFEs are always contrastive to the current
instance, which is clear from the changes in the fea-
ture values. ICE plots, when including the PDP, are
contrastive to the average prediction. FS methods that
provide influence values (SHAP, Shapley, LIME, and
CIU) are contrastive to the predefined baseline (aver-
age prediction). CIU is in bold due to the fact that
the provided explanations, besides being contrastive to
a predefined output by using CInfl values, are also con-
trastive to the current instance by using relative CU val-
ues, which show how to improve the respective feature
values (CIU is counterfactual). To compute the sec-
ond metric, an adversarial attack to a patient data was
simulated. The closest counterfactual found by CFEs
method for each model was used as the slightly per-
turbed data instances to fool the respective models into
changing the prediction to the opposite class. All the
methods proved to be class-specific, showing good scores
for the target sensitivity metric.

Interactivity

None of the XAI methods being compared includes a
demo interactive tool, that allows to easily access the
explanations, i.e., without actually going through the
implementation code. It is highly recommended that an
interactive tool is added to the authors GitHub page,
which can simply be a demo example for a common
and easy application. For the tabular domain, a widely
known and simple example like the housing price pre-
diction problem, could be implemented together with
an interactive tool (similar to shapash demo - housing
price) in which users would only have to control the fea-
ture values (number of floors, year sold, etc) to obtain a
prediction. Then, it would be possible for AI deployers

and end-users to easily access the explanations, without
having to implement any code or functions. Considering
the present problem, the heart disease prediction, the
deployer would be an hospital and the end-user the doc-
tors (and possibly patients). Having this type of demo,
even if in another application domain, it is possible for
them to conclude if the explanations provided are de-
tailed enough, easily understandable, and also how con-
trollable and easy to interact they are.

When implementing the methods, AI researchers can
also have an idea of how easy it is to obtain an expla-
nation. If it is difficult to obtain an explanation, then
it is probably also difficult to make a clear interactive
and controllable explanation. For example, anchors and
LIME suffer from a highly configurable setup, where
the chosen perturbation space and the tuning hyperpa-
rameters have a great impact on the algorithm which
can lead to non-meaningful results. For the end-user,
it is good to have some configurable parameters, such
as the explanation size or the type of output to dis-
play, but not complex ones that should be optimized by
the methods themselves. For CIU, only the hyperpa-
rameter sample.size related to the configurations of the
method itself is controllable (default is 100, meaning 100
instances are sampled for estimating CI and CU), and
when tuned the results do not suffer a meaningful mod-
ification (related with the accuracy). It is in fact the
only non-deterministic parameter in CIU, which makes
it more stable than other perturbation-based methods -
see Section 4.2.

Fidelity

Only LIME and Anchors implement proxy approaches
and consequently compromise their fidelity. In Shap-
ley and KernelSHAP, linearity assumptions are made,
but it is not possible to calculate a fidelity score, as
the methods do not provide any metric possible to use
to estimate it. All the other explainability approaches
(PDP, PFI, ICE, CIU, and CFEs) do not create any
proxy model g or make any linearity assumption about
the underlying descriptive model, and therefore the fi-
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Table 5: Results of contrastivity property. In bold are the best results.

Model Metric Anchors LIME Shapley SHAP CIU CFEs ICE

Level of contrastivity F T T T T T T
LR Target Sensitivity 0 0.41 0.27 0.23 0.34 N/A N/A
RF Target Sensitivity 0 0.33 0.25 0.23 0.62 N/A N/A
SVM Target Sensitivity 0 0.32 0.21 0.21 0.40 N/A N/A

delity is 100%. The SA metric was used for LIME and
PC metric for Anchors. For both methods, the 100 ran-
domly selected data samples from the training set were
used to get the mean score depicted in Table 6. Note
that Anchors, being seen as easily understandable, use
rules that can ”trick” the end-users by having low cov-
erage.

Table 6: Results of fidelity property. For Anchors: precision
(coverage).

Model Metric LIME Anchors
LR SA / PC 0.90 0.94 (0.36)
RF SA / PC 0.83 0.90 (0.35)
SVM SA / PC 0.89 0.93 (0.39)

Faithfulness

The results obtained for ID and ROAR metrics are very
similar, and for that reason the obtained scores are not
provided. Overall, all the methods behave well, showing
better performances than the random explainer. Note
that PFI, by being a more translucent method, is more
faithful to the underlying model, as it “looks” at the
inner workings of the model. The metric that better
evaluates the faithfulness to the underlying model is
WBC. LR was used because it is a white-box model
so the explanations can be compared with the true rea-
soning of the model. Analyzing the coefficients given
by the LR model, it was concluded that the most im-
portant features, in global terms, are ChestPainType,
Sex, and ST Slope. Analysing the global feature impor-
tance values for the LR model, all the methods (Shapley,
kernelSHAP, and CIU) consider these 3 as the most im-
portant, meaning they agree with the underlying model.
However, a deeper analysis can be made if using a sim-
ple linear regression model (this can be performed only
for LIME, Shap(ley) and CIU, because they provide FS
values for each feature). The results are not shown
here (see notebook “04 Benchmark” Section White-Box
Check), however, only the CIU method retrieved the
original weights of the linear model with zero variance,
as CI values are identical for all instances in the case of
linear models. Therefore, importance as defined by CI
is conceptually identical to global feature importance.
Moreover, it became clear that the other methods give
influence values, which can mislead the end-user.

Stability

PDP, ICE, PFI, and CFEs are not included here, as
they are completely stable for identical inputs due to
the deterministic implementation approaches and the
Similarity metric does not apply. Regarding Anchors,
this method also computes feature weights, that also
vary, although usually it does not change the rule con-
ditions. From Table 7, CIU is the most stable method,

and secondly is kernelSHAP. Although in the literature
the most used metric is Similarity, the most important
metric to be assessed is Identity (so only the results
for the latter are depicted). Of course similar input in-
stances should have similar results, including model pre-
dictions and explanations, but identical inputs should
always have identical explanations; a patient (or a doc-
tor) cannot have different explanations for his/her heart
disease prediction result when checking twice (or more
times). The method that provides the higher feature
variability for the same input is Shapley, which is prob-
lematic for deployment.

Table 7: Results of stability property. The CIU variable used
here was CInfl, which is computed using CI and CU values. In
bold are the best results.

Model Metric LIME Shapley SHAP CIU

LR Identity 0.08 0.23 0.06 0.00
RF Identity 0.12 0.28 0.06 0.01
SVM Identity 0.11 0.28 0.05 0.00

(Un)Certainty

Only LIME and Anchors provide a confidence measure
for the explanations, which is related with the fact that
they use a surrogate approach, and so they only provide
measures associated with the fidelity of the explanation
towards the black-box model. PDP and ICE methods
do not need to provide any certainty because they focus
in PD profiles. PFI, CFEs, and kernelSHAP also do
not provide any certainty measures regarding the ap-
proach they use. Shapley method summarizes the dis-
tributions of the variable-specific contributions for the
selected random orderings. These variance values give
an idea of coverage. Finally, CIU values can be “read”
directly from input-output plots, showing exactly where
the calculated values come from. This makes CIU quite
transparent at least when compared to other methods,
like LIME, Shap(ley), and Anchors. The latter might
be considered black-boxes themselves, as they involve
very complex approaches difficult to understand when
the main idea of XAI is in fact make the model (and
of course the explanations) understandable for the end-
users. One big problem with LIME, in particularly, is
the definition of the kernel settings, which are is clearly
explained by the authors and leads to big differences in
the explanations.

Truthfulness

For an explanation to be truthful, the data provided to
the ML models, on which they learn, also needs to be
truthful. For example, it is known that men are more
likely to develop heart disease than women; this infor-
mation was present in the data; the models learnt from
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this data; the explanations show that when Sex=M, this
has a positive influence on the heart disease probability.
This property was left to the end because if the methods
prove to have high scores in all the previous properties,
it is almost certain that it will also cover truthfulness.
Overall, the methods seem to agree on the selected fea-
tures provided in the explanations, specifically in terms
of order of importance/influence. In terms of model
agreement, LR and SVM seem to agree more among
each other when comparing to RF model. LR and RF
revealed similar predictive accuracy performances. The
first missed an interaction between Age and MaxHR
suggested by RF (and SVM), which was shown by the
PDP method. Although this interaction was spotted
by RF, explanations revealed that this model has asso-
ciated bias, in which CIU is the most helpful method
in terms of model improvement. Anchors seems to be
method that performs worse, as being very selective, it
may miss some important features (note that sometimes
selectivity is preferred). With LIME and SHAP, it is
possible to hide biases [37], which is a big disadvantage,
as the end-users cannot be sure about the truthfulness
of the explanation they are receiving.

5. Conclusions and Future Work
The main goal of the present dissertation was to build
a benchmark framework for XAI methods. A selection
of 10 properties was made, based in former identified
properties, and the respective metric(s) formalization
for tabular data was made. The comparison of different
XAI methods showed the relevancy of the CIU method,
which covers to a better extent the selected properties,
when compared to other methods. Nevertheless, sug-
gestions regarding each of the methods considering dif-
ferent properties were made, and it has been concluded
that explainability is a multi-faceted concept. The ap-
plication domain, practical usability, or nature of the
prediction task, can determine which properties should
be underlined [22, 5]. In the light of this, it is proposed
to firstly evaluate explanations for validation-related
properties (fidelity, faithfulness, and stability in partic-
ular), without considering the simplification or “embel-
lishment” of the given explanation. A further analysis
can consist on the evaluation of explanations for quality-
related properties, where the user social context, pref-
erences, and cognitive capacity limitations should be
incorporated. At this step, human-grounded evaluation
can be integrated, improving the efficiency of the assess-
ment of XAI methods. So, future work can be made in
this regard. Moreover, it is relevant that other more
complex ML models, particularly DL models that do
not rely on feature engineering (like it is the case of the
models used in the present work), are used for the com-
parison of different XAI methods. Future work should
assess the relevancy of the CIU methods with methods
specific for DL models, that adopt different strategies,
like gradient-based ones, using the suggested benchmark
framework. Further extensions to address concern the
application of the presented work to other models, data
types, applications, and contexts.
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