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Resumo

A inteligência artificial (IA), especificamente as suas sub-áreas aprendizagem automática e apren-

dizagem profunda, têm obtido resultados impressionantes numa variedade de domı́nios de investi-

gaç~ao cientı́fica, tais como medicina, segurança, e economia. Contudo, sistemas complexos de IA,

embora demonstrem ótimos desempenhos de precisão, são vistos como caixas negras que carecem

de explicabilidade. Com o aumento do número de sistemas de IA, torna-se importante para os seres

humanos compreender como é que cada caixa negra chega a um resultado. A área da inteligência artifi-

cial explicável (XAI) surgiu assim da necessidade de resolver o problema da caixa negra. Esta área tem

vindo a crescer rapidamente, mas em direções diferentes, revelando a dificuldade que a comunidade

cientı́fica atualmente enfrenta para chegar a um consenso sobre definições e critérios de avaliação

comuns, muitas vezes formulados de forma subjetiva. Para ultrapassar esta lacuna na investigação,

a presente dissertação propõe um quadro de referência para os métodos XAI, concebido com base

numa revisão metodológica sistemática da literatura, de modo a obter indicadores de desempenho ob-

jetivos e mensuráveis de uma forma abrangente e consensual. Este quadro é posteriormente aplicado

para comparar métodos XAI conhecidos ou promissores, considerando um dataset tabular do domı́nio

da medicina (previsão de doença cardı́aca). O estudo comparativo realizado mostrou a relevância do

método CIU, que abrange com mais eficácia as propriedades selecionadas de explicabilidade, quando

comparado com outros métodos. Adicionalmente, o quadro proposto contribui para o estabelecimento

de formalismo e taxonomia comuns, promovendo a uniformidade que está em falta na área de XAI.

Palavras-chave: Inteligência Artificial Explicável, Aprendizagem Automática, Inteligência Ar-

tificial de Confiança, Critérios de Avaliação, Quadro de Referência
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Abstract

Artificial intelligence (AI), namely its sub-fields machine learning and deep learning, have demon-

strated impressive outcomes in a variety of scientific research domains, such as medicine, security, and

finance. However, complex AI systems, despite demonstrating great results and accuracy performances,

are seen as black-boxes that suffer from lack of explainability. Therefore, as AI systems continue to grow,

it becomes important for humans to understand how each black-box arrived to a certain result. This way,

the field of eXplainable artificial intelligence (XAI) arose from the necessity of solving the black-box

problem. XAI field has been growing fast, but in different directions, revealing the difficulty the scientific

community faces to agree on common definitions and evaluation criteria, which are often formulated in

a subjective manner. To overcome this gap in research, the present dissertation proposes a benchmark

framework for XAI methods, which is designed based on a methodological systematic literature review

in order to derive objective and measurable performance indicators in a comprehensive and consensual

manner. This framework is then applied to compare 9 well-known or promising XAI methods consid-

ering a tabular dataset from the medicine domain (heart disease prediction). This benchmark study

showed the relevancy of the CIU method, which covers to a better extent the 10 selected properties of

explainability, when compared to other methods. Moreover, the proposed framework contributes to the

settlement of common formalism and taxonomy, which promotes the uniformity that is lacking in the XAI

field.

Keywords: eXplainable Artificial Intelligence, Machine Learning, Trustworthy Artificial Intelli-

gence, Black-boxes, Evaluation Criteria, Benchmark Framework
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Chapter 1

Introduction

This chapter provides the reader with the motivation behind the present work and an overview of the

addressed topic in section 1.1., followed by the main objectives and main contributions in section 1.2.

Finally, section 1.3. describes the thesis outline.

1.1 Motivation and Topic Overview

Artificial intelligence (AI) and machine learning (ML) have demonstrated impressive outcomes in a

variety of scientific research domains, such as medicine, forensics, and finance, especially with the

emergence of deep learning (DL) [1]. Simple models like a linear regression or a decision tree show

a clear relationship between input data and model output. These are called white-box models (see

Top Figure 1.1) , as they are seen as transparent and understandable by humans. Complex models

like convolutional neural networks (CNNs), a deep neural network architecture, usually outperform the

previous ones, showing significantly higher performance in terms of model accuracy [2]. However, these

are considered black-box models (see Middle Figure 1.1), as they suffer from a lack of explainability,

meaning they lack interpretable tools for humans to understand the model working logic and outputs [3].

This is a huge barrier for their application in real world systems, particularly in medical systems. In the

case of clinical decision-making systems, for example, it is important to explain the decisions made by

the underlying ML model in order to justify the outcome. Black-boxes are usually not appreciated by

healthcare professionals because they want to understand how the system generates a prediction, and

these models are frequently viewed as unreliable and a loss of control. In this sense, explainability has

been the most desirable attribute of a decision support system in the medical field [4].

Explainable artificial intelligence (XAI) is an emergent field that refers to methods and techniques in

AI application which focuses on solving the lack of explainability present in black-box models (see Bottom

Figure 1.1). It implements several approaches to better understand a system’s underlying mechanisms

and outputs. If a ML model can explain its decisions, it is closer to achieve fairness (ensuring that

predictions are unbiased), reliability, and transparency, which are some of the principles that should be

met when implementing AI [5]. Ultimately, XAI leads to trust and reliance, as it is easier for humans

1



Figure 1.1: Top: White-box model, transparent. Middle: Black-box model, opaque. XAI implements techniques that “look” into the
black-box and try to explain the underlying mechanisms.

to trust a system that explains its decisions compared to a black-box [6]. These traits can aid in the

usability of AI and ML systems in a large range of scientific domains. Reliability is particularly important

for healthcare professionals, as if an AI system can clarify its decisions, the former can start using it as

an assisting tool for clinical decision, for example, the making of the correct diagnosis [2].

Many governmental, non-governmental and standards organizations have launched initiatives to es-

tablish ethical principles for the development of AI. In the EU, this step was taken by the High-Level

Expert Group on Artificial Intelligence (AI HLEG), who wrote and published “Ethics Guidelines for Trust-

worthy AI” [7]. This document lists four ethical principles that should be adhered when developing,

deploying and using AI systems: respect for human autonomy, prevention of harm, fairness and explica-

bility. Moreover, it lists seven key requirements that AI system’s entire life cycle should meet in order to

achieve trustworthy AI and concludes with an assessment list that offers guidance on each requirement’s

practical implementation. These requirements should be considered in line with the specific application

and are applicable to different groups of stakeholders, namely developers, who should implement and

apply them, deployers (e.g., a hospital), who should ensure that the systems they use meet the require-

ments, and end-user (e.g., a doctor) and broader society, who should be informed. In this document,

the principle of explicability is listed as one of the ethical principles in the context of AI systems. Also,

transparency is presented as one of the seven key requirements for trustworthy AI, where traceability,

explainability, and communication are shown to be all necessary to reach it. Although explainability is

included in the transparency requirement, most of these trustworthy AI requirements guide directly the

XAI approach as a crucial component to consider and include in AI systems. Also, XAI methods are

stated as one of the technical methods vital for trustworthy AI. The AI HLEG authors state that “for a

system to be trustworthy, we must be able to understand why it behaved a certain way and why it pro-

vided a given interpretation”. Humans require clear explanations, arguments and evidence to be able

to self-assess the quality of the decision/suggestion and decide when and how to trust and use an AI

system.
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In the last few years, a large number of different XAI methods have been proposed in the literature,

existing the need to define a set of evaluation criteria that allow researchers to compare them. Accord-

ingly, the research activity in this field has been growing very fast, but in different directions, demonstrat-

ing a lack of common formalism for defining XAI related concepts and identifying the essential properties

scholars should consider when developing or choosing methods for explainability. It is crucial that XAI

methods themselves are understandable and easily accessible for end-users, and, most importantly,

non-experts [8–10]. The task of evaluating the (predictive) performance of a ML model is simple, as

there is a ground truth label to compare the test data with. On the other hand, the task of evaluating

the explainability of that model is not simple, as there is no accessible ground truth explanation and

therefore no direct way of evaluating and comparing different explanations. Moreover, this task becomes

even more challenging due to the lack of consensus among the research community on the definition

of the term explainability and other related concepts (e.g., interpretability and transparency) [11, 12].

In this sense, there is the need to design a comprehensive and consensual benchmark framework for

XAI methods that can integrate ML workflows and allow for their comparison and, ultimately, selection

of the most appropriate method(s) to use. This should be considered in line with specific audiences

and contexts. XAI methods can be applied to different ML or DL models and different types of data,

and therefore can provide effective decision support for a variety of tasks, in relevant domains such as

transportation, security, medicine, finance, legal, and military.

1.2 Objectives and Contributions

As mentioned in the Preface, the work presented in this thesis was developed integrated in a re-

search team at the Computer Science Department of Aalto University, focusing on XAI, and the team

supervisor has developed an explainability method that is called Contextual Importance and Utility (CIU)

[13]. During the period February-August 2022, investigation about XAI in general, main challenges and

available approaches was conducted.

This Master’s Thesis aims to investigate the XAI field and study different approaches. XAI is becom-

ing a very wide subject area, with a lot of research directions. Hence, the specific target objectives,

which emphasize the scope of the present dissertation, are the following:

1. Systematic literature review:

Discover the current state of scientific research in XAI, together with its main characteristics, ap-

proaches, challenges, misunderstandings, and gaps. Relevant (evaluation) criteria identification.

2. XAI Benchmark Framework Formalization:

Selection of a comprehensive and consensual list of properties and respective formalization with

structured and measurable performance indicators to be used as a benchmark framework for XAI.

3. Application of the Benchmark Framework in the medical domain:
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Selection of 9 well-known XAI methods, considering a tabular scientific dataset from the health-

care domain for a classification problem (heart disease prediction), with the purpose of validating

the defined framework and, subsequently, compare the explainability methods and assess the

relevance of CIU.

The successful achievement of these objectives leads to the following contributions in the XAI field:

• Categorization of XAI papers and XAI methods.

• Settlement of clear and unambiguous, yet comprehensive, XAI terminology.

• Settlement of common criteria for XAI evaluation.

• XAI benchmark framework which concretely addresses how to evaluate different methods consid-

ering 10 comprehensive and consensual properties.

• Ready to use implementation code available as opensource on Github.

1.3 Thesis Outline

This dissertation is organized into five main chapters. The first and current chapter 1 comprises an

introduction to the work, including the motivation for the conducted study, the objectives proposed to be

accomplished, the main contributions, and the thesis outline.

The thesis outline is summarized and detailed in Figure 1.2. In Chapter 2, a systematic analysis of

literature review is carried on, together with relevant background knowledge. Subsequently, XAI clas-

sification criteria, methods, challenges, and most importantly, an extensive list of properties is spotted

and identified to be used as a referent taxonomy for the proceeding development of a comprehensive

and consensual benchmark framework for XAI in Chapter 3. In Chapter 4, a tabular scientific dataset

from the healthcare domain (heart disease classification problem) is considered, with the purpose of

validating the defined framework and, subsequently, compare 9 well-known XAI methods and assess

the relevance of CIU. Finally, Chapter 5 highlights the main conclusions to be drawn from this work,

along with the main limitations and suggestions regarding future work.

Figure 1.2: Thesis outline scheme.
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Chapter 2

State-Of-The-Art and Theoretical

Background

This chapter provides the reader with the state-of-the-art (SoTa) of XAI and relevant theoretical back-

ground. Section 2.1 presents the methodology adopted for the SoTa. Next, section 2.2 provides an in-

sight into AI and how XAI arises from the former, answering the question “What is XAI?”. Then, section

2.3 approaches the questions “Why is XAI needed?” and “Where is XAI applied?”. Next, section 2.3

provides a summary of available XAI methods and a theoretical background regarding their taxonomy,

answering the question “How is XAI applied?”. Still in this section, a detailed description of CIU and

8 other well-known XAI methods is performed. Finally, section 2.4 describes the SoTa review of XAI

evaluation and associated challenges.

2.1 SoTa Methodology

Explainable Artificial Intelligence (XAI) is becoming a very wide subject area, with a lot of research

directions. Hence, here it is emphasized the scope which this works focuses on, by explaining the

followed methodology.

To realize the current state of scientific research in this subject, a search in Google Scholar was

carried out to identify articles published in indexed journals, books or newspapers between the years

2015-2022. Key words used in the initial search include ”Explainable AI”, ”Interpretable AI”, ”Explain-

ability ML” and ”Interpretability ML”. Several papers were found through this refining selection phase,

being excluded all the papers wrote in a language different than English. A sum of 2 books and 96

papers were chosen for the final review stage, selected after evaluating the titles, abstracts, and their

main contributions. From these, 26 were classified as XAI surveys/reviews, 19 as discussion/theoretical

papers, 20 as evaluation/comparison studies of XAI methods, and 12 as frameworks or new approaches

for XAI. Moreover, 7 user studies and 19 case/use studies were selected. Table A.1 presents the paper

distribution of this systematic literature review - note that the papers are placed in the section in which

they are predominantly inserted, and may have characteristics of other(s). The remaining bibliography
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was found from the books and papers mentioned, or through relevant research that arose from reading

them for the development of this work.

A systematic analysis of literature review was carried on as a first step. Accordingly, a detailed study

of existing SoTa papers (see Table A.1) was conducted and, subsequently, classification criterion was

identified, which includes its terminology (what is XAI?), its motivations (Why is XAI needed?) and its

domains (Where is XAI used?). The results from this analysis are discussed in Section 2.2. Next, to

understand how XAI is being applied in the literature and how to evaluate it, a depth analysis of the

SoTa surveys and reviews was performed. In this sense, in Section 2.3, SoTa methods are identified

and related trends and conclusions are spotted. Moreover, a theoretical background of CIU and other

selected methods that are implemented and compared in Chapter 4 are provided. The last Section of this

Chapter approaches XAI evaluation, its associated challenges, and, most importantly, an extensive list

of properties is spotted and identified to be used as a referent taxonomy for the proceeding development

of a benchmark framework for XAI methods in Chapter 3.

2.2 XAI: What, Why, and Where?

2.2.1 From AI to XAI

The first work in the field of Artificial Intelligence (AI) was published in 1950 by Alan Turing [14].

Known as one of the founding fathers of AI, Turing proposed, in this paper, what subsequently became

known as the Turing test, where he questions whether an artificial computer can think [15]. However,

the term “artificial intelligence” was introduced in 1955 by John McCarthy [16]. In 2007, McCarthy rede-

fined AI as “the science and engineering of making intelligent machines, especially intelligent computer

programs. It is related to the similar task of using computers to understand human intelligence, but AI

does not have to confine itself to methods that are biologically observable” [17].

Intelligence can be defined, for example, as the “ability to correctly interpret external data, to learn

from such data, and to use those learnings to achieve specific goals and tasks through flexible adapta-

tion” [18]. This definition is linked to machine learning (ML), a sub-field of AI, as an AI system can be de-

veloped without ML algorithms, i.e., with no trained mathematical model. There are three sub-categories

of machine learning: supervised learning, unsupervised learning, and reinforcement learning. In super-

vised learning, the algorithm relies on labelled data with known inputs and corresponding outputs (e.g.,

labels for classification problems) to give predictions, which is usually divided into a training and a testing

dataset. In unsupervised learning, the algorithm relies on unlabelled data (contains only inputs) to find

a structure in the data. In reinforcement learning, the algorithm continuously learns from feedback to

achieve a certain goal.

Deep Learning (DL), often used interchangeably with ML, is actually a sub-field of ML, as the way the

algorithms learn is different. While standard ML algorithms build on data representations obtained by

feature engineering, exploring domain knowledge, data representation and feature extraction are most

often intrinsically learned by DL algorithms exploring layered architectures of computational units. A
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“deep” ML algortihm involves the existence of a large number of layers. The multilayer perceptron is an

example of a simple neural network (NN), composed of more than three layers (one input layer, one or

more hidden layers, and one output layer). Due the complexity and structure of the DL algorithms, many

(not necessarily all) do not require “feature engineering” (extraction of features based on expert domain

knowledge - a first pre-processing step). This is one of the biggest advantages of DL over ML, as the

first “can ingest unstructured data in its raw form (e.g., text, images), and it can automatically determine

the hierarchy of features which distinguish different categories of data from one another” [19], therefore

not needing human intervention for data processing.

Figure 2.1: Machine learning and deep learning are sub-
fields of artificial intelligence, which is introduced here a
sub-field of explainable artificial intelligence. This figure is
adapted from [19].

Artificial intelligence, namely its sub-fields machine

learning and deep learning, have demonstrated im-

pressive outcomes in a variety of scientific research

domains, such as medicine, forensics, and finance, es-

pecially with the emergence of DL [1]. However, AI

systems, despite demonstrating great results and ac-

curacy performances, are often referred as black-box

algorithms that cannot be explained (see Middle Fig-

ure 1.1. Therefore, as AI systems continue to grow, it

becomes important for humans to understand how the

black-box arrived to a result. From this necessity arose

the field of eXplainable artificial intelligence (XAI), that

focuses on solving the black-box problem (see Bottom

Figure 1.1. The term XAI was introduced by DARPA (Defence Advanced Research Project Agency), as

a research program that focuses in producing more explainable models, while maintaining a high level

of learning performance (prediction accuracy) and consequently enabling their understanding by human

users so that they can gain trust and effectively manage the emerging of AI [20]. Based on the definition

of AI given above, XAI can be defined as “the science and engineering of making (self)-explanatory

intelligent machines”. Lastly, Bibal et al. [21] stated that XAI should cover four levels: “(i) providing the

main features used to make a decision, (ii) providing all the processed features, (iii) providing a com-

prehensive explanation of the decision and (iv) providing an understandable representation of the whole

model”.

2.2.2 The need for XAI and Application Domains

Simple ML models like linear regression or decision trees show the relationship between input data

and model output and therefore are seen as transparent and self-explainable/understandable - white-box

models (see Top Figure 1.1). Complex ML models like random forests and especially DL models, like

deep neural networks, usually outperform the previous ones, showing significantly higher performance in

terms of prediction accuracy [2]. However, they are black-box models (see Middle Figure 1.1) that do not

provide an explanation for their outcomes and, due to their complex structure, are not understandable
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to human users. Indeed, white-box algorithms are more understandable than black-boxes, and there is

often a trade-off between accuracy and explainability: the former group is usually less accurate and the

latter is usually less explainable [8]. For low-stake decisions, like movie recommendations on Netflix,

this trade-off is not important, and a low explainable model can be used. For high-stake decisions,

like a criminal justice system, this trade-off is very important, and usually a high explainable system is

preferred, bearing the cost of a low(er) predictive performance. XAI is crucial in such situations, focusing

on research that tries to avoid this trade-off, or at least making it more dynamic, where accuracy can be

achieved along with explainability.

Figure 2.2 shows the need for XAI in a wrap, putting together an image taken from DARPA [20] and

Adadi et al. [8], who listed four main reasons why explanations are needed: justify, control, improve,

and discover. Justification is one key reason for XAI, as it allows the user to understand why (and why

not) a certain output was given (or not), especially when unexpected decisions are made. Control is

important, as having a greater understanding about a system behavior helps to rapidly identify when the

system might fail and correct errors, which leads to the next reason for XAI: the need to continuously

improve the AI system. The more explainable and understandable a model is, the easier it is to correct

it and improve it. Finally, explanations can aid in the discover of new (hidden) insights, particularly when

humans’ knowledge of causal systems is incomplete, like in medicine [22].

Figure 2.2: The need for XAI. This figure is adapted from [20] and [8].

Ultimately, XAI is needed to help building trust around AI systems. “For a system to be trustworthy,

we must be able to understand why it behaved a certain way and why it provided a given interpretation”.

This phrase is taken from the EU report mentioned in Chapter 1, “Ethics Guidelines for Trustworthy

AI” [7]. This study publishes many critical requirements, beyond XAI, included within the different AI

principles guidelines. However, those requirements are not completely detached from XAI; in fact, they

are intertwined, like proposed in Figure 2.3. This is succinctly discussed in the following paragraphs,

where it is highlighted how XAI is linked to trustworthy AI, by contributing, at different levels, to each of

the requirements. Moreover, XAI methods should themselves cover some of the requirements:

1. Human agency and oversight

XAI methods should be developed with a human-in-the-loop approach, enhancing human over-

sight. Moreover, explanations allow target users to be able to make informed autonomous deci-

sions regarding AI systems. Users should be given the knowledge and tools to understand and
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Figure 2.3: Interrelationship of the seven requirements and XAI: XAI supports each of the requirements (at different levels) and
the requirements support each other, and should be implemented and evaluated throughout the XAI system’s life-cycle. Adapted
from [7].

interact with AI systems to a satisfactory degree and, when possible, be enabled to reasonably

self-assess or challenge the system, which is possible with an explainable ML model, specifically

one that provides an explanation interactive interface.

2. Technical robustness and safety

By assessing how the system behavior can be changed, leading the system to make different de-

cisions (or different explanations), the technical robustness of (X)AI methods can be improved. By

giving robust and accurate explanations, XAI approaches can act in the minimization of unintended

consequences and errors of AI systems. When occasional inaccurate decisions (or explanations)

cannot be avoided, it is important that the (X)AI system can indicate how likely these errors are,

so that the target user knows when to trust them. Furthermore, it is critical that the results of AI

systems are reproducible, as well as reliable, which can be assessed from the respective explana-

tions.

3. Privacy and data governance

An XAI method that does not require access to the data or the model is attractive for companies

(or situations) where privacy data is necessary.

4. Transparency

Included in this requirement, is explainability, which concerns the ability to explain both the techni-

cal processes of an AI system and the related human decisions. To achieve this, XAI methods have

been proposed. XAI also enables identification of the reasons why an AI-decision was erroneous

which, in turn, could help prevent future mistakes. This traceability is also important in XAI and

the identification of erroneous decisions should be performed alongside with the identification of

erroneous explanations. Explanations can reveal AI system’s capabilities and limitations, allowing
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them to be communicated to AI deployers or end-users in a manner appropriate to the use case

at hand. XAI “opens” the black-box, moving the system from an opaque to a transparent one.

5. Diversity, non-discrimination and fairness

XAI proposals can be used for bias detection, preventing AI systems from the unintended (in)direct

prejudice and discrimination against certain groups or people, potentially exacerbating prejudice

and marginalization. An explanation interface enhances the active participation of all people in ex-

isting and emerging computer-mediated human activities and with regard to assistive technologies.

Moreover, dissecting the internals of a black-box model via XAI techniques can help identifying the

capability of the model to maintain the input data diversity at its output.

6. Societal and environmental wellbeing

XAI methods, by making the AI systems more human understandable and interactive, can be used

to enhance social skills, contributing to the social impact of AI.

7. Accountability

XAI contributes to auditability as it can help explaining and assessing AI systems for different

profiles, including regulatory ones. Also, accountability is closely linked to fairness, and XAI can

contribute to the minimization and report of negative impacts, ensuring that necessary changes

can be made to the system where and when needed. Furthermore, the minimization and report

of negative impacts can be assessed inside XAI, by developing an internal evaluation and validity

of the method, reporting on actions or decisions that contribute to a certain explanation. Finally, to

ensure responsibility and accountability for AI systems and their outcomes, explainability is crucial.

Concluding, explainable AI leads to trustworthy AI, and the “implementation of these requirements

should occur throughout an AI system’s entire life cycle and depends on the specific application”. The

application domains presented in Figure 2.2 for AI systems represent potential domains where there is a

need for research activity on explainable models: transportation, security, medicine, finance, legal, and

military. Table A.2 distributes the case studies introduced in Table A.1 through each of these applications

domains, showing how XAI is being deployed in real case scenarios. XAI approaches are particularly

relevant in areas of social impact, such as medicine and healthcare [23, 24] criminal justice (legal do-

main) and autonomous vehicles (transportation domain) [25]. The DARPA research program [20] that

coined the term XAI was made by military researchers, showing that the military domain also suffers

from the AI (lack of) explainability problem [8].

Therefore, XAI can bring great benefit to several specific-application domains [8], as more complex

and difficult-to-interpret AI approaches (e.g. DL models) are being adopted. Besides the previously

mentioned domains, XAI strategies have become increasingly important in areas like software analytics

[26], biology & chemistry [27–29], energy & power [30], and others.

Besides being considered in line with the specific application, the development of models and meth-

ods in XAI that aim to contribute to the achievement of (all) the requirements for trustworthy AI should

also consider and be applicable to different groups of stakeholders. These groups are: the developers,
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who should implement and apply explainability methods, the deployers (e.g., an hospital), who should

ensure that the systems they use meet the requirements, and the end-user (e.g., a doctor or a patient)

and broader society, who should be informed. Concluding, the XAI stakeholders includes everyone who

“either want a model to be ‘explainable’, will consume the model explanation, or are affected by de-

cisions made based on model output” [31]. This is inline with the idea that, beyond improving model

understandability as a goal in itself, it is necessary to integrate the deployers and end-users (specially

domain experts) in the design of explainability strategies. Otherwise, machine learning is unlikely to

become a part of real-word applications, such as routine clinical and healthcare practice [32].

2.2.3 Terminology clarification

After carefully analyzing the SoTa literature, it became clear that, despite its fast emerging, XAI is

still not a well-established field, demonstrating a lack of common formalism and taxonomy. Scientific

research around XAI has produced many different definitions of explainability and has identified various

concepts related to it that most often overlap with each other, namely interpretability, transparency, in-

telligibility, comprehensibility and understandability. Specifically, there is a heated debate about whether

interpretability and explainability should be used interchangeably. There is a clear division between

scholars, as about 50% of the reviewed surveys use the terms interchangeably and the other half con-

sider they are different. Therefore, the first challenge arising from the rapid growth of the research activity

in XAI is the establishment of a common formalism to define XAI related concepts. Scholars should work

on an agreement regarding what explainability is and start to use the same words and concepts, so that

research around this subject becomes clearer and organized.

That being said, this section provides succinct and unambiguous definitions, in the XAI context, of

transparency, interpretability, and explainability, which are related to the ability to observe the processes

that lead to the decision making of the model [2]:

• Transparency: A model is considered transparent if its decision making is by itself understandable

[33], meaning a user can see and understand the mathematical mechanisms that map inputs to

outputs [34]. This applies to white-box models (see Top Figure 1.1), such as linear regression.

Black-box models, such as CNNs, are the opposite, being seen as opaque systems (see Middle

Figure 1.1).

• Interpretability: The ability to provide the meaning in understandable terms to humans [35]. A

model is considered interpretable if it is described in a way that can be further explained. The more

interpretable the model, the deeper the extent to which cause-effect relationships can be observed

within a system [2], i.e., the user can relate properties of the input to their output [34].

• Explainability: The ability to provide the functioning of a ML system in understandable terms to

humans [5]. The more explainable a model, the deeper the understanding that humans achieve in

terms of the internal procedures that take place while the model is training or making decisions [2].

The concepts above are introduced here as similar, yet distinct concepts. Transparency is about

11



being able to automatically understand the decision making of an AI system; interpretability is about

being able to discern the internal mechanics without necessarily knowing why; explainability is being

able to explain what is happening, i.e., the system’s reasoning. This is illustrated in Figure 2.4, using

an illustrative example of an AI system that predicts the profession based on an input image (here the

decision is correct, the image corresponds to the class doctor). Explainability adds a reasoning line,

which consists in explaining the decision making of an AI system using, for example, understandable

features of the input data. On the contrary, transparent and interpretable models do not have this

reasoning line, and are not able to provide explanations. However, they are described in a way that

enable the explanations of its decisions [34]. Other concepts related to XAI that appear in the literature

are not introduced here because they are not so commonly used, so that there are no overlaps between

them, and to contribute to clear and unambiguous, yet comprehensive, terminology.

Figure 2.4: Difference between transparency (top), interpretability (middle), and explainability (bottom). The latter shows that the
black-box model is biased towards the use of glasses.

2.3 XAI: How?

2.3.1 Review Settings

As discussed in the previous Section, methods and techniques involving XAI research are necessary

not only to explain the system’s behaviour and results to users, but also to deploy reliable and trustworthy

technology [7]. In this Section, the focus is on how these methods and techniques are being proposed

and used by researchers, i.e., how XAI is being deployed.

The complexity of a ML model is directly related to its interpretability and explainability. Generally, the

more complex the model, the more difficult it is to interpret and explain [8]. This is related to the accuracy

vs. explainability trade-off, which led to the establishment of two explainability strategies: intrinsic and

post-hoc methods. Intrinsic methods correspond to explainable by design methods, where explainability

is directly achieved through constraints imposed on the model during training (white-box models are
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intrinsically explainable). Post-hoc methods are used to provide black-box explanations after model

training [33, 36], therefore avoiding the explainability vs. accuracy trade-off. Some researchers support

the first (classic) approach for high-stake decisions [37], but there has been an exponential interest and

demand for the alternative (novel) approach. A common view is that “as long as the model is accurate

for the task, and uses a reasonably restricted number of internal components, intrinsic interpretable

models are sufficient. If otherwise the prediction target involved complex and highly accurate models,

considering post-hoc interpretation models is necessary” [8].

The latter strategy is the focus of the second stage of this systematic review and, from the SoTa

surveys, a total of 131 post-hoc XAI methods published between 2010 on-wards (except PDP1 and

CIU2) were identified. They are displayed in Table A.3 where the first three columns identify the method

by its Name, Reference paper, and publication Year. The fourth column, % surveys, is a measure of

popularity of the method, as it corresponds to the percentage of the reviewed surveys (from a total of

26) that appears in. The methods are displayed in decreasing order of popularity. The last column,

Software, checks whether the code for reproducing the explanations is available (Y - with hyperlink) or

not (N). Note that the given software is not always the original one, when this is not available by the

authors. In this case, another implementation of the method is provided. Furthermore, in some cases

(e.g., LIME), there is more than one available software, in both Python and R programming languages

(and sometimes Java). Furthermore, in order to make the output of this review easily and practically

accessible to readers, the most widely used distinctions adopted to annotate the methods are also

summarized in each of the remaining columns (from fifth to eighth column):

• Portability indicates the range of ML models to which the explanation method can be applied,

distinguishing between model-agnostic (A) and model-specific (S) methods. Model-Agnostic (A)

methods can be used to explain any type of model, treating all ML models as black-boxes, even

if they are not. Model-Specific (S) methods can be used to explain only a specific type of black-

box model. Regarding the latter, most of the encountered methods are specific for deep neural

networks, meaning they usually need access to parameters of the network layers. The portability

of DNN-specific methods can of course depend on the type of layers it needs access. For exam-

ple, Grad-CAM (Gradient-weighted Class Activation Mapping) [38] is applicable to any CNN-based

model, whereas CAM (Class Activation Mapping) [39] requires a particular CNN architecture be-

cause it uses information taken out of the last fully-connected layer of the network.

• Scope indicates the extent to which the method addresses the entire model behavior, distinguish-

ing between global (G) and local (L) explanations. A global (G) method aims at explaining the entire

model behavior, i.e., the overall logic of the (black-box) model. This way, a global explanation is

valid for any instance. A local (L) method aims at explaining the reasons for a single prediction,

being valid for a specific instance. It is important to mention that some local methods provide some

kind of global overview. LIME [40] and Anchors [41], for example, explain several individual pre-
1PDP is from 2001, included here due to its high popularity and close relation to ICE method. Both methods will be further

described.
2CIU is included here because it was proposed, in 1996, by the supervisor of this thesis, and has been continuously studied

and improved by the CS research team at Aalto University in Espoo, Finland, where this work was developed.
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dictions (submodular pick, as named by the authors) of the black-box model as a way to provide

a global explanation overview. Other methods provide both local and global explanations (L/G),

such as CIU [42], which provides a unified definition of global and local feature importance.

• The seventh column distinguishes the methods considering the type of Data they can be applied

to. It covers the three principal data types recognized in the literature: tabular data (TAB), images

(IMG) and text (TXT). The XAI techniques can be data-specific, being restrict to one or two of

these data types, or data-agnostic, meaning they can be used for the three of them (ANY). Other

data types include time series (TS) or videos (VID), which are still in the very early stage regarding

explainability approaches. Only the last three methods, out of the 131 XAI methods presented in

table A.3, are specific to these data types, being included here just to show that explainability can

be extend to other data types.

• Type of Problem distinguishes methods designed to be applied to regression (R) or classification

(C) problems/tasks. The first works to predict continuous values such as housing prices and the

second is used to classify discrete values such as “benign” or “malign” in a tumor classification

problem. XAI methods can be specific to either regression or classification, or possible to use

in both situations. Note that this factor of distinction concerns tabular data only, as for text and

images data types, the problem type is always classification.

2.3.2 Methods and Trends

From Table A.3, which presents an overview of the latest publications of (new) XAI methods, the

main trends regarding their approaches and characteristics are taken.

Figure 2.5, on the left, shows the total number of methods considering their portability and scope.

Regarding the scope of explainability, there seems to be a preference among scholars for local expla-

nations, focusing on single predictions. Nevertheless, methods that can provide both local and global

perspectives are ideal. Regarding the portability of explainability, methods that can be applied to all

types of black-boxes are preferred, as these agnostic approaches “provide crucial flexibility in the choice

of models, explanations, and representations, improving debugging, comparison, and interfaces for a

variety of users and models” [43]. However, model-specific methods are more common, which is as-

sociated with the fact that images are the most widely used data type, and CNNs are frequently used

for image classification. This is why CNN-specific methods are very popular. Images are the main data

type studied in the XAI field, followed by tabular data - Figure 2.5 on the right. For tabular data, around

half of the methods focus only in classification tasks. The other half can be applied to both regression

and classification tasks, which is of course ideal. Text, unlike tabular and image data, does not have

a structure, so its related tasks are usually very complex. There is enormous research in this field in

literature, which is known as Natural Language Processing (NLP) [33]. However, due to its high com-

plexity, explanations of text data are at the very early stages compared to the former ones. Other data

types include time series or video data, which are even more complex and in an earlier stage regarding

explainability approaches.
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Figure 2.5: Left: Number of XAI methods considering the portability (agnostic (A) vs specific (S)) and scope (global (G) vs local
(L)) of explanations. Right: Number of methods applicable to each data type: images (IMG), tabular data (TAB), text (TXT), any of
the previous (ANY), or others, namely TS and VID (Others).

For each of the three input data types mostly recognized in the literature - tabular (regression or

classification problems), images, and text - different types of explanations can be given as an output.

This is illustrated in Figure 2.6, where [6, 33]:

• Feature Summary (FS) explanations provide summary values for each feature, usually together

with a visualization plot. These values can be a single number per feature (most common), such

as feature contribution, a simpler one, like a model prediction, or a more complex one, like a

number for each feature pair, representing their pairwise feature interaction strength. For tabular

data, feature summary, in particular feature contribution, is the most widely used approach by XAI

developers.

• Explanations can be presented in the form of Rules, which are a set of conditions that an instance

must satisfy in order to meet the rule’s decision. This type of explanations is popular, as, due to

their logic formalization, they are considered easily understandable.

• Some methods return Data points (already existent or newly created). These can be prototypes,

which are examples that characterize the predicted outcome, or counterfactuals, which are ex-

amples similar to the input data instance, that are found by making the smallest change to some

feature values that changes the prediction to a predefined (relevant) output. Note that counterfac-

tuals are gaining a lot of attention because they are seen as human-friendly explanations.

• An Attention Map is matrix of scores which reveals how each word in the input text are related to

each other.

• A Saliency Map highlights the contribution of each pixel/word for a particular class. For image and

text data, the most commonly used methods are the ones that create saliency maps. Note that

this approach can be seen as the translation of the feature contribution approach for tabular data.

• Concept Attribution methods compute attribution to a predefined target “concept” in the image.

The explanations show how sensitive is the output (e.g. a prediction of wolf) to a concept (e.g. the

presence of snow).
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Figure 2.6: XAI methods: possible inputs and outputs.

From the SoTA literature analysis, it is clear that a large number of methods have been proposed, with

a peak in publications reached in 2017. However, since then, and as it can be seen in Figure 2.7, with

a large number of XAI methods available, the subject of publications has shifted towards categorization

and discussion articles, as a consequence of the need for organization in this area of scientific research.

In particular, there has been increasing research in the evaluation and comparison of XAI methods,

which can be effectively performed if the relevant properties all the methods are meant to cover are

correctly identified. This is discussed in detail in Section 2.4.

Figure 2.7: Trends in XAI publications. There has been a shift from the development of new XAI methods towards categorization
and discussion papers.

2.3.3 Selected Methods

This Subsection provides a description of 9 selected post-hoc methods for explainability. Besides

CIU, developed by Kary Främling in 1996, other 8 well-known methods were chosen with the purpose

of selecting popular methods that cover all of the possible inputs and outputs in Figure 2.6, and that are

going to be used to explain the predictions of the heart classification problem in Chapter 4 (to which the

reader is referred to for explanations visualization). Before that, some theoretical foundations are given,

to avoid confusion due to ambiguity.

Explaining the outcomes of a model f usually means explaining how each feature influences the pre-
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diction of the instance(s) being explained and by how much [44]. For a linear model, a white-box model

and an intrinsic method for explainability, its output can be directly explained. The learned relationships

are linear and the prediction for a single instance x is the weighted sum of its features (also called input

variables) [6] and it is given by Equation 2.1. The feature values are represented by xi, with i = 1, ..., p,

where p is the total number of features. The small omega wi represents the learned feature weight for

feature xi. The first weight w0 is not multiplied with a feature and it is called the intercept, which can be

seen as a baseline3.

f(x) = y = w0 + w1x1 + ...+ wpxp (2.1)

In Decision Theory and related sub-domains such as multiple criteria decision making (MCDM) and

multi-attribute utility theory (MAUT), feature importance and utility concepts are clearly defined [45].

For a linear model like the one given by Equation 2.1, a numerical weight wi expresses the importance

of an input feature and a numerical score xi expresses the utility of different possible input values for

different outcomes, i.e., how good or favorable a value is [46]. So, how is the feature influence (for

a prediction f(x)) expressed? The answer is in Equation 2.2, where ϕi(x) represents the difference

between what a feature contributes when its value is xi and what it is expected to contribute - feature

influence4. If the influence ϕi(x) “is positive, then the feature has a positive contribution (increases

the prediction for this particular instance),if it is negative, then the feature has a negative contribution

(decreases the prediction), and if it is 0, it has no contribution” [47] to the desired output (baseline).

ϕi(x) = wixi − wiE(Xi) (2.2)

So that all the introduced concepts are clearly understood and distinguished, an illustration is pro-

vided, using an example of how the weighted average grade of a university student is calculated (range

from 10 to 20, as only students with grades above 10 are approved). Considering Paul has 4 courses,

where the number of credits is 6 for the first course, 9 for the second, and 15 for the third, giving a total

of 30 credits. Paul’s weighted average grade f(x) can be represented in the form of equation 2.1 as

f(x) = 0.2x1 + 0, 3x2 + 0, 5x3. If x = (10, 19, 15) (meaning Paul’s final grade is 15.2) and the average

grade of all students is 15 (baseline), then:

• The weight wi of each course is the number of credits for that course and corresponds to the

importance of the course (the courses are the features). The courses have an importance of 0.2

(=6/30), 0.3 (= 9/30), and 0.5 (= 15/30), respectively, for the final weighted grade. So, the most

important course is the third, with an importance value of 0.5 (it contributes in 50% to the output

prediction).

• The utility value of each course is the obtained grade for that course. The utility values are 10,

19, and 15 which in percent (considering the range from 10 to 20) are 0, 0.9, and 0.5. So, the most
3In fact, when the features have been standardized (mean of zero, standard deviation of one), w0 is the prediction of the

instance x with all features xi at their mean value [6].
4Note that such influence is independent of the values of other features. This is because the linear model is additive (meaning

the features do not interact), making it and other additive models easy to understand [47].
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favorable value is 19, the grade obtained for the second course.

• The feature (course) influence can be calculated only when a baseline or reference level is consid-

ered, which here is the average grade of all students, 15 (in percent is 0.5). The feature influence

ϕi(x) can be directly calculated from equation 2.2, using the normalized values and 0.5 as the

expected value. So, the first course value has a negative influence compared to the reference with

a magnitude of 0.15. The second has a positive influence of 0.126 for the final grade 15.2, when

comparing with a baseline of 15. For the third course, the influence is 07, which makes sense

because Paul had a grade of 15, and the comparison is with the reference which is also 15. This

is very important to keep in mind, as although the third course is the most important for the final

grade, in this case, it has 0 influence due to what was mentioned just before.

Computing the importance, utility, and influence values for this illustrative example was simple, be-

cause the model is known (white-box model) and the features do not interact [47]. However, when

dealing with black-boxes, f(x) is unknown, which restricts the way of observing the model behavior.

Then, to “get inside” a black-box, the adopted approach of perturbation-based methods is to change

the input space and observe what happens to the outputs. From here, the same (and other) concepts

can be calculated and studied, although their calculation becomes more complex. The following XAI

methods perform this study in different ways.

Partial Dependence Plot (PDP)

The partial dependence plot (PDP) [48] provides a visualization tool, which the authors consider to

be one of the most powerful explanation tools. The PDP is a global and feature summary (FS) method

for tabular data, as it considers all instances and shows the marginal effect that one or two features

have on the predicted outcome of a ML model. It is also a model-agnostic method, as it can be used to

explain models produced by any black-box prediction algorithm.

Thinking of a single instance x, fi(x), which formula is displayed in 2.3, represents the average pre-

diction for that instance when feature i is varied over its range (taken from the training data, using a

grid), while the values of other input features remain fixed [47]. This can also be thought of globally,

i.e., for all inputs xn with n = 1, ...N (size of the training dataset), and considering a subset of features

S (with complementary subset of features C), instead of a single feature i, which leads to the partial

function 2.4 that is displayed in a PDP. The feature vectors xS and xC together make up the total input

feature space x. By marginalizing the output over the distribution of the features in set C, the acrshortpd

function depends only on the features of interest in set S (interactions with other features are included,

which is a problem when features are correlated), showing the relationship between them and the pre-

dicted outcome [6]. As dP (xC) is not known, the approximation taken in the last step of equation 2.4 is

straightforward: “we estimate the true model with f , the output of a statistical learning algorithm, and we

estimate the integral over xC by averaging over the NxC values observed in the training set” [49].

5ϕ1 = w1x1 − w1E(X1) = 0.2 ∗ 0.0− 0.2 ∗ 0.5 = −0.1
6ϕ2 = w2x2 − w2E(X2) = 0.3 ∗ 0.9− 0.3 ∗ 0.5 = 0.12
7ϕ3 = w3x3 − w3E(X3) = 0.5 ∗ 0.5− 0.5 ∗ 0.5 = 0
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fi(x) = E[f(x1, ..., Xi, ..., xp] (2.3)

fS = E[f(xS ,xC ] =

∫
f(xS ,xCdP (xC) ≈

1

N

N∑
n=1

f(xS ,xCn
) (2.4)

The visualization of the partial dependence (PD) function described above is limited to low-dimensional

arguments, in fact no more than 2-dimensional. Functions of a single real-valued variable, i.e., the PD

function for one numerical feature, can be plotted as a graph of the values of fi against each correspond-

ing value of i (example in Figure 4.3). Functions of a single categorical variable, i.e., the PD function for

one categorical feature, can be represented by a bar plot, each bar representing one category and the

bar height the value of the function (example in Figure 4.4). Functions of two real-valued variables can

be represented using mesh plots or correlation plots [6, 48] (see Figure 4.5).

PDP plots can be useful for finding linear, non-linear (more complex), and no relationships (mono-

tonic) between the features and the target outcome. Recently, Greenwell et al. [50] proposed a method

for calculating a feature importance measure based on PDP. The idea behind it is that a flat line (i.e., a

monotonic relationship) on a PDP indicates that the feature is not important, and the more the function

varies, the more important the feature is [6].

Individual Conditional Expectation (ICE)

Individual Conditional Expectation (ICE) plots [49] provide a visualization tool, that consists in the

disaggregation of the output of classical PDPs introduced above. ICE is the equivalent to PDP for N

individual data instances, generating N conditional expectation curves. Then, it is a local (although also

providing a global overview) and FS method for tabular data. It is also a model-agnostic method, as it

can be used to explain models produced by any black-box prediction algorithm.

The values for one line (for one instance x) are computed using formula 2.3, but without considering

the average prediction, i.e., the predictions for that instance when feature i is varied over its range are

plotted while the values of other input features remain fixed:

fi(x) = f(x1, ..., Xi, ..., xp) (2.5)

Like in PDP, instead of an individual feature i, a subset of features S (with complementary subset

of features C) can be considered, although usually |S| = 1 (only one feature is considered at a time,

as more than one would not be possible to clearly visualize in the plot). The lines for N observations

constitute the final ICE plot. This way, “the ICE algorithm gives the user insight into the several variants

of conditional relationships estimated by the black box” [49]. In contrast to PDPs, where the average

effect is provided (global), in ICE it is possible to see individual effects, and therefore heterogeneous

relationships and interaction effects can be revealed [6]. Both PDP and ICE approaches basically make

use of the utility values associated with each feature, changing them and visualizing the changes in the

output prediction.
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The visualization of ICE plots is limited to one feature. Functions of a single real-valued variable,

i.e., the ICE function for one numerical feature, can be plotted as a graph of the multiple values of fi(x)

against each corresponding value of i (example in Figure 4.6). Functions of a single categorical variable,

i.e., the ICE function for one categorical feature, can be represented by a box plot, instead of a bar plot,

because the predictions are not averaged (example in Figure 4.8). Other types of ICE plots (centered

and derivative) are proposed in the original paper [49], which are not covered here.

Permutation Feature Importance (PFI)

Permutation Feature Importance (PFI) method was originally proposed by Breiman in 2001 for a

random forest (RF) model [51]. The author, when introduced random forests, stated that these models

are not easy to understand (they are in fact seen as black-boxes) and that it is necessary to at least

understand how the input variables are providing the elevated predictive accuracy. Then, PFI is a global

feature importance method, and RF-specific, being used for both classification and regression tasks.

PFI works by measuring the increase in the prediction error of the model after permuting the feature’s

values, which breaks the relationship between the feature and the true outcome [6]. Breiman, in his

paper provided how this is computed for a RF classifier: “Suppose there are p input variables. After each

tree is constructed, the values of the ith variable in the out-of-bag examples are randomly permuted and

the out-of-bag data is run down the corresponding tree. The classification given for each xn that is out

of bag is saved. This is repeated for i = 1, 2, ..., p. At the end of the run, the plurality of out-of-bag

class votes for xn with the ith variable noised up is compared with the true class label of xn to give a

misclassification rate” [51].

The output of this approach, i.e., the global feature importance measure (FS value), is the percent

increase in misclassification error rate, for each feature, as compared to the out-of-bag rate (with all

feature’s values intact). This works for classification. For regression, instead of the error rate, the mean

squared error (MSE) is computed. In both cases, a feature is considered important if permuting its

values increases the prediction error, because the model relied on the feature for the prediction. On

the contrary, a feature is considered unimportant if permuting its values does not change the prediction

error, because the model ignored the feature for the prediction [6].

In 2010, Altmann et al. [52] proposed an heuristic method called permutation importance (PIMP)

that provides p-values for the importances. Furthermore, also based on PFI, Fisher et al. [53] recently

proposed a model-agnostic version of this method called model reliance [6].

Local interpretable model-agnostic explanations (LIME)

Linear models like the one described in equation 2.1 are transparent (white-boxes) and considered

easily understandable to humans. These type of models are often used to explain more complex non-

linear models (black-boxes), being for this reason called surrogate models. Local interpretable model-

agnostic explanations (LIME) proposed by Ribeiro et al. [40] in 2016 is an XAI method in which the

authors locally train surrogate models to approximate and explain individual predictions of any type of
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black box model. LIME is then a local model-agnostic method, and can be used with any type of data

input. It creates a feature summary visualization for tabular data and a saliency map for images and text.

The primary intuition behind LIME is presented in Figure 2.8, where the goal is to locally explain a

complex black-box model i.e., explain a single instance of interest x (bold red cross) with two explana-

tory features (two axes). The decision function f for a binary classifier is represented by the blue/pink

background, each colour indicating the combinations of values of the two variables where the complex

model classifies the observation with that class. LIME samples instances around x, generating an artifi-

cial dataset (dots and crosses), to which a surrogate model (in this case a simple linear model indicated

by the dashed line) is fitted to construct a local approximation of the underlying model. The size of the

dots and crosses in Figure 2.8 represent the proximity to the instance being explained [40, 44].

Figure 2.8: Intuition behind LIME. The black-box model’s complex decision function f (unknown to LIME) is represented by the
blue/pink background. The bold red cross is the instance being explained. LIME samples instances, gets predictions using f ,
and weighs them by the proximity to the instance being explained (represented here by size). The dashed line is the learned
explanatory function, which is here a simple linear model fitted to the sampled instances. Taken from [40].

Mathematically, LIME minimizes the following expression:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g), (2.6)

where f is the model being explained; g is the surrogate model which can be any model belonging to

a class of potentially interpretable models G, such as linear models or decision trees; π(x) is a proximity

measure between a sampled instance to x, so as to define a neighborhood around x; L(f, g, πx) is a

loss function that measures the discrepancy between g and f in the locality defined by πx; and Ω(g)

is a measure of complexity for model g (e.g., for decision trees can be the depth of the tree, and for

linear models the number of non-zero weights). In practice, the goal is to minimize the lost function

L(f, g, πx) to ensure local fidelity between f and g around x, while keeping Ω(g) low enough to be easily

understandable by humans.

In LIME paper, the authors explain the computation of ξ(x) by focusing on sparse linear models

(default model used in the method’s implementation) with a limited number K of non-zero coefficients.

The algorithm shown in Figure 2.9, taken from the paper, describes how LIME finds its solution. There

are 3 relevant steps:

1. Interpretable data representation

Models f and g can operate on different data spaces [44], as “explanations need to use a represen-

tation that is understandable to humans, regardless of the actual features used by the (underlying)

model” [40]. In this sense, there is some function in LIME implementation that transforms x into its
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interpretable version x′. Interpretable representations frequently used for image, text, and tabular

data, are, respectively: superpixels, based on image segmentation; groups of words; discretization

of continuous features and combination of categorical features. For all data types, a binary vector

x′ ∈ (0, 1)d
′

is usually defined indicating the presence or absence of a (group of) pixel(s), word(s),

or discretization group.

2. Sampling around the instance of interest

In order to train the local-approximation model g, it is necessary to create N new data instances

z′i in the interpretable data space around the instance of interest x′. This is done by using pertur-

bations, i.e., “by drawing nonzero elements of x′ uniformly at random” [40]. From the perturbed

sample z′, the sample z in the original data space is recovered to obtain f(z) (used as a label for

the explanation model g) and πx(z) (to define the local neighborhood around x). By default, an

exponential smoothing kernel8 is used for the latter. The kernel width σ determines how local the

artificial dataset is: A small σ means that an instance must be very close, a larger σ means that

instances that are farther away are also considered for the local model g [6]. The big challenge

is finding the best kernel or width. Looking at the original python code for tabular data, the kernel

width σ is 0.75 times the square root of the number of columns of the training data. It is not clear

how the authors arrived at this result, as they do not provide any reason(s) for it. The same hap-

pens for text and image data, where σ is equal to 25 and 0.25, respectively. Although it seems just

a simple line of code, it is a big issue, as the explanation can drastically change by changing the

kernel width [6].

3. Fitting a weighted surrogate model

Given the dataset Z of perturbed samples (close to the the instance of interest) with the associated

labels f(z) and πx(z), a weighted surrogate model g can be fitted. The most common choices for

class G are generalized linear models. To get sparse models, i.e., models with a limited number

of features, LASSO (least absolute shrinkage and selection operator) or similar regularization-

modelling techniques are used, which are useful to explain models with a very large number of

explanatory (input) variables [44]. By default, in the algorithm presented above, the K-LASSO

method with K non-zero coefficients is used, and weights w are learned via least squares, where

equation 2.6 is optimized to get an explanation ξ(x). Ideally, the features with high contribution in

LIME (with height weights) are the features that are most important for that specific data point.

Anchors

The authors of LIME, 2 years later, introduced a novel local model-agnostic XAI method based on

if-then rules, which they called Anchors [41]. An anchor explanation is a rule that sufficiently “anchors”

the prediction locally, meaning that changes to the rest of the feature values of the instance do not

change the prediction. The authors guarantee that anchors “are intuitive, easy to comprehend, and
8πx(z) = exp(−D(x, z)2/σ2), where D is a distance function (by default cosine distance for text and euclidean distance L2

for images and tabular data) with width σ.
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Figure 2.9: Limiting class G to sparse linear models with a limited number K of non-zero coefficients, this algorithm may be used
to find an explanation ξ(x) that includes K most important features. Taken from [40].

have extremely clear coverage – they only apply when all the conditions in the rule are met, and if they

apply the precision is high (by design)”. It can be applied to any type of data.

The primary intuition behind anchors is presented in Figure 2.10, that depicts both LIME and an-

chors locally explaining a complex binary classifier that predicts either positive or negative (blue or red

background) using two instances of interest (+ and -). LIME explanations work by learning a linear de-

cision boundary that bests approximate the underlying black-box model under a perturbation space D,

with some local weighting. Anchors approach also deploys a perturbation-based strategy for instance x,

using the same perturbation space D, but the coverage is adapted to the model’s behavior and making

their boundaries clear. The adaption to the model’s behaviour can be clearly seen in the anchor on the

right of Figure 2.10, as the coverage adapts and gets broader. The same does not happen with LIME,

which can be verified by the fact that the explanation on the right is a much better local approximation of

the black box model than the one on the left (that did not adapt).

Figure 2.10: Intuition behind anchors vs LIME. There are two instances of interest (+ and -). Contrary to LIME, anchors adapts
their coverage to the model’s behavior (the anchor on the right is broader), making their boundaries clear. Taken from [41].

Mathematically, an anchor A is a local explanation of instance x if:

ED(z|A)[1f(x)=f(z)] ≥ τ,A(x) = 1 (2.7)

where f is the model being explained, being used to predict a label for x and its perturbations (like

instance z); A is a set of predicates, i.e., the resulting decision rule, such that A(x) = 1 if all its feature

predicates are true for instance x9; D(.|A) denotes the conditional distribution when the rule A applies,

9For example, for the text input instance x = “This movie is not bad.”, f(x) = Positive (sentiment), A(x) = 1 where A = {“not”,
“bad”}.
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i.e., it indicates the distribution of neighbors of x that include all the predicates included in A; and

0 ≤ τ ≤ 1 specifies the desired level of precision, i.e. only rules that achieve a local fidelity of at least τ

are considered (default value of τ is 0.9) [41].

In practice, a rule is constructed until there is statistical confidence concerning their precision. More-

over, the approach consists in choosing a rule that has the highest coverage among all eligible rules (all

those that satisfy the precision threshold). There is a trade-off between precision and coverage [6].

Since the artificial generation of the dataset D may lead to a huge number of samples, anchors

exploits a multi-armed bandit algorithm [54]. Furthermore, since the number of all possible anchors is

exponential, the method uses a bottom-up approach and a beam search [33, 55]. These components

are not described here, as they are very complex and out of the scope of this work.

It is important to mention that LIME and Anchors original code implementations (in Python) use an

approach to provide a global perspective of the underlying model, by explaining several represented

individual predictions of that model, which the authors call submodular pick [40, 41].

Shapley values

The Shapley value is a solution concept from coalition game theory that assigns a payoff to each

player according to their contribution to the total payout [56]. This approach was adapted to ML by

Štrumbelj and Kononenko [57, 58], by assuming each feature value is a player in a game where the

prediction is the payout. The goal is to compute each feature’s payoff, i.e., to know how to fairly distribute

the payout among the features, which is done by calculating the average marginal contribution of that

feature value across all possible coalitions [6]. Shapley values is local a model-agnostic, working for

both classification and regression tasks in the tabular domain.

Taking equation 2.1, the average marginal contribution of the ith feature’s value for some instance

x is given by equation 2.2, where E(Xi) is the mean effect estimate for feature i. So, for this simple

additive model, calculating the marginal contribution of a feature i for f(x) it is calculating the feature

influence having as baseline the average effect of that feature (the latter is given by formula 2.3), i.e.

the contribution is the difference between the feature effect minus the average effect. Summing all the

feature influences for instance x, the result is the predicted value for that instance minus the average

predicted value:

p∑
i=1

ϕi(x) =

p∑
i=1

(wixi − wiE(Xi)) = f(x)− E[f(x)] (2.8)

This result is straightforward, in this case, due to the fact that the linear model is additive (that is,

the features do not interact). With the help of coalitional game theory, it is possible to estimate these

feature influences for any type of (black-box) model. So, the shapley value of a feature value is its

marginal contribution to the payout (model prediction), weighted and summed over all possible feature

value combinations. In this sense, the shapley value for feature (utility) value xi of instance x is:
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ϕi(x) =
∑

S⊆{1,...,p}\i

|S|!(p− |S| − 1)!

p!
(△(S ∪ j)−△(S)) (2.9)

where S is a subset of features (and p is the total number of features) and △(S) is the change in

prediction caused by observing the values of a subset S of features for instance x: △(S) = fS(x)−E[f ].

“The Shapley value is the only attribution method that satisfies the properties Efficiency, Symmetry,

Dummy and Additivity, which together can be considered a definition of a fair payout” [6].

Computing Shapley values is computationally expensive so most model-agnostic implementations

only estimate approximate Shapley values, such as the approach proposed by Štrumbelj and Kononenko

[47], which consists in an approximation with Monte-Carlo sampling:

ϕ̂i =
1

M

M∑
n=1

(f(xm
+i)− f(xm

−i)) (2.10)

where M is the total number of samples drawn at random and with replacement (from the training

data); f(xm
+i) is the prediction for x, but with a random number m of feature values replaced by feature

values from a random data point in M , except for the respective value of feature i; and f(xm
+i) is the

same, but also replacing the feature value i. The authors guarantee that this approach is an “unbiased

and consistent estimator of ϕi(x)” and the approximation algorithm is provided in detail in the original

paper [47]. In the case of an additive model, Equation 2.8 holds for instance x and also for each feature

value individually.

SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP) by Lundberg and Lee [59] is another alternative approach

to approximate shapley values. Together with LIME, SHAP is currently the most used method within

the category of (local) model-agnostic post-hoc XAI. The authors proposed SHAP values as a unified

measure of feature influence, based on shapley values. As stated above, shapley values are used to

fairly distribute the payout (i.e., the prediction of the model f being explained) among the features. “A

player can be an individual feature value, e.g. for tabular data. A player can also be a group of feature

values. For example to explain an image, pixels can be grouped to superpixels and the prediction

distributed among them” [6]. This way, like in LIME, SHAP can be used with any type of data, and it

also involves the creation of an interpretable data representation. SHAP authors, in their paper [59],

introduced the concept of additive feature attribution (AFA) methods, where the (local) explanation of

model f , i.e., the explanation of an individual instance x is given using an explanation (surrogate) model

g that is a linear function of binary variables:

ξ(x) = g(z′) = ϕ0 +

P∑
i=1

ϕiz
′
i (2.11)

where z′ ∈ {0, 1}P ; P is the number of simplified input features; and ϕi are shapley values. This

concept of simplified input features is the same as the concept of interpretable data representation

25



introduced in LIME, and, similarly, to compute shapley values, a binary vector is defined that indicates

the presence or absence of a feature value “in the game”. The representation as a linear model of

simplified input features is a trick for the computation of the shapley values. When all feature values are

present, for x, the instance of interest, formula 2.11 simplifies to [6]:

ξ(x) = g(x′) = ϕ0 +

P∑
i=1

ϕi (2.12)

This view connects shapley values and LIME, as both belong to AFA methods. Moreover, according

to Lundberg et al. [59], shapley values represent the only possible method in the class of AFA methods

that will simultaneously satisfy three important properties: local accuracy, consistency, and missingness.

Local accuracy (same as additivity property) states that when approximating the original model f for a

specific input x, the explanation’s influence values (here calculated as shapley values) sum up to the

output f(x), i.e., f(x) = g(x′).

Specifically, the SHAP authors proposed KernelSHAP, an alternative, kernel-based estimation ap-

proach, which is essentially an adaptation of another AFA method, the LIME method by Ribeiro et al.

[40], to estimate shapley values. KernelSHAP estimates for an instance x the influence of each feature

value xi to the prediction, following a similar algorithm as the one presented in Figure 2.9 for LIME. The

difference is on the definition of the local neighborhood around x, i.e., in how πx is defined, which leads

to the returning of shapley values as w’s of the fitted linear model. So, to obtain weighted shapley values,

SHAP authors proposed the SHAP kernel10:

πx(z) =
M − 1(

M
z

)
|z|(M − |z|)

(2.13)

In practice, if this kernel was used with LIME algorithm 2.9, LIME would also estimate shapley values!

So, kernelSHAP is basically a combination of the AFA methods LIME and shapley values. The authors

state that “jointly estimating all SHAP values using (linear) regression provides better sample efficiency

than the direct use of classical Shapley equations”[59]. To conclude, the biggest distinction to LIME is

the weighting of the (sampled) instances in the surrogate model. LIME weights the instances according

to how close they are to the original instance. The more 0’s in the binary vector z′ ∈ {0, 1}P , the smaller

the weight in LIME. SHAP weights the sampled instances according to the weight z′ would get in the

shapley value estimation. “Empty” vectors (i.e.few 1’s) and “full” vectors (i.e. many 1’s) get the largest

weights. “The intuition behind is: We learn most about individual features if we can study their effects

in isolation. If a coalition consists of a single feature, we can learn about this feature’s isolated main

effect on the prediction. If a coalition consists of all but one feature, we can learn about this feature’s

total effect (main effect plus feature interactions). If a coalition consists of half the features, we learn little

about an individual feature’s contribution, as there are many possible coalitions with half of the features”

[6].

The SHAP authors [59] also proposed other model-specific methods for estimating shapley values,

such as DeepSHAP and TreeSHAP. They are more efficient approaches for deep learning and tree-

10(M
z

)
is read as “M choose z” and is the number of ways to select (a subset of) z features from a set of M features.
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based models, respectively. They are not further described here.

Lundberg et al. [60] suggested using mean(|ϕi|) as a global feature importance estimate, when

averaged over all instances and where influence values ϕi are shapley values. SHAP global feature

importance is an alternative to PFI. However, PFI is based on the increase in model error, while SHAP

is based on magnitude of feature influence values, being questioned whether the use of the latter for

estimating importance values is reasonable.

Counterfactual explanations (CFEs)

Counterfactuals were firstly introduced as an XAI method by Watcher et al. [61]. The authors created

a local model-agnostic method that gives CFEs under the intuition that model explanations should take

a similar form to the following one: “You were denied a loan because your annual income was £30,000.

If your income had been £45,000, you would have been offered a loan”. The decision is followed by

a counterfactual, indicating a causal relationship between the input feature “annual income” and the

outcome “loan denied”.

An agnostic counterfactual explanation can be defined as “the smallest change to the world that

can be made to obtain a desirable outcome, or to arrive at the closest possible world, without needing

to explain the internal logic of the system” [61]. The smallest change to the world corresponds to the

smallest change to the feature(s) values that change the prediction into a desirable predefined outcome.

“Multiple counterfactuals are possible, as multiple desirable outcomes can exist” [61].

A naive approach to generate CFEs is searching by trial and error, which involves randomly changing

feature values of the instance of interest x and stopping when the desirable outcome is predicted. A

better approach is to define a loss function based on different criteria, such as “the smallest change to

the world”. This loss takes as input x, a counterfactual x′ and the desired (counterfactual) outcome y′.

Then, an optimization algorithm that minimizes this loss is used. Many CFE-based methods use this

approach, differing in their definition of the loss function and optimization method. The original paper

[61] minimizes a loss function defined by equation 2.14 that measures how far the predicted outcome of

the counterfactual f(x′) is from the predefined outcome y′ (first term) and how far the counterfactual x′

is from the instance of interest x (second term, where d is a distance function11), adding a parameter λ

that balances the first term with the second term12 [6]:

L(x, x′, y′, λ) = λ ∗ (f(x′)− y′)2 + d(x, x′) (2.14)

CFEs authors state that “the choice of optimizer for these problems is relatively unimportant”, using

the ADAM optimization algorithm [62] (a gradient-based approach) to minimize the loss function 2.14 for

all their experiments. The initialization of each run is done with different random values for x′ and final

counterfactual is the best minimizer of equation 2.14.

11The authors suggest using as distance function the Manhattan distance weighted by the inverse median absolute deviation
[61].

12A higher value of λ favors the first term, meaning the generated counterfactuals have predictions close to the desired outcome;
a lower value favors the second term, meaning the generated counterfactuals are close to the instance of interest in terms of feature
values.
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The goal of this approach is not to provide insights on the inner workings of a black-box model or

on its decision-making, but rather to identify and reveal which external factors would require changing

in order for the desirable output to be achieved [63]. The authors highlight that “as a minimal form of

explanation, counterfactuals are not appropriate in all scenarios. In particular, where it is important to

understand system functionality, or the rationale of an automated decision, counterfactuals may be insuf-

ficient in themselves. Further, counterfactuals do not provide the statistical evidence needed to assess

algorithms for fairness or racial bias” [61]. However, CFEs, such as the previously described XAI meth-

ods, represent a first step that balances the achievement of the requirements for trustworthy AI, such as

transparency, explainability, and accountability, while potentially increasing public acceptance of auto-

matic decisions. There are other CFE-based model-agnostic (and also model-specific) such as Guided

Proto [64], which uses class prototypes to find counterfactual explanations of classifier predictions, and

Multi-Objective Counterfactuals (MOC) method [65], which translates the counterfactual search into a

multi-objective optimization problem. MOC simultaneously minimizes a four-objective loss function, in

which the objectives are: 1)the prediction of a counterfactual x′ should be as close as possible to the

desired prediction y′; 2) the counterfactual x′ should be as similar as possible to the instance of inter-

est x ; 3) change as few features as possible; 4) a counterfactual instance should have feature values

that are likely (a training data or another dataset is required to guarantee this) [6]. Comparing with the

originally described approach, MOC adds the latter two objectives.

Contextual Importance and Utility (CIU)

Contextual Importance and Utility (CIU) [42] is inspired from MAUT and comprises ideas from all

of the methods introduced before (note that it was introduced before the former, in 1996). It is a data

and model-agnostic method that provides a unified definition of global and local feature importance

that is applicable also for post-hoc explanations, where the value utility concept provides instance level

assessment of how favorable or not a feature value is for the outcome.

CIU uses core MAUT concepts of feature importance, influence, and value utility and specifies

how they can be estimated for any model f(x) for a specific instance or context x. Similar to LIME and

SHAP, simplified input features are also implemented, but CIU specifically uses utility functions ui(xi) to

transform each feature value x1, ..., xp into final utility values, which are constrained to the range [0, 1]13.

Joining all the utility functions, and considering a simple linear model, equation 2.1 for an instance or

context x takes the form of a p-attribute utility function (concept from MAUT):

u(x) = u(x1, ..., xp) = w1u1(x1) + ...+ wpup(xp) (2.15)

CIU estimates the values wi and ui(xi) in Equation 2.15 for one or more input features {i} in a

specific context x and any black-box model f , where the context is defined by the instance or another

set of inputs x{I} where {i} and {I} are index sets and {i} ⊆ {I} ⊆ 1, ..., p. This idea of structuring

the input domain was introduced by Främling in 1996 [42], for defining what was called intermediate

13In the example of the calculation of Paul’s weighted average grade, the final utility value of each course is the obtained grade
for that course in percent (a utility function was used to transform the grades from a range [10, 20] to [0, 1]).
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concepts that make it possible to group features together and introduce higher levels of abstraction with

several levels of detail14. As most model-agnostic post-hoc XAI methods only attempt to estimate the

importance/influence of one feature i for the global output, CIU’s intermediate concepts are not further

considered here, for simplification purposes. So, from now on, only the case when {i} has one single

index i and the case when {I} = 1, ..., p (the “entire” instance x) are considered. However, it should be

noted that the possibility of creating abstraction level of explanations, which is not present in none of the

previously described methods, is an advantage that makes it possible to use user-adapted vocabularies

and condense the amount of information shown.

Since ui(xi) are in the range [0, 1] and u(x) is also constrained to the range [0, 1], the importance

of feature i is wi by definition. However, as stated before, When studying a complex (non-linear) model

f , wi are not known. Contextual Importance (CI) takes the range of variation [0, wi] as the importance

value to estimate, which can be done using equation 2.5 introduced for the ICE (and PDP) method,

but considering the utility function, instead of f(x) directly. This gives us an estimation of the range

[umini(x), umaxi(x)], and CI in[0, 1], which corresponds to the factor wi in equation 2.15. Then, CI is

defined as:

CIi(x) =
umaxi(x)− umini(x)

umax− umin
(2.16)

If the model f(x) is linear, then CI(x) should be the same for all/any instance x, like in equation 2.1.

In this sense, CI is conceptually identical with global feature importance. If the model is non-linear, then

wi(x) depends on the instance x. The utility values umini and umaxi have to be mapped to actual output

values y = f(x). If f is a classification model, then the outputs y are typically estimated probabilities for

the corresponding class, so u(x) is simply equal to y. Then, in this case, umax and umnin, are set to

the minimal (MIN) and maximal (MAX) y values present in the training set, i.e. 1 and 0 for classification

tasks. Moreover, umaxi/umini is simply the maximum/minimum value f(x) takes when when feature i

is varied over its range while the values of other input features remain fixed.

Contextual Utility (CU) corresponds to the factor ui(xi) in equation 2.15, expressing to what extent

the current feature value xi contributes to obtaining a high output utility ui(x). Considering again a clas-

sification model, it expresses how favorable that current feature value ui(x) is to obtain a high prediction

probability for the corresponding class. CU in[0, 1] is defined as:

CUi(x) =
ui(x)− umini(x)

umaxi(x)− umini(x)
(2.17)

Besides CI and CU, Främling et al. [66] introduced the term contextual influence (CInfl), which

defines feature influence in a similar way as in Equation 2.2. However, it uses wiui(xi) instead of wixi,

where wi and ui(xi) correspond, in the CIU context, to CIi(x) and CUi(x), respectively. This is depicted

in Equation 2.18, where E(U(xi) is the expected utility value for feature i, which is represented by ϕ0 for

consistency purposes. Since utility u ∈ [0, 1] for all features, it intuitively makes sense to use the average

14Intermediate concepts correspond to the different levels of the inference tree of a rule-based expert system. In the case of
selecting the best car, for example, a typical intermediate concept would be “performances”, which groups together basic concepts
like “power”, ”weight”,“top speed” and “acceleration” [42]. This is close to the “coalition” notion for Shapley values.
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utility value 0.5 as a constant baseline for all features. This is the default approach, however, any value

can be considered for the baseline.

ϕi = wiui(xi)− wiE(U(xi))
CIU
= CIi(x)CUi(x)− CIi(x)ϕ0 (2.18)

Contextual influence (CInfl) makes it possible to produce influence-based explanations like for AFA

methods (LIME and kernelSHAP), in addition to the original CIU explanations, CI and CU. Another

difference is in how the sampling of instances around x is performed, used to estimate umin and umax.

The approach proposed in the CIU package in R15 [67] uses all possible values when a feature i is

categorical (which can be provided or retrieved from the training data); when a feature i is numerical,

the model is sampled using a set of instances consisting of 1) the instance of interest x, 2) x with feature

value xi replaced by the smallest possible value for that feature mini, 3) x with xi replaced by the

greatest possible value for feature that feature maxi, and 4) a set of instances where xi is replaced with

a random value from the interval [mini,maxi] (which can also be provided or retrieved from the training

data). This approach guarantees exact values for mini and maxi if f(x) is monotonous.

Concluding, the CIU method provides a unified definition of (global) feature importance, (local) fea-

ture utility and (local) feature influence, applicable in different contexts. It provides explanation flexibility

based on solid theory, without creating any surrogate model g (like in LIME) or making any linearity

assumptions (like in kernelSHAP). Moreover, the underlying idea of CU is also counterfactual by the

PDP/ICE approach, i.e. keeping everything else unchanged, what happens if modifying this/these val-

ues (also known as “Ceteris paribus” (CP) principle). Moreover, CU values provide information on how to

change the feature values (or the world, expression used above when describing the method CFEs) so

that a desirable outcome can be obtained, which in CIU corresponds to the highest output utility ui(x).

2.4 XAI: Evaluation

Evaluation of XAI systems is another important factor in the design process of AI systems, bearing

in mind that different properties are needed to assess explanation validity and quality for a specific

context [68]. There are two main ways of evaluating XAI systems: objective evaluations (i.e., without

user-study), usually using quantitative measures, and human-centered evaluations, usually involving

user-studies with either domain experts or lay persons [12]. In the literature, they are widely referred

as functionally-grounded and application and human-grounded evaluation approaches, where the latter

two belong to the human-centered level with respect to domain experts and lay persons, respectively

[35].

Some XAI benchmark studies (see table A.1) have been conducted. However, most of them fo-

cus on human-grounded (i.e., user studies are performed) and empirical properties, and the ones that

use quantifiable and objective measures are limited and should be improved, as, besides being spe-

cific to particular types of methods, they are not consistent and do not follow any specific criteria. This

15This approach is applicable to any feature set i and I, including 1, . . . ,N.
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shows that the task of evaluating methods for explainability is another big challenge. Moreover, this task

becomes even more challenging due to the fact that there is still a lack of a common agreement be-

tween the research community about the definition for the term explainability and other similar concepts

[11, 12]. A definition of unifying properties and metrics for evaluating and benchmarking explanation

strategies is difficult, particularly when human-grounded evaluations are addressed, being necessary to

focus on objective evaluations that both validate the efficiency of the method and focus on the human

side, aligning the generation of the explanation with the cognitive model of the end-user [33].

Objective evaluations make use of close-ended questions that can be functionally analysed for dif-

ferent XAI methods [69]. According to [70], there is missing in the literature “a standard procedure to

measure, quantify, and compare the explainability of enhancing approaches that allows scientists to

compare these different approaches”. This way, a crucial point within XAI research is to have objec-

tive metrics that can assess different properties that together assess the overall explainability and to be

able to compare different methods regarding different levels of explainability. This does not mean that

human-centered evaluations should not be considered, in fact, they can constitute an additional evalu-

ation approach, where open-ended questions can be used to verify the previously assessed objective

levels of explainability and achieve deeper insights [69].

Concluding, the existing papers in academia show that the research activity in XAI field has been

growing fast, but in different directions, demonstrating two main challenges, which are the lack of com-

mon formalism for defining XAI related concepts and identifying the essential properties scholars should

consider in order to make explainability methods understandable and easily accessible for end-users,

and, most importantly, non-experts [8–10]. Section 2.2.3 provides succinct and unambiguous definitions

of transparency, interpretability, and explainability, with the intent of addressing the first challenge. The

second challenge becomes even more important to overcame due to the fact that a large number of

different XAI methods exist in the literature. Then, it is important to define a set of evaluation criteria that

allow researchers to benchmark them and select the best method to use (considering different contexts

and audiences). There is the need to build a comprehensive and consensual benchmark framework for

XAI methods that can integrate machine learning workflows and pipelines. This is the main objective of

this thesis, which focuses on trying to solve the second mentioned challenge.

2.4.1 Property Identification

As mentioned above, there has been a shift in XAI publications towards organization of the field and

methods evaluation. Moreover, there has been an increasing interest in the evaluation and comparison

of the existent XAI methods, which can be effectively performed if the relevant properties all the methods

are meant to cover are correctly identified. Accordingly, a lot of properties for XAI evaluation have been

proposed, most of them overlapping. From the SoTa analysis, 60 properties were identified. Having

this huge number of proposed properties in the literature raises a big misunderstanding regarding this

topic. Figure 2.11 shows the extent to which these properties have been introduced or mentioned in

state-of-the-art surveys. Moreover, the number of surveys that propose objective metrics (i.e., without
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user-studies) to assess the respective property is shown with a darker color, next to the total number of

surveys that introduce or mention the property. This histogram highlights the lack of a systematic orga-

nization of the properties devoted to XAI evaluation, and the lack of quantifiable and objective metrics.

Figure 2.11: SoTa Property Identification: number of surveys that introduce or mention XAI evaluation properties. The number of
surveys that propose objective metrics to assess the respective property is shown with a darker blue color.
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Chapter 3

XAI Benchmark Framework

Formalization

This chapter is dedicated to the building process of the comprehensive and consensual benchmark

framework for XAI methods. Section 3.1. comprises the selection and description of evaluation proper-

ties. Section 3.2 provides an (R) implementation of the developed framework for tabular data.

3.1 Property Selection

As a large number of different XAI methods exist in the literature, it is important to define a set

of evaluation criteria that allow researchers to benchmark them. Since knowledge about this topic is

scattered, in this section, property selection and respective formalization is completed, presenting an

aggregated view of what to evaluate by arriving to 10 concrete properties on explanation quality and

validation. This selection was achieved by reviewing all the properties found in the literature, presented

in the histogram of figure 2.11, and “merging” them together in a non-overlapping, clear and consensual

way. Each property is introduced in each of the subsections, where both quantitative and qualitative

metrics are suggested. It is important to underline that only objective measures (i.e., without user-

studies) are used here, which have been mentioned among the XAI community as important to adopt

and not sufficiently studied [5, 36]. Table 3.1 summarizes the 10 selected properties, including a brief

description, the included properties from Figure 2.11, and the target group(s). The target groups include

the (X)AI developers (dev), deployers (dep), and end-users, who are all somehow affected by all of the

properties. However, in table 3.1, the bold check indicates the prominent group.

3.1.1 Representativeness

Representativeness has not been commonly used as a property in the literature to evaluate XAI

techniques. However, it comprises the scope and level of dependency, which are widely mentioned in

the SoTa surveys as a taxonomy to separate the explainability methods. Thus, the representativeness
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Table 3.1: 10 selected properties for evaluation and benchmark of XAI methods. The coverage of these properties helps in the
achievement of 2 XAI goals: understandability and usability of (X)AI systems.

property assesses the extent to which the generated explanation addresses the entire model behavior

considering its scope and translucency/portability. The former, which corresponds to the 6th column

in table A.3, indicates if the method aims to explain the entire model behavior (global explanation) or

a single prediction (local explanation) [8], while the latter indicates the level of dependency from the

black box model f , i.e., the extent to which the explanation relies on looking into the internal dynamic

of the model, such as the model’s parameters [71, 72]. Thinking of a white-box model, it reveals all the

mathematical operations and parameters, and therefore it is fully translucent. This is one extreme. At

an intermediate level are model-specific methods, which rely on the inner workings of the underlying

model f and therefore are very translucent (e.g. GadCAM [38]). On the other extreme, there are model-

agnostic methods, that do not consider any internal parameters of f and have zero translucency (e.g.

LIME [40]). Portability, which describes the range of ML models which the explanation method can be

applied to, is inversely proportional to translucency [71] and corresponds to the 5th column in table A.3.

In this sense, model-specific methods are highly translucent but have low portability, and model-agnostic

methods have low translucency but are highly portable. The advantage of high translucency is that the

method can rely on more information to generate explanations. The advantage of low translucency is

that the explanation method is more portable [6]. The portability of a method can also be assessed by

considering if it needs access to the training data to compute an (new) explanation. Furthermore, XAI

methods can be data-specific or data-agnostic. Besides scope and portability, this criterion, i.e., the

applicability of the method, is also used here has a metric to evaluate representativeness, but in terms

of type of input data the explanation can be applied to. A design choice needs to be made by developers

regarding the representativeness of the method by selecting an explanation type suited for a specific

context (considering both the data and the model from which the explanation is being generated). For
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this reason, this property is only evaluated qualitatively to compare and categorize different XAI methods

[72]. The metrics to (qualitatively) assess are: scope, portability, and applicability, and can be directly

formalized to assess any type of XAI method. Nonetheless, there seems to be a preference between

scholars for methods that are highly portable (model-agnostic) and that can be used for all type of inputs

(data-agnostic).

Representativeness is a useful property for AI developers when employing an XAI method in their

model design, as it gives information about the extent to which the method “looks” inside the black-box.

It also concerns AI deployers, specifically at the applicability level, as it is relevant for this target group to

know if the method can be used for any type of input data. For example, if the AI deployer is an hospital,

it may be more useful to employ a data-agnostic method, as in this domain there is often image (e.g.

MRI or CT images), tabular (e.g., clinical data) and text (e.g., doctor annotations) data. However, the

hospital may only want to employ an XAI system regarding a specific problem, for example, brain tumor

detection trough MRI images, and, in this case, a data-specific method for image data is suitable.

3.1.2 Structure & Speed

The structure property assesses the composition (i.e., structure) of the explanation, considering it

should be presented in a way that increases its clarity to the user [72]. It has not been widely used

as a property in the literature to evaluate XAI methods, although other properties that are referred to as

important to consider at this stage can be included in the structure of the explanation, as illustrated in the

second column of table 3.1. Then, the structure includes four main properties, here used as qualitative

evaluation metrics: expressive power, graphical integrity, morphological clarity, and layer separation

[69, 71]. Speed of the explanation is also included together with this property, as it concerns how

much time the explanation takes to be generated, bearing in mind that this should be fast enough to be

employable in real-world applications [11].

Expressive power describes the language of the explanation (if-then rules, histograms, textual expla-

nations, etc.). It can be used to assess and make a comparison between different methods, as some

representation formats are usually considered to be more easily understandable than others [72, 73].

For example, rules and counterfactuals, by providing a logic structure, are often seen as more suitable

for the lay end-user [33]. Another preferred format is textual explanations [74]. Furthermore, the “lan-

guage” can include the usage of higher-level information, abstractions, or suitable terminology, which

are seen as approaches that increase the explanation clarity [72]. As an example, if the end-user is

a person trying to understand why his/her loan was declined, suitable, simple, and clear terminology

should be displayed so that it is easier for that person to easily understand the reasons and change

his/her behaviour. Of course, this suitable terminology, or the use of abstractions, should be an aspect

to be discussed and agreed between the AI developer and the AI deployer, where in this example the

deployer is a bank that it is using an XAI system to predict if someone should or not be accepted for a

loan. This could mean that the terms used in the explanation are different from the features given as

input to model [72]. Graphical integrity assesses how well the explanation reflects the relevance of fea-
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tures or of parts of the explanation. The final explanations should highlight the most important features

and differentiate those with positive and negative attributions. Morphological clarity assesses the extent

to which the relevant features are clearly highlighted and not noisy or confusing to the user. Lastly, layer

separation is used to check if the explanation visualization omits or occludes the original input instance

(it can be a row of a tabular data set, an image, or a sentence in a text) which should be visible for user

inspection [69, 71]. Morphological clarity and layer separation are particularly relevant to consider when

dealing with image data.

In this sense, the structure and speed property concerns how and how fast the explanation is dis-

played, rather than what is explained or how it is obtained. For this reason, the structure is usually only

qualitatively evaluated [72]. The speed is evaluated by performing a runtime analysis that can consist in

measuring the time, in seconds, for a method to generate a single explanation or the number of expla-

nations per second [75]. Some formats and representations should be more easily understandable than

others, and it is an important aspect to be considered during an AI system design so that the explanation

is presented to the end-user with maximum clarity and minimum noise and ambiguity. Structure can also,

and should, be assessed by conducting a human-grounded evaluation. A good structure leads to user

efficiency and good understandability of the method. A fast method leads to computational efficiency

and practical usability of the method. This is why structure and speed is a property that prominently

concerns the end-users of an AI system.

3.1.3 Selectivity

Selectivity has been widely mentioned in the literature to evaluate XAI techniques, belonging to the

group of properties of the so-called human-friendly explanations. In this sense, this property mostly

concerns the end-users of an AI system, as it assesses the size of the explanation, bearing in mind

the human cognitive capacity limitations. It has also been referred to as compactness [72] or sparsity

[1, 70]. It is a common view between scholars that XAI methods should be able to provide selective

explanations, making the explanation very short, displaying only 1 to 3 reasons (this number may vary

from person to person), even if the world is more complex [6, 69]. In this sense, there is a preference

towards methods that can focus on only a few causes deemed to be necessary and sufficient to explain

a particular instance, and not all of them [76].

The selectivity of a method is often evaluated by directly measuring the explanation (absolute or rel-

ative) size [72]. This metric depends on both the type of explanation (expressive power) and the type of

data. Examples include: the number of features in an explanation, average path length in a decision tree,

reduction w.r.t. complete data sample, the number of decision rules in a set [72], number of features that

can be ignored (effective complexity), mutual information between original samples and corresponding

features extracted for explanations [36], or image entropy or the file size of the compressed heatmap

image [76]. When dealing with counterfactual explanations, the explanation size can be assessed by

the number of generated counterfactuals and for the counterfactual itself by measuring how similar the

explanation is to the original instance, which is also called proximity [11]. Usually, small changes are
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desired to go from the original instance to the counterfactual one - selective counterfactual explanation

[72]. This can be measured using distance metrics, or through the number of changed features.

Closely related to the stability property is requiring that a counterfactual explanation is in the proximity

of the actual instance to prevent that the explanation is an outlier, which is specifically undesirable for

the property truthfulness [72]. Finally, a qualitative metric should be added, which consists in assessing

whether XAI methods have a parameter to tune the explanation size. This is relevant because the end-

user can be an expert or a lay-user that may want access to the complete set of reasons for a particular

decision or just part of it. This is particularly relevant when dealing with tabular data with a big number

of input variables.

3.1.4 Contrastivity

Contrastivity has been mentioned in the literature to evaluate XAI techniques, also seen as a human-

friednly property. For this reason, it prominently concerns the end-users of an AI system. It studies

the discriminativeness of an explanation in relation to a ground-truth event or target, aiming to facilitate

comparisons between them [72]. Another property named separability is closely related to contrastivity

which implies that data instances from different populations must have dissimilar explanations [77].

Humans tend to think in counterfactual cases, i.e., “How would the prediction have been if input X

had been different?” [6, 8]. In this sense, explanations that present some contrast between the instance

to explain and a point of reference are preferable. However, this makes the explanation application-

dependent because it requires some ground-truth point for comparison [77]. And this often depends on

the type of method, on the instance to be explained, but also on the user receiving the explanation [6].

A way of presenting contrastive explanations is to use a standard reference point. Methods that present

counterfactual explanations are gaining a lot of attention because they are contrastive to the current

instance [12], being this the predefined reference point. Another way is to compare to a predefined

output, like the average prediction. In this sense, a qualitative metric should be included here, which

consists in assessing whether the generated explanation provides some contrastivity, considering the

mentioned criteria.

Nauta et al. [72] suggest using a quantitative metric, Target Sensitivity, which assesses the con-

trastivity relative to another class, bearing in mind that class-specific features highlighted by an expla-

nation should differ between classes. This is particularly relevant when an adversarial attack happens,

which fools the underlying model f such that it makes a different prediction for a slightly perturbed input.

In that case, a different prediction should also lead to a different explanation. Target Sensitivity can

be measured using different distance metrics between the explanations, histogram intersection or the

structural similarity index measure (SSIM) between two heatmaps (depending on the type of data).

3.1.5 Interactivity

Interactivity has been widely mentioned in the literature to evaluate XAI techniques, also belonging

to the group of human-friendly explanations. It assesses if the explanation is displayed in an interactive
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form, bearing in mind the user social context [70, 74]. If so, it is relevant to assess the extent to which the

user can control the explanation [72], which can be done with and without an user-study. This property

is linked to the idea that explanations are social. They should be seen as a conversation (interaction)

between the explainer (XAI system) and the “explainee” (end-user), “implying that the explainer must be

able to leverage the mental model of the ‘explainee’ while engaging in the explanation process” [8].

When exploring the interactivity of the explanation, one should take into consideration the social con-

text of the AI system and the target audience [71]. This means that providing a meaningful explanation

varies according to the application domain and the specific audience. In this sense, this property is

application-dependent, and the way to build meaningful and controllable explanations should be dis-

cussed and agreed between the AI developer and the AI deployer, where the final goal is the creation of

an interactive tool with the specific XAI method and dataset. If possible, it is helpful to include experts

from the humanities (e.g., psychologists, sociologists and anthropologists) [6].

There are already interactive tools for XAI, however they require a considerable level of expertise

(e.g. Manifold and ActiVis designed for deployers Uber and Facebook, respectively). There is one

interactive tool that is easily controllable by the user – LRP tool1. It provides four LRP demos [79]: a

simple explanation demo based on NNs that predict handwritten digits and were trained using the MNIST

data set; a more complex demo based on a neural network implemented using Caffe that predicts

the contents (classes) of the image; a demo that explains classification on natural language where a

neural network predicts the type of document; and a visual question answering demo based on recurrent

attention units using the VQA data set. All of the demos are very intuitive to use, being a great example

of how an interactive tool should look like (for a lay audience and a simple application).

After an interactive system is developed, its evaluation of interactivity can be done by discussing

how controllable it is and why the controllable format improves the quality of the explanations, showing

examples, or quantified, by measuring the improvement of explanation quality after human feedback,

where the user is seen as a system component [72]. The majority of the methods does not provide

any interactive (demo) tool. So, firstly, it is important to (qualitatively) assess whether the XAI method

provides any possibility of interaction, and how favorable it is for the creation of one.

This property mostly targets the end-users and deployers of an AI system. For the latter, it is of

their interest to easily assess how the XAI system works and how the visualization of the explanations

is provided. For example, a deployer can be a hospital that is looking for an XAI system to predict and

explain the presence of a brain tumor in a MRI image (for the doctors, or even patients, as end-users,

to use). In this case, the LRP tool presented above would be very helpful for the deployer to check

the explanations. Then, an interactive tool would be built together with the AI developer to that specific

medical application. This is crucial because the effectiveness of interactivity is highly coupled between

the algorithm and the user [68].

1Layer-wise Relevance Propagation (LRP) is a local model-specific XAI method that explains a NN classifier’s prediction spe-
cific to a given data instance by attributing relevance scores to important components of the input by using the topology (back-
propagation approach) of the learned model itself [78].

38

https://www.uber.com/en-FI/blog/manifold/
https://minsuk.com/research/activis/
https://lrpserver.hhi.fraunhofer.de/
http://yann.lecun.com/exdb/mnist/
https://caffe2.ai/docs/datasets.html
https://visualqa.org/


3.1.6 Fidelity

Fidelity has been widely used in the literature to evaluate XAI techniques, sometimes referred to as

model or output completeness. It assesses if the explanation is created by a surrogate model or system

g or if any linearity assumptions regarding the model are made. It is important to consider this property

because methods that use a surrogate model (also known as proxy model [80]), just by using it, are

decreasing the fidelity, and therefore degrading the accuracy of the explanation provided [81]. When this

happens, the extent to which g can accurately cover the black box decisions should be evaluated [9, 33].

If linearity is assumed, it may happen that if the underlying model is highly non-linear, the explanation is

not correct, as fidelity to the model does not exist. High fidelity is one of the most desired properties of

an explanation because an explanation with low fidelity is not in agreement with the original predictive

model, and therefore it becomes useless [71]. XAI methods that do not create any proxy task should

then be preferred over the ones that do, as the first have 100% fidelity. This is a validation property that

is crucial for AI developers to consider when employing an XAI method in their model design.

Fidelity can be directly evaluated by quantifying how closely the surrogate g approximates or agrees

with the black box model f predictions [70]. Surrogate Agreement (SA) metric is used for this aim, by

comparing the prediction of black-box model f and surrogate model g when applied to the same input

samples [33]. Preservation Check (PC) metric has also been used between scholars to evaluate fidelity,

which consists in comparing the prediction of f when applied to data based on the explanation as input

and to the original input sample [72].

3.1.7 Faithfulness

Faithfulness has been extensively used in the literature to evaluate XAI techniques, sometimes re-

ferred to as correctness, truthfulness, or soundness. It assesses the capacity of an explainability method

to faithfully represent the black-box behaviour (globally or locally), i.e., to reliably describe the underlying

decision structure of the analyzed model [63, 75]. Here, model-specific methods are preferred, as they

rely on the internals of the model. It is important to emphasize that fidelity and faithfulness are not the

same although sometimes presented as such; a developer can always build another model that gives

the same predictions as the original one for all instances (high fidelity) but has arbitrarily manipulated

explanation maps (low faithfulness) [72]. Even when explanations are of high fidelity to the underlying

models, they may fail to represent the model behaviour under normal conditions [74]. Therefore, both

properties should be evaluated separately.

Faithfulness can be evaluated regarding different model tasks. A widely used metric is Incremental

Deletion (ID), which strategy is to incrementally remove each of the input features2 deemed relevant by

the explainability method, in either descending or ascending order, and measuring the change in the

output of the predictive model f [82]. A locally faithful explanation should result in a wrong decision by

model f when the k% most important features in the explanation are removed from the input sample.

2Here, the input features can be different variables, according to the type of data input. For example, for images the input
features are pixel values; for text, each word can correspond to one feature; for tabular data, each feature usually corresponds to
each column.
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The criticism on metrics like ID is that removal of features, such as setting them to zero, can lead to

out-of-distribution samples, violating one of the core assumptions in ML: the training and evaluation data

come from the same distribution [72, 83]. One solution is to replace “removed” features with values from

the original data distribution. Another solution is to retrain the model on the perturbed data, which leads

to the next metric, RemOve And Retrain (ROAR). The ROAR metric [83] consists, again, in incremen-

tally removing the fraction of input features considered to be most important according to the XAI method

but this time measuring the change to the original model accuracy upon retraining. A globally faithful

method explanation will identify features as important whose removal causes the most damage to model

test accuracy. This approach guarantees that the training and evaluating data come from the same dis-

tribution. There are different ways of assessing the change in the model output/performance, including

reporting the average change in log-odds score, AUC, steepness of curve, number of features needed

for a different decision [69], or the correlation between the importance assigned by the XAI method to

each feature and the respective effect on the decision/accuracy of the predictive model [82]. ID and

ROAR should be compared with other baselines, such as a random ranking. This serves as a control,

representing a lower bound in performance that all explainability methods are expected to outperform

[83]. It is important to confirm that the meaningful features predicted by the model are really meaningful

[70]. Moreover, the deletion of a single feature also allows to check for specific properties, such as the

“null attribute” indicating that omitting a feature that has no effect on the output of the model, should

have an importance score of zero [72]. Note that these metrics can actually be seen as XAI methods

themselves, using a similar idea to PFI-based methods: they measure “the increase in the prediction

error of the model after we permuted the feature’s values, which breaks the relationship between the

feature and the true outcome” [6]. In this sense, this analysis should be taken carefully.

Another way to evaluate the faithfulness of a XAI method for explainability is by training a white-box

model as the black-box model - White-Box Check (WBC). A white-box model is fully transparent and

therefore explainable by itself, so the explanation can be compared with the true reasoning of the predic-

tive model to evaluate how similar they are [72]. This comparison can be performed globally or locally,

depending on both the white-box model and the XAI method. The similarity between explanations should

be qualitatively assessed. When possible, it can also be quantitatively assessed by comparing directly

the feature contribution values. Instead of a fully transparent model, [84] used a RF and compared

the explanations with feature importance scores given by the black-box model. However, these feature

importance scores are calculated through the PFI method introduced in section 2.3.3 which does not

show the true reasoning behind the original model, but it is rather another explainability method that is

adopted by the library where the RF model is being used.

An explanation that looks reasonable to a user is not guaranteed to also be correctly reflecting the

behaviour of the model. Hence, it is important to guarantee that an explanation is both truthful (next

property) and correct, i.e., it should also cover the fidelity and faithfulness properties. For example, an

explanation highlighting snow in the background to distinguish between a husky and a wolf [40] (see

figure 3.1) is not true in the real word, but it is true to the model, as it is showing the reasoning of a

bad classifier [72]. The opposite can also happen; an explanation may be true but incorrect. Thus, it is
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essential to evaluate all properties, specifically truthfulness, fidelity, and faithfulness in an independent

way. Evaluating the faithfulness is therefore different from the reasonableness to the user [72], and

it should be guaranteed by AI developers when employing an XAI method. It does not concern the

deployers or the end-users.

3.1.8 Truthfulness

Figure 3.1: Original image data and explanation of
a wrong model’s prediction in the “Husky vs Wolf”
task. Taken from [40].

Truthfulness has been widely mentioned in the literature

to evaluate XAI techniques, often referred to as trustworthi-

ness as seen in Figure 2.11 (truthfulness was the chosen

word to not confuse with the higher concept of trustworthy

AI). It is a property that prominently concerns the end-users

of an AI system, as it indicates whether the explanation is in

concordance with the user’s true world. This includes being

accordant with prior relevant domain knowledge and beliefs

of the “explainee” [69, 72] and suitable in other (unfamiliar)

situations (this is human-friendly) [6, 71], but also be able to

detect models with bias [80] and discover new insights because the true world can also be unexpected.

When the explanation is consistent with prior domain knowledge and beliefs of the end-user, it motivates

a positive attitude towards the AI system [68]. This usually also increases the confidence of whether the

system will act as intended when facing other dynamic real-world situations [5, 77]. These factors help

increasing the explanations plausibility and reasonableness [72]. However, model explanations may

sometimes help to discover new and relevant insights in a certain field, especially in areas where there

is not much domain knowledge yet [44]. Moreover, explanations can help to detect bias in the under-

lying model, which helps in model improving and debugging so that the best AI system is displayed to

the user. This is the case of the example “Husky vs Wolf” classifier given above; bias was detected, the

model can be improved.

To evaluate the agreement with domain knowledge, explanations can be compared with an (domain

expert) annotated data set that are seen as ground-truth explanations [72]. However, this is often not

available and human-grounded evaluation (i.e., with user studies) is usually more suitable in this case.

For example, one metric could be the user’s accuracy in finding the better model by only looking at

explanations [68]. Here, two objective metrics are suggested, which consist in comparing different

XAI methods across the models (Methods Agreement) and comparing different XAI models across the

methods (Models Agreement). By comparing methods and evaluating how consistent they are and

how similar are their results, it is possible to create a measurement of confidence regarding their use.

Furthermore, combining various techniques can provide more additional insights [44]. By comparing

different models, it is possible to understand how they differ from each other, even when they offer similar

performance measures, probably because their outputs is based on different features and relations

extracted from the same training data (this is known as “Rashomon effect”). This is useful to reveal
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the capacity of an XAI method to detect bias or missed relationships and discover insights about the

black-box model. For example, a rigid model may miss relationships or interactions that might be found

by a more flexible one, which consequently provides suggestions for improvements of the former [44].

3.1.9 Stability

Stability has been widely used in the literature to evaluate XAI methods. It assesses how stable

and consistent the method is. Two levels of stability need to be considered: stability for identical in-

puts, and stability for similar inputs. Identical data instances must produce identical explanations [77].

Similar data instances (input samples with the same label and slightly different feature) must produce

similar explanations [10, 71]. These axioms together ensure the coherency of explanations [70]. If this

does not happen, then the XAI method is unstable, which can be the result of a high variance or the

non-deterministic components of the method [11]. A deterministic method will always give the same

explanation given the same instance. Conversely, a non-deterministic method may give different expla-

nations for the same instance. For example, random perturbation and feature selection methods that

LIME uses result in unstable generated interpretations. Consequently, different explanations can be

generated for identical/similar data instances, which is problematic for deployment [63].

Several metrics have been proposed to evaluate stability, particularly to measure the similarity be-

tween neighbouring input samples (different criterion can be used to select the neighbours), includ-

ing Location Instability, Local Spearman Rank Correlation coefficients, Top-kintersection [69], Lipschitz

Continuity [33] Cosine Similarity, Rule Match, Normalized Distance [72], or average feature-variability

(shapash python library). The selected metric usually depends on the type of explanation and/or data

input in use. Consistency has been commonly referred in the literature to assess explanations between

two functionally equivalent models, i.e., between two models that give the same outputs for all inputs

despite having different implementations and architectures [69]. A quantitative metric is Implementation

Invariance which assesses whether the explanation method is invariant to specific implementations of

the predictive model by validating whether two implementations that give the same output for an input,

also get the same explanation [69, 71]. For methods that do not consider the internals of the black box

but rather observe input and output, this will happen with the same error as for the Identity metric defined

above, as explanations do not change across different model implementations or architectures. There-

fore, this metric can be applied to model-specific methods that consider specific internal parameters of

the black box model.

Concluding, the stability property contributes to the reliability of the method, meaning it should have

the ability to maintain certain levels of performance independently from the parameters or from the input

data [9]. As mentioned above, it desirable that identical inputs have identical explanations. In practice,

this can address to what extent the explanation method is deterministic, which is usually a design choice

[72]. This property is also very important to guarantee the truthfulness property. A stable system is

desired in a way that it guarantees generalization beyond a particular input or generalization to new

contexts [72]. As an example, “if we say that a second balcony increases the price of a house, then
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that also should apply to other houses (or at least to similar houses)” [6]. Moreover, it should also

be ensured that data instances with change in all but one feature must generate explanations which

magnify the change [77], or that if a feature increases or stays the same, the impact of this feature

should not decrease [70]. These are all situations related with the stability of an XAI method. Stability is

a validation property for AI developers to consider when employing an XAI method in their model design.

It also concerns deployers and end-users. The former need to guarantee that an explanation does not

change when checked twice by the latter (for example in two different days). In the same way, users do

not want a completely different explanation for two similar cases.

3.1.10 (Un)Certainty

Besides explanations, providing prediction uncertainty regarding both the black-box model and the

XAI method has been identified as an important factor for both developers, deployers and end-users

[68]. On a first level, the explanations should reflect the certainty of the ML model, i.e., the confidence

measure of the black box prediction. An explanation that includes the model’s prediction probability,

as well as its certainty increases its usability [6, 10, 71]. One way of providing a confidence measure

about the underlying model is to obtain and show its accuracy, so that the target user has an idea of

how good the performance of the black box predictor is [9]. On a second level, and most importantly,

the explanations should reflect their own certainty. Not only the ML itself, but also its explanations, are

computed from data and, hence, are subject to uncertainty [12, 36]. Moreover, it is important to consider

how the explanation was generated, such as the presence of random generation or sampling [33].

In this sense, providing explanations together with a measure of its uncertainty is a desired property

for XAI. One way of providing this information is to measure the fidelity, faithfulness, or likelihood of the

explanation [69]. Another property that is closely related with certainty is the novelty of the explanation

[71], which assesses if the explanation reflects the instance of interest, of which the prediction is to be

explained, comes from a “new” region in the feature space that is far away from the distribution of the

training data. The higher the novelty, the more likely it is that the model will have low certainty due to

lack of data. In such cases, the model may be inaccurate, and the explanation may be useless [6].

One way of providing this information is to locate the instance in the distribution of the training data [71].

These aspects can be qualitatively evaluated, by assessing if the method provides any (un)certainty

measurements together with the explanations, i.e., the level of transparency.

3.1.11 XAI Goals and Summary

The 10 properties included here can help achieving two main goals: understandability and usability

of XAI methods. Understandability is often referred to as interpretability, which was considered as an

XAI level in subsection 2.2.3. If a method is able to support user understanding and comprehension of

the black-box model decision strategy and predictions [68, 75], this goal is successively achieved [71].

The actual usability of explanations from the point of view of the end-user [33] depends on the target

audience and context [71].
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These desired properties of XAI approaches that collectively give an aggregated perspective of what

to evaluate were chosen based on an extensive systematic literature review, with particular emphasis to

include all of the examined properties in Figure 2.11, reducing semantic overlap, and grouping various

terms that describe the same property. In summary, explainability is a multi-faceted concept [72] and this

is shown by the 10 selected properties. Several aspects of explainability can be evaluated, regarding ex-

planation quality or method validation and its target group. It is important to get insight into all properties

so that a fair trade-off can be achieved. Some properties might be more relevant than others in different

contexts, and it is on the AI developer and deployer to choose the best technique(s), bearing in mind the

extent to which each property can contribute to each of the requirements for trustworthy AI. For exam-

ple, if it is important to specifically favour human agency and oversight, then the properties structure and

interactivity should be carefully evaluated. In order to objectively assess and compare new and existing

XAI approaches, this collection of evaluation properties with respective metric(s) formalization can help

in a more thorough and inclusive evaluation and comparison. The benchmark framework presented in

this section gives AI developers, deployers, and end-users practical resources to assess each of the

10 properties while utilizing a common formalism and taxonomy, which promotes the uniformity that is

lacking in XAI field.

3.2 Metrics Formalization for Tabular Data

The proposed framework is application-agnostic (in terms of application domains) and can be applied

to any type of method and data, specifically the properties should be covered to the maximum extent

by any method. However, some metrics depend on the type of data (or method). For that reason,

Table 3.2 formalizes the metrics specifically for tabular data, which, when necessary, can be accordingly

adapted to other data types, as suggested above. The first column refers to the property, the second

column introduces the metric (Q - qualitative, q - quantitative), and the third does the respective metric

formalization for tabular data (when a metric is specific for a type of method, it is stated in italic). Note

that some properties (or metrics) formalization is independent from the type of data or method. The code

developed in R to implement the quantitative metrics is available as opensource on Github and it is ready

to be used for tabular datasets and both classification and regression problems - see file “Benchmark.R”.

Only the explanation of the quantitative metrics is given here, and the relevant functions for each are

mentioned. For the other metrics, the description given in Table 3.2 is intuitive. All metrics, whether

qualitative or quantitative, should be accompanied by careful and relevant discussion. It is notable that

FS methods are more easily compared, as these provide specif attribution values for each feature.

3.2.1 Quantitative metrics

Selectivity

In shapash, a compacity metric is introduced to measure the explanation size of FS explanations.

Here, this metric is adapted for R, where the function min nb features() is implemented with the goal

44

https://github.com/DCanha/XAI_BenchFramework
https://github.com/MAIF/shapash


Table 3.2: 10 selected properties for evaluation and benchmark of XAI methods and respective metrics formalization for tabular
data.

of determining the minimum number of features needed for the output of a FS explanation to be close

enough to the one obtained with all features. The closeness is defined via the following distances:

• For regression:

distance =
|outputallFeat − outputcurrentFeat|

outputallFeat
(3.1)

• For classification:

distance = |outputallFeat − outputcurrentFeat| (3.2)

The distance is an optional parameter of the function, which default value is 0.1, i.e., when the

the explanation with the current number of features (outputcurrentFeat) is 10% close to the explanation

provided using all features (outputallFeat), the algorithm stops and returns the current number of features

as the output of the Explanation Size metric. In other words, the selected number of features explain

90% of the underlying model. The function min nb features() can be applied to any FS method, as long

as the (global or local) summary values for each feature is provided (parameter phi).

For rule-based methods, the size of an explanation can be measured through the number of condi-

tions in a decision rule. For methods that return data points as explanations (such as CFEs) the number
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of changed features of the closest data point (counterfactual) can be used for as a proximity metric 3.

A function mean size() is added to compute the mean size of local explanations over n instances of

the training data (default is 200, randomly selected). This function is specific for each of the selected

methods in Section 2.3.3.

Contrastivity

Nauta et al. [72] reported that Target Sensitivty metric has only been used for heatmaps. Here,

it is extended for tabular data, particularly for classification problems. For FS methods, the L2 norm

(euclidian distance) between explanations before and after the adversarial attack can be computed using

“wavethresh” R package (function l2norm()). The higher the score, the lower the similarity, and therefore

the better the target sensitivity - a large difference between the explanations is desired. For rule-based

methods, this metric can be formalized by checking the percentage of features in the original conditions

that also appear in the “new” conditions, i.e., in the obtained rules after the adversarial attack. In this

case, the lower the score, the better. For tabular data, the adversarial attack can be simulated by finding

the closest instance x′ to the instance of interest x that changes the target output to another (predefined)

class. This is the output of CFEs, so the first counterfactual returned by this method may be used for

this purpose (see Section 4.2.1).

Fidelity

As stated above, the Surrogate Agreement (SA) metric compares the prediction of the underlying

black-box model f (outputf ) with the prediction of the surrogate model g (outputg) when applied to

the same input instance. Preservation Check (PC) compares the prediction of f when the input is an

instance based on the explanation (outputexp) with the original input instance (outputorig). The mathe-

matical formalization of these metrics is the following (both are accuracy ratios):

SA =


outputf
outputg

if outputf < outputg

outputg
outputf

otherwise
(3.3)

PC =


outputorig
outputexp

if outputorig < outputexp

outputexp

outputorig
otherwise

(3.4)

Both metrics can be applied to any method that uses a surrogate approach, for any type of data. The

only requirement is that the surrogate model output is known for SA, and that it is possible to create the

same type of input data from the explanations for PC. From the selected methods in Section 2.3.3, only

LIME and Anchors respect these requirements. In this sense, the function fidelity() was implemented to

evaluate their local fidelity, which computes the mean fidelity of the local explanations over n instances

of the training data (default is 200, randomly selected), together with an histogram showing the distri-

3The distance between the instance of interest and the returned counterfactual (or other type of returned data point) could also
be computed as a proximity metric.
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bution over the data (plot=TRUE as default). This function is specific to these methods. Note that, for

Anchors, PC score is known; it corresponds to the precision and coverage metrics outputted by the

explanation itself, which result from applying the rule to the instance neighbors, getting their predictions

using the underlying model and comparing it with the original predictions (ratio in equation 3.4 refers to

the precision).

Faithfulness

The Incremental Deletion (ID) metric is implemented for tabular data in function incrDel(). Receiving

the FS values of any local explanation (parameter loc), this function incrementally removes each of

the input features by decreasing order of FS value (i.e., it removes first the most relevant features),

and measures the respective change in the effect on the predictive model prediction. So that out-of-

distribution samples are not created, the adopted solution is to replace “removed” features with values

from the original data distribution. A base instance needs to be defined considering a predefined output

(with optimal values that lead to the “opposite” prediction of the instance of interest), so that there is

a feature value to be replaced with. incrDel() returns a data frame with the FS values (in percent) of

the provided local explanation and correspondent model prediction after “removal” of each feature. The

default percentage of input features to remove is 0.9, i.e., 90% of the features are removed by decreasing

order of contribution.

The ROAR metric is implemented in a similar way using function roar accs. Receiving the FS values

of any global explanation (parameter globExp), this function incrementally removes each of the input

features by decreasing order of FS value (i.e., it removes first the most important features), and mea-

sures the respective change in the original model test accuracy upon retraining, guaranteeing that the

training and evaluating data come from the same distribution. Here, the removal of the features is done

by shuffling the training data (which breaks the relationship between a feature and the true outcome) in-

stead of replacing them with a constant mean value, as performed in the original paper [83] (for images;

here extended for tabular domain). roar accs() returns a data frame with the FS values (in percent)

of the provided global explanation and correspondent model test accuracy upon retraining (predictive

accuracy for classification tasks, and RMSE for regression tasks) after “removal” of each feature. The

default percentage of input features to remove is again 0.9.

To access the change in the model output (for ID) or performance (for ROAR), the function com-

pare auc is implemented to assess how much each of the methods providing (local or global) FS expla-

nations is better than a random explanation. If parameter plot=TRUE, it also plots the functions which

show the decrease in model prediction/accuracy for all methods, including the random guess for com-

parison. This function uses the output of the previous functions as one of the inputs (parameter accs),

and computes the AUC for all values, returning how much each explainer is better than the random

explainer in percent.

The WBC metric can be quantitatively assessed when the WB is a simple linear regression model

and the XAI methods are FS methods. Then, it is possible to compare each of the feature impor-

tance/influence values. No implementation function is needed for this.
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Stability

For the similarity metric, the neighbourhood criterion was adapted for R from the shapash python

library. Accordingly, function find neighbours is defined considering 3 steps:

1. Pick top N (parameter n.neighbors; default is 10) closest neighbors (from training data), where the

closeness is computed as the Gower distance (available in “gower” package from CRAN), which

deals with numerical and categorical variables.

2. Filter neighbors whose model output is too different from instance of interest x:

• For classification:

|outputneighbors − outputx| < 0.1 (3.5)

• For regression:

|outputneighbors − outputx| < |outputx| ∗ 0.1 (3.6)

3. Filter neighbors whose distance is too big compared to a certain threshold which is by default

the 95th percentile, i.e., only neighbors that capture 95% of all distances are selected. Func-

tion radius() returns this threshold which is the maximum allowed distance between points to be

considered as neighbors.

Then, the feature variability calculated across the instances’ neighborhood can be calculated and

plotted (with function sens plot()) and the average value is computed as the final result for the Similarity

metric (with function sens result()). The same is done to obtain the Identity metric but across different

iterations for the same instance, i.e., the variance in feature values across n (parameter n.sens; default

is 50) iterations of the XAI method for the same input sample is computed. The feature attribution

values are calculated for similar instances using function similarity(). The feature attribution values are

calculated for the same instance n times using function identity(). Both these functions are specific for

(FS) selected methods in Section 2.3.3.
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Chapter 4

XAI Benchmark Framework

Application in the Medical Domain

This Chapter provides an example of how the developed benchmark framework can be used to

compare XAI methods, showing the extent to which the selected properties and respective evaluation

metrics can assist in a more comprehensive, inclusive, and consensual benchmark study. Firstly, in

Section 4.1, general experimental results are provided, considering the used dataset, ML models, and

XAI methods. Then, in Section 4.2., framework application results are provided and the comparison and

discussion of the results obtained for each property across different XAI methods is performed. Finally,

in Section 4.3, an enhanced solution for the framework and method selection is provided.

4.1 Experimental Results

All used software was written in R and is available as opensource on Github, including the source

code for producing the results shown here. The experiments were run using R JupyterLab 5.0.11 (with

R version 4.2.1), available for general use in JupyterHub for anyone at Aalto University.

4.1.1 Heart Failure Prediction Dataset

Various datasets have been widely used between scholars to compare ML models performances and

to illustrate the application of different XAI methods. There are datasets for any type of data and different

application domains. In this work, a tabular dataset from the medical domain is considered. The heart

failure prediction dataset (from now on referred to as heart dataset) is publicly available in Kaggle, and

will be described below. Other famous publicly available examples include: iris data set (tabular, flower

recognition), titanic dataset (tabular, probability survival on the titanic disaster), boston housing dataset

(tabular, housing price prediction), MNIST dataset (images, digit recognition), etc..

Cardiovascular diseases (CVDs) are the number 1 cause of death worldwide, taking around 17.9

million lives each year. Heart failure (or heart disease) is a common event caused by CVDs and the
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heart dataset from Kaggle contains 11 features that can be used to predict a possible heart disease.

The attribute information of this dataset consists of 11 (clinical) features and the output label (this is a

classification problem) [85]:

1. Age: age of the patient [year]

2. Sex: sex of the patient [M: Male, F: Female]

3. ChestPainType1: chest pain type [TA: Typical Angina, ATA: Atypical Angina, NAP: Non-Anginal

Pain, ASY: Asymptomatic]

4. RestingBP2: (systolic) resting blood pressure [mm Hg]

5. Cholesterol3: serum cholesterol [mg/dl]

6. FastingBS4: fasting blood sugar (1: if FastingBS > 120 mg/dl, 0: otherwise)

7. RestingECG5: resting ECG results [Normal: Normal, ST: having ST-T wave abnormality (T wave

inversions and/or ST elevation or depression of > 0.05 mV), LVH: showing probable or definite left

ventricular hypertrophy by Estes’ criteria]

8. MaxHR6: maximum heart rate achieved [Numeric value between 60 and 202]

9. ExerciseAngina: exercise-induced angina [Y: Yes, N: No]

10. Oldpeak7: oldpeak = ST depression induced by exercise relative to rest [Numeric value measured

in depression]

11. ST Slope8: the slope of the peak exercise ST segment [Up: upsloping, Flat: flat, Down: downslop-

ing]

12. HeartDisease: output class [1: heart disease, 0: Normal]

1Angina is a type of chest pain caused by reduced blood flow to the heart. Typical Agina (TA) consists of (1) substernal chest
pain or discomfort that is (2) provoked by exertion or emotional stress and (3) relieved by rest or nitroglycerine (or both). Atypical
Angina (ATA) applies when 2 out of 3 criteria of TA are present. Non-Anginal Pain (NAP) applies when 1 or none of the criteria is
present [86]. NAP excludes heart disease [87].

2Systolic pressure refers to the blood pressure (BP) in the arteries that occurs when the heart contracts or beats, pushing blood
out. When the heart relaxes between beats , blood pressure in the arteries falls, as the heart is being filled with blood. This is the
diastolic pressure. Normal blood pressure is less than 120 mmHg systolic and 80 mmHg diastolic [88].

3Serum cholesterol represents the amount of total cholesterol in the blood, comprising the amount of high-density lipoprotein
(HDL), low-density lipoprotein (LDL), and (20% of) triglycerides in the blood. For people aged 20 years and older, the optimal
serum cholesterol level is between 125 and 200 mg/dL [89].

4Fasting blood sugar (BS) is the blood sugar after an overnight fast (not eating). A fasting blood sugar level less than 100 is
normal, 100 to 125 mg/dL indicates prediabetes, and higher indicates diabetes [90].

5The ST segment corresponds to the plateau phase of the action potential of an electrocardiogram (ECG). The ST segment
and the T-wave are electrophysiologically related, so it is common to study changes that occur to both of them together - ST-T
changes [91]. These changes lead to the so-called ST segment deviations (elevation or depression), which may occur in different
conditions, including heart disease. They can also lead to Left ventricular hypertrophy (LVH), which occurs when the heart’s left
pumping chamber thickens and stops pumping efficiently [92].

6It is possible to calculate the (normal) maximum heart rate (HR) by subtracting the age from 220. For example, if a person is
45 years old, subtract 45 from 220 to get a maximum heart rate of 175 beats per minute (bpm) [93].

7Oldpeak value is equal to the ST depression induced by exercise relative to rest. ST depression is a trace in the ST segment
of an ECG that is abnormally low below the baseline. ST depression equal or higher than 0.5mV is considered pathological [91].

8Physiological ST depressions are induced by physical exercise, normally displaying an upsloping segment. Heart failure has
been associated with flat and downsloping depressions [91].
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People with CVD or who are at high cardiovascular risk (due to the presence of one or more risk

factors such as hypertension or diabetes) need early detection and management wherein an explain-

able ML model can be of great help. As the purpose of this chapter is to apply the developed bench-

mark framework for XAI methods, problem and dataset description will not be further discussed here.

The variable of interest is HeartDisease, which is a factor; there are 5 numerical features (Age, Rest-

ingBP, Cholesterol, MaxHR, and Oldpeak); and 6 categorical features (Sex, ChestPainType, FastingBS,

RestingECG, Exercise Angina, and ST Slope) which were converted to factors (with respective levels

mentioned above). After cleaning the data, i.e., removing outliers and null values, the heart dataset,

whose first six rows of the data frame are presented in Figure 4.1, was divided into training and testing

datasets, for further machine learning modelling. The final size of the training and testing datasets, is 527

and 175 observations, respectively, and in both of them the binary target attribute (HeartDisease) is bal-

anced. Data preprocessing results and the main conclusions drawn after performing an exploratory data

analysis (EDA) on the training data can be assessed (and visualized) in the R notebook “01 Data.ipynb”.

Figure 4.1: First 6 rows of the heart dataset.

4.1.2 Machine Learning Models

The following ML models were trained for the binary classification problem of predicting heart dis-

ease:

• Logistic Regression (LR)

A generalized linear model (GLM) is a generalization of the ordinary linear model 2.1, where the

linear model is related to the dependent variable, via a link function [94]. The GLMs cover widely

used statistical models, such as logistic regression (LR), where the link function is the logistic

function (logit), forcing the output of a linear equation to be between 0 and 1:

logit(P ) =
1

1 + exp(−P )
(4.1)

Equation 2.1 works for regression problems; for classification problems, the output probabilities

are between 0 and 1, so wrapping the right side of the equation into the logit function the output is

forced to be in that interval [6]:

P (y = 1) =
1

1 + exp(−(w0 + w1x1 + ...+ wpxp))
(4.2)
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Reformulating this equation, it is shown in equation 4.3 that LR is a linear model for the log-odds,

meaning that a change in feature i by one unit changes the odds ratio (multiplicative) by a factor

of exp(wi) [6]. So, the interpretation of the weights in LR differs from the interpretation of the

weights in linear regression 2.1, but both models are seen as white-box models, meaning they are

considered transparent and understandable by themselves.

log
P (y = 1)

1− P (y = 1)
= log(odds) = w0 + w1x1 + ...+ wpxp (4.3)

• Random Forest (RF)

Linear regression and logistic regression models fail in cases when the dependent variable has

a non-normal distribution or when variables interact with each other. Decision trees, also seen

as white-box models, appear in such cases, and can be used for classification and regression

tasks. Tree based models split the input data several times according to certain cutoff values in

the features. During splitting, different subsets of the dataset are created, with each input instance

belonging to one subset. The final subsets are called leaf (or terminal) nodes and the intermediate

subsets are called split (or internal) nodes. To predict the output in each leaf node, the average

output of the training data in this node is used. There are different ML algorithms based on this

approach, that may differ in the structure of the decision tree (e.g., number of splits per node), the

criteria on how to find the splits, or when to stop splitting [6].

Random forests (RFs) [51] are a combination of predictive decision trees such that each tree

depends on the values of a random vector sampled independently and with the same distribution

for all trees in the forest. A RF consists of hundreds of decision trees that “vote” for predictions,

according to this random vector. To understand how the decision was made, it would be necessary

to look into the votes and structures of each of the hundreds of trees individually [6]. This is

impossible, so, RF is considered a black-box model, meaning it lacks interpretable/explainable

tools for humans to understand the model working logic and outputs. Nevertheless, RF models

prove to yield good predictive performance, ability to grasp low-order feature interactions, and

robustness [44, 51].

• Support Vector Machine (SVM)

A support vector machine (SVM, or support vector network) [95] is another learning machine ap-

proach for classification and regression tasks, being typically used for binary classification. “The

machine conceptually implements the following idea: input vectors are non-linearly mapped to a

very high-dimension feature space. In this feature space a linear decision surface is constructed

[95].” In other words, the objective is, from the input data, to find a hyperplane in p-dimension fea-

ture space (where p is the number of features) that distinctly classifies the input instances through

the created decision boundary. For the binary classification problem, it is necessary to separate

the two classes of data instances. For that, SVM approach is to find a hyperplane that has the

maximum margin, i.e., the maximum distance between instances of both classes. Support vectors
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link data points in the hyperplane to those that are the closest to the separating hyperplane. They

act as a “machine”, moving the position and orientation of the hyperplane in order to maximize the

margin. The loss function that helps maximize the margin is the hinge loss [96].

Special properties of the decision surface, that depend on different parameters such as the used

kernel function, ensures high generalization ability of the learning machine, producing great per-

formance results [95]. However, SVM is a powerful ML model that has complex mathematical

formulations, being particularly difficult to understand when the number of features exceeds 3 (a

high-dimension feature space is created). Therefore, it is considered a black-box, just like the RF

model.

The first is a simple (white-box) model, the second and the last are more complex (black-box) models

and were chosen because they use different approaches (tree and statistical-based respectively). The

“stats” (glm() function with parameter family = binomial(link = logit)), “randomForest” (randomForest()

function with default parameters), and “e1071” (svm() function with parameter type = C-classification

and probability=TRUE) packages were used for the LR, RF, and SVM models, respectively.

For a classification model, the predictive performance is usually computed by calculating the accu-

racy, i.e., out of all the predictions, what percentage is correctly made. For the LR, RF, and models,

the accuracy is equal to 82%, 83%, and 85%, respectively, computed using the testing data (175 ob-

servations). White-box model LR and black-box model RF both have similar performances, being the

black-box SVM model the one who performs better. The implementation of these 3 models, together with

other evaluation metrics for both training and testing datasets can be assessed in the “02 Models.ipynb”

R notebook. Other evaluation metrics include precision, recall, and F1-measure, which are also impor-

tant to consider, together with the predictive accuracy. In the medical domain it is especially important

to have a high recall, as it is crucial to develop a ML model that has the minimum number of false nega-

tives. In the considered problem, a false negative is when a patient is misclassified as not having heart

disease. All models report similar recall scores (around 80%).

4.1.3 Explanations

The experiments obtained from the application of CIU and other 8 well-known XAI methods on the

heart dataset is reported next. The IML package is used for PDP, ICE, and Shapley values; the ‘lime’

package for LIME; the ‘anchorsOnR’ package for Anchors; the ‘shapper’ package for kernelSHAP9; the

‘counterfactuals’ package for CFEs; and the ‘ciu’ package for CIU. The default parameters are used

for all packages unless stated otherwise. The “randomForest” package computes permutation feature

importance (PFI). This is a small selection of the 131 XAI methods displayed in Table A.3, which were

introduced in Section 2.3. The “03 Explanations.ipynb” notebook provides all the code to produce the

explanations that are going to be displayed next (and others) - for which the reader is referred for more

9Currently, this package only works with a lower version of R than the one provided by JupyerLab from Aalto University.
Therefore, all the source code for producing the results for kernelSHAP was written using Anaconda 2.3.2 (with R version 3.6.1
and python version 3.7.13, which is also needed because “shapper” is an R wrapper of SHAP python library). Because of this, the
running time is much slower than when using JupyterLab.
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accurate visualizations. The installation (elapsed) time of all packages is less or around 1/2 minutes,

expect for the CFEs package, that takes 6/7 minutes. The time required to output each explanation is

given by Elapsed time, placed in the figure captions. “Global.R” script contains the code to compute the

global feature importance values for Shapley values, kernelSHAP, and CIU. All the global feature impor-

tance values (also PFI for RF) were converted into percent values (between 0 and 1) for consistency

(and comparison) and are presented in Table B.2.

To show the results of (local) explanations, from now on the instance of interest x is patient A (obser-

vation number 16 of the testing data), with the following clinical feature values:

Figure 4.2: Instance of interest is patient A (testing instance number 16), with the clinical values presented here. The true label is
1, i.e., class 1, meaning the patient has heart disease.

The predictions obtained were correctly made (output = class 1) by all implemented ML models:

Table 4.1: Obtained predictions for patient A. All models correctly classified patient A as having heart disease (class 1).

LR RF SVM
Class 0 0.10 0.15 0.12
Class 1 0.90 0.85 0.88

The clinical feature values for a healthy patient (patient B - prediction is class 0 with high proba-

bility) and for a patient wrongly diagnosed with no heart disease (patient C - prediction is class 0, but

with probability close to 0.5, which shows uncertainty), together with respective model predictions and

explanations, can be further assessed in the R notebook “03 Explanations.ipynb”. This is relevant for

comparison, and to check if the explanations give insight about why the model is making an uncertain

prediction for patient C.

PDP

There are short lines on the x-axis of both PDP and ICE plots, which are the quartiles of the specific

feature being studied, meaning 10% of that feature values are less than the first line and 90% are less

than the last line. This is known as rug plot, which shows the distribution of the feature. This makes

it possible to check if that feature values are fairly evenly distributed across its range [6]. That being

said, PDP visualizes the relationship a model has learned, which can be called model inspection [9].

The influence of the age feature on the predicted probabilities for class 1 is visualized in Figure 4.3 for

all models. For the LR model, PDP shows a linear relationship between the target and feature age,

which in fact happens for all features as, as seen above, LR is a linear model for the log-odds. For the

SVM model, PDP seems to show an exponential relationship between the target and feature age. For

all models, the PDP shows age has a positive influence on the target output. However, interestingly, for

the RF model, the predicted probability falls when age increases from 65 to 77, but there is not much

training data, so the ML model may not have learnt a meaningful prediction for this range.
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Figure 4.3: PDPs for the used heart disease prediction models (class=1, i.e., with heart disease) and Age. Marks on the x-axis
indicate the data distribution. Elapsed :< 1s.

To illustrate a PDP with a categorical feature, the effect of the sex feature on the predicted prob-

abilities is shown in Figure 4.4. Feature Sex seems to have a similar effect on the predictions of all

models, being clear that males have a higher probability of developing heart disease. It is also possible

to visualize the PDP of two features (maximum) at once. PDPs in Figure 4.5 show an interaction be-

tween Age and MaxHR features for RF and SVM, which is not detectable using the LR model. For ages

below 60, patients who have maximum heart rate above 150 bpm have a lower predicted heart disease

risk. This makes sense, as for ages below 60, healthy patients should have a MaxHR above 160 bpm

(220-60=160).

Figure 4.4: PDPs for the used heart disease prediction models (class=1, i.e., with heart disease) and Sex. Marks on the x-axis
indicate the data distribution. Elapsed :< 1s.
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Figure 4.5: PDPs for the used heart disease prediction models (class=1) and the interaction of Age and MaxHR. Marks on the
x-axis indicate the data distribution. Elapsed :< 1s.

ICE

The ICE plots reveal that for most patients the age effect follows the average pattern revealed in PDPs

(the yellow curve corresponds to the PDP in Figure 4.3, but there are some exceptions, for example:

For the patients that have a high predicted probability at the age of 50, the predicted heart disease

probability (for LR and SVM models) does not change much if increasing the age. This also happens

for the RF model, but after 70 years old, the predicted probability decreases a lot, which is unexpected.

Nonetheless, in general, all curves seem to follow the same course as the yellow one, so there are no

obvious interactions. That means that the PDP is already a good summary of the relationships between

the age feature and the target prediction. The same does not happen for the RestingBP feature, whose

ICE (+PDP) plots are depicted in Figure 4.7. If only considering PDP explanations, it would be concluded

that feature RestingBP is not important to the output the SVM model, as the yellow curve is almost flat (no

variation). But, when considering ICE explanation curves, it is possible to conclude that the PDP is not a

good summary of the relationship between this feature and the model predictions, as an heterogeneous

relationship is uncovered. For example, for the patients that have a high predicted probability at low

RestingBP value, the SVM predicted heart disease probability tends to increase if this feature value is

increased until 150 mm Hg.

To illustrate an ICE plot for a categorical feature, the effect of the ST Slope feature on the predicted

probabilities is shown in Figure 4.8, where the bold lines in the middle of the boxes give the average

prediction, i.e., the bold line is located at the height of the bar plot outputted by PDPs. Feature ST Slope

seems to have a similar effect on the predictions of all models, with ST Slope = Flat being the category

that contributes to the highest extent to high output probabilities, i.e., patients with ST Slope = Flat have

a high probability of having heart disease. If ST Slope = Up (healthy situation), the probability is low,

although the RF model seems to (abnormally) show also high probabilities for this feature category.
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Figure 4.6: ICE plots for the used heart disease prediction models (class=1) and Age. Yellow curve is the PDP. Marks on the
x-axis indicate the data distribution. Elapsed :< 1s.

Figure 4.7: ICE plots for the used heart disease prediction models (class=1) and RestingBP. Yellow curve is the PDP. Marks on
the x-axis indicate the data distribution. Elapsed :< 1s.

Figure 4.8: ICE plots for the heart disease prediction models (class=1) and ST Slope. The bold lines in the middle of the boxes
give the average prediction. Marks on the x-axis indicate the data distribution. Elapsed :< 1s.
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PFI

Figure 4.9: PFI plot: The importance of each
of the features for predicting heart disease
with a random forest. Elapsed :< 1s.

The randomForest() function computes a global feature impor-

tance method as originally described by Breiman [51] and intro-

duced in Section 2.3.3. Figure 4.9 shows the mean decrease

accuracy between the 2 classes after permuting each feature.

Features associated with an error rate decrease by a factor of

0 (= no change) are not considered important by the PFI method

for the prediction. Note that, when looking for the class specific

measures, the error rate is higher for the (mis)classification of

class 0 (normal condition). Neverthless, the feature with the high-

est importance by the PFI method is ST Slope. associated with

a mean decrease accuracy of 49.3% after permutation. Next

is ChestPainType feature, with a mean decrease accuracy of

33.4%. RestingBP, FastingBS, and Cholesterol are not consid-

ered important for heart disease prediction by this XAI method.

PFI values, specific for the RF model, are displayed in table B.2

(in percent).

LIME

The resulting explanation plot for the predictions given by each model for patient A (see Table 4.1)

is shown in Figure 4.10. The length of the bar indicates the magnitude (absolute value), while the color

indicates the sign (red for negative, blue for positive) of the estimated coefficient. The output of the

explanation (data frame) includes a column feature weight, which provides the estimated coefficients

for the features by the k-LASSO method for the explanation. The model intercept column provides

the value of the intercept. Thus, the linear combination of the transformed explanatory variables used

in the surrogate model approximating the underlying model around the instance of interest, patient A,

corresponds to the number given in model prediction (it is the prediction given by the linear surrogate

model). This is exemplified in Figure 4.11 for the RF model. The feature weights calculated by LIME are

provided in detail in Table B.1.

The used LIME R package also allows for the creation of a heatmap showing how the different

features selected across different instances influence each case. This plot is useful to find common

features that influence all observations or if a big number of instances is analyzed at the same time (it

makes the previous bar plots difficult to discern). An example is given in Figure B.1 for the LR model.

Anchors

To create the explainer (function) for Anchors, the parameters bins and coverage perturbation count

were modified. The first was used to create discretization values for the numerical features (so that the

generalization to other instances is bigger). The second was used to change the number of perturbations
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Figure 4.10: Illustration of the LIME method results for heart disease prediction (class label=C1/1) for patient A. The probability
value corresponds to the class 1 probabilities given by each model. The Explanation Fit value corresponds to the r-squared
measure of the fitted surrogate model. The numerical features are discretized into quartiles. Elapsed :< 1s.

Figure 4.11: LIME prediction: the linear combination of the transformed explanatory variables used in the surrogate model g
approximating the RF model around the instance of interest x (patient A) corresponds to the g(x).

(samples) to be taken for coverage from default 1000 to 500, which reduces the computational time

considerably (it is still slow, but not as much; a trade-off between accuracy and running time needs

to be made). That being said, the textual explanations given by Anchors for patient A are depicted in

Figure 4.12 (left) for all models. The results provide a logic structure and are very easy to interpret.

It is possible to understand which features are most important for the model’s prediction (class 1). A

visualization tool is also provided; an example is shown in Figure 4.12 on the right for the rule given for

the LR model. Taking a bigger insight at the explanations, the rules show that the most important feature

is clearly ST Slope. When anchors are based on a few features, they additionally have high coverage

and hence apply to other instances in the (neighboring) perturbation space (this is the case for patients

A and B). However, other observations may not be as distinctly classified by the model as more features

are of importance. An example is the case of patient C, where is notable that anchors get more specific,

comprise more features, and apply to only a few instances from the perturbation space (low coverage) -

see Figure Notebook “03 Explanations.ipynb” Section Anchors for patient C. This can be a sign that the

instance is near the decision boundary, as the instance is located in a volatile neighborhood [6], which

is in fact what it is happening for patient C.

Shapley values

Bar plots in Figure 4.13 present the distribution of the contributions to the prediction of patient A

compared to the average prediction for the dataset, as described in Section 2.3.3. Bars to the right

and to the left represent, respectively, the positive and negative shapley values across the coalitions.

It is clear that the flat ST depression of patient A results in a positive influence for the output, when
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Figure 4.12: Anchors explaining patient A prediction with rules. Left: Textual explanations for all models. Right: Visualization
for LR. Each bar depicts the feature predicates contained by the anchor. The x-axis displays the rule’s precision, and the bar’s
thickness corresponds to its coverage. The “base” rule contains no predicates. Elapsed : 19s, 12s, and 14s, respectively for LR,
RF, and SVM models.

compared to the average prediction (baseline). On the other hand, the effect of ChestPainType=ATA is

in all cases negative, with the magnitude of Shapley values varying across models. The shapley values

for the prediction for Patient A for the different models are depicted in Table B.1. The shapley values are

provided by this method in its output, together with the associated variance across all coalitions.

Figure 4.13: Shapley values for patient A in the heart dataset. Elapsed :< 1s.

kernelSHAP

As stated in Section 2.3.3, kernelSHAP is a different approach to compute shapley values. When

using the function to create the explanations, the parameter nsamples was changed to 100 (meaning

instances are sampled to generate the explanation values), to be consistent with Shapley and CIU (it also

decreased the computational time considerably). Bar plots in Figure 4.14 present again the distribution

of the contributions to the prediction of patient A compared to the average prediction for the dataset,

as described in Section. Green and red bars represent, respectively, the positive and negative shapley
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values across the coalitions. The results are very similar to the previous method, but this time is possible

to verify the efficiency (or local accuracy) property, meaning f(x) = g(x′) and g(x′) is given by equation

2.12. So, model linearity is assumed, which results in the sum of shapley values yielding the difference

of actual and average prediction (the linear model is “forced” to pass through the baseline which is the

average of all predictions and the actual prediction). This can be easily visualized in the plots, where

each shapley value is a bar that “pushes” to increase (positive sign) or decrease (negative sign) the

average prediction (baseline), balancing each other out at the actual prediction of the data instance.

The kernelSHAP values for the prediction for Patient A for the different models are depicted in Table B.1.

Moreover, both shapley and SHAP global feature importance values were computed, using Lundberg et

al. [59] approach, and are displayed in table B.2.

Figure 4.14: kernelSHAP values to explain the predicted heart disease probabilities of patient A. Elapsed : 1s, 2s, and 2s,
respectively for LR, RF, and SVM models.

CFEs

The MOC method proposed by Dandl et al. [65] was used to obtain CFEs as explanations in R. The

counterfactuals should answer, in this case, the following question: “how the input features need to be

changed to get a predicted probability lower than 50%”? In other words, what is the smallest change that

should be done to some feature(s) so that the model(s) predicts class 0, instead of class 1. Figure 4.15

shows the five best counterfactuals (parameter n counterfactuals was changed when implementing the

MOC explainers). The results are given also as a data frame (similarly to 4.2), but where each column

contains the respective feature change (when it happens). It is also possible to access the number of

changed features and the distance to the instance of interest, which is not being shown here. From

the resulting data frames, it is clear that the models have different behaviours, giving different prediction

probabilities, as the way features change their input values is different across the models. Some of the

features are not susceptible to change in the real world, such as the patient sex, or (lower) age. However,

the relative frequency of changed features (that can also be visualized as a plot) gives an idea of which

factors are the most important to the obtained prediction. FastingBS seems to be the least important

feature, as its value never changes for any of the generated counterfactuals.
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Figure 4.15: Counterfactual explanations: the 5 top generated counterfactuals that are “close” to the instance of interest (patient
A) and that change the output to class 0. Elapsed :< 1s.

CIU

Figure 4.16 shows the output value as a function of one feature (Age) value for the three models.

These can be thought as a line from the ICE plots in Figure 4.610. PDP and ICE simply plot these

“ceteris paribus” (CP) functions, however CIU transparently uses them for the calculation of CI, CU, and

CInfl values like illustrated in Figure 4.16.

Figure 4.16: Output value (class=1) as a function of one feature value for the three models, with illustration of CIU calculations.
The red dot shows the xi value of the instance to be explained for the feature i (Age=57). The output range is [0, 1] as it is a
classification problem. The used labels in the Figure are are MIN = umin, MAX = umax, ymin = umini(x), ymax =
umaxi(x), y = ui(x) and phi0 = ymin+ ϕ0(ymax− ymin), the same used to describe the CIU method in Section 2.3.3.

The results of CI and CU calculations for each feature can be visualized in each bar of Figure 4.17.

The length of the bar indicates the importance of each feature (CI value), while the color filling indicates
10The difference is in the approach used to derive the perturbation space. ICE/PDP uses a (fixed) grid and CIU uses the

sampling approach suggested in [67] and described in Section 2.3.3.
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how favorable is the current feature value for the obtained prediction (relative CU value). The CI together

with relative CU values are also plotted for class 0 with RF model, due to the fact that patients are

probably more interested in knowing why aren’t they healthy. It is clear that, contrary to class 1, in class

0 bars, almost none of them is filled. This shows that the current clinical results of patient A are very

favorable to the diagnosis of heart disease. CI and CU values, due to the fact that are computed using

utility functions, can also be given in the form of textual explanations. This is illustrated in Figure 4.18 for

the RF model and considering that class 0 is the desired output. This clearly demonstrates that CIU is

also counterfactual, meaning it is clear which features should be changed (and to what extent) to achieve

a desirable output.

Figure 4.17: CIU bar plot explanations of heart disease prediction (output:1) of patient A for the three models. For the RF model,
the bar plot explanation considering healthy prediction (output:0) is also illustrated. Elapsed :< 1s.

Figure 4.18: CI and CU values can be translated into textual explanations, seen as more easily understandable for lay humans.
Elapsed :< 1s.

Finally, similarly to LIME and SHAP(ley), feature influence (CInfl) values computed by CIU are plotted

in Figure 4.19, having as baseline ϕ0, i.e., the average utility value of 0.5 (orange line in Figure 4.16). An

influence-based explanation might not give any indication of how to favorably change a certain feature

if the current value is average, which might result in a close-to-zero influence value that would give an

impression that that feature does not have any importance. The CI, CU, and CInfl values for patient A

are depicted in Table B.1. Moreover, CIU global feature importance values were computed, under the

idea that contextual importance is mathematically similar to global feature importance, and are displayed

in table B.2.
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Figure 4.19: Contextual influence bar plot explanations of heart disease prediction (output:1) of patient A for the three models.
Elapsed :< 1s.

4.2 XAI Benchmark Framework Results

4.2.1 Baseline Comparison

Representativeness

Table 4.2 contains the benchmark results for this property, where three levels of representativeness

are compared: scope, portability, and applicability of the explainability methods. As mentioned above,

this property is only evaluated qualitatively, being useful for developers to access in a quick way the

usefulness of the method for their specific AI system.

Table 4.2: Results of representativeness property. These metrics are not specific for tabular data, but rather a general overview
of each XAI method. Please check Table 3.2 for labels clarification. In bold are the best results.

Metric PDP PFI ICE LIME Anchors Shapley SHAP CFEs CIU
Scope G G L/G L L L/G L/G L L/G

Portability (1) A S A A A A A A A
Portability (2) T T T T T T T F F
Applicability S S S A A S A S A

The results of the scope metric are depicted in the second row of Table 4.2. ICE has L/G, as, although

being considered a local method, it provides a plot where the PD function for all instances is present.

Shapley, SHAP, and CIU methods have L/G, as it is possible to compute global importance measures as

described in Section 2.3.3. Table B.2 shows results for the global PFI method (only for RF), and using

mean(CI) and mean(|ϕi|) for each feature. All methods agree to some extent, even though CIU seems

to better distribute the importance between features. Shapley and kernelSHAP give identical results,

and are also closer to the values given by PFI for the RF model. It is not possible to conclude which

one is the most “correct” one. Lundberg et al. [59] claim that Shapley values give the best indication of

the global importance. However, as shown by the theory and results (see section 4.2.1), CI is a “true”

importance measure, rather than the influence values given by Shapley values. This is why L/G is in

bold for CIU method in Table 4.2.
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Regarding the portability metric, the first and second row illustrates whether a method is model-

agnostic (A) or model-specific (S), and if the method needs access to generate a (new) explanation,

respectively. The method may need access to the data to create the respective explainer, but also

when computing a new explanation. CFEs and CIU methods are in bold, in both rows, due to the

fact that they do not require access to the data or the model itself. Both methods only require access

to the model’s prediction function, which is possible to provide via a web API, for example. This is

attractive for companies that are interested in protecting model and data, due to data protection reasons

or interests of the model owner, for example [6]. The opposite happens for PDP, ICE, Shapley, and

kernelSHAP methods, which is a disadvantage, as they all need access to the data when calculating new

values for a new data instance/feature. kernelSHAP also needs access to the model when computing

a new explanation, making it the worst method at this level. Moreover, while almost all the SoTa XAI

methods are limited to machine learning based models, CIU explanations and CFEs are applicable to

any system f , making them truly model-agnostic. Finally, regarding the applicability metric, agnostic-

data (A) methods are usually preferred. Although it is not being studied here, other types of data and ML

models, including DL models, that do not learn features directly from the data and do not need manual

feature extraction, are also possible to be explained by XAI methods. Specifically, the ones that are

data-agnostic (A) (LIME, SHAP, Anchors and CIU) also focus on this type of models and (raw) data.

Structure & Speed

Table 4.3 contains the evaluation results for this property, where both the structure and the speed

of an explanation are analyzed. Four levels of structure are compared: expressive power, graphical

integrity, morphological clarity, and layer separation. As mentioned above, this property is only evaluated

qualitatively, being useful for developers to access in a quick way and conclude about the XAI method

that is more suitable for a specific end-user. The speed is evaluated quantitatively; the table makes a

conclusion whether each method is slow or fast based on the runtime analysis that was made during the

computation of the explanations (see Figures captions in Section 4.1.3 and Appendix B).

Table 4.3: Results of structure & speed property. These metrics provide a general overview of the type of output provided by each
method. Please check Table 3.2 for labels clarification. In bold are the best results.

Metric PDP PFI ICE LIME Anchors Shapley kernelSHAP CFEs CIU
Expressive Power FS FS FS FS Rules FS FS Data points FS
Graphical integrity F F F T F T T F T

Morphological clarity T T T T T T T T T
Layer separation N/A N/A F T F T T T T

Runtime Analysys Fast Fast* Fast Fast Slow Fast Fast Fast Fast

Regarding the expressive power, anchors uses if-then rules (textual explanations, that can also be

plotted as a bar chart) and CFEs provides data points (see Figures 4.12 and 4.15, respectively), which

are both seen as more suitable for lay-users, by providing a logic structure. All the other methods give

feature summary (FS) results as explanations, although providing distinct summary values, as well as

different types of visualizations. PDP and ICE provide PD functions, which values can be assessed in a

data frame or visualized as PD (or CP) profiles, as shown in Figures 4.3 and 4.6. PFI outputs a plot that
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shows the decrease in model accuracy when removing each feature (see Figure 4.9). LIME, Shapley,

and Kernel SHAP provide feature influence values as explanations that can be visualized as bar plots,

as depicted in Figures 4.10, 4.13, and 4.14. Finally, CIU can provide contextual influence bar plot, which

are comparable with those provided by LIME and SHAP(ley). Furthermore, it provides explanations

using CI and CU in different ways (bar plots and pie charts) and prioritizing CI or CU depending on the

purpose of the explanation (see Figures 4.17 and 4.19), which is not possible for the other methods.

As it can be seen, CIU can also plot PD/CP profiles, which consist in input-output values from where

CIU values can be “read” and validated directly (see Figure 4.16). Moreover, CI and CU values can

be translated into textual explanations, as shown in Figure 4.18, which are usually seen as more easily

understandable by lay-users. In the case of heart disease prediction, it is clear for patients, through

these textual explanations, to understand how each clinical feature value contributed to the prediction

and how changing that value would change the prediction to a better one (counterfactual approach). As

CIU is the most diverse method, covering approaches from all previous methods, it is considered to have

the best expressive power result, being marked in bold.

Regarding the graphical integrity of the explanation, only the methods that output bar plots achieve

it completely, as they show clearly a distinction between features with positive (bars to the right) and

negative (bars to the left) attributions. LIME, kernelSHAP, and CIU are chosen as the better ones (in bold)

for this metric, due to the fact that they fill each bar with a color clearly associated to positive (green for

SHAP and CIU, blue for LIME) and negative (red for all) values. As for the morphological clarity, almost

all methods highlight the most important features in a clear way. If only provided using a number between

0 and 1, like in Table B.2, it is clear in the way that it can be seen as how much (in percent) each feature

affects heart disease prediction. For bar plots, the most important/influential features are made clear by

the extension of each bar. For anchors (rules), the importance is made clear by the features present

in the decision set. For PFI, by the features with the higher decrease in model accuracy. For CFEs, by

the visualization of the frequency of feature changes across all counterfactuals. For ICE and PDP, the

importance is seen in the steepness/flatness of the curves (a horizontal line means that feature does

not change the prediction of the model and therefore it is not “important”), however, this requires some

understanding of these terms. Moreover, the ICE plots can become overcrowded, contributing to the

decreasing of its clearness to the end-user. Finally, layer separation is evaluated only for local methods,

as it accesses if the original input sample is included in the explanation. This is true for CFEs, in the way

that the method provides a parallel plot that connects the (scaled) feature values of each counterfactual

and highlights the instance of interest in blue (see R Notebook “03 Explanations.ipynb”). This is also true

for the methods that provide bar plots, as the feature values are included on the left side of each bar. For

LIME, however, the numerical continuous variables are discretized to obtain interpretable categorical

data. So, in bold are the methods that clearly provide the feature values of the instance of interest.

Nonetheless, layer separation is particularly important for images, and not when dealing with tabular

data instances.

Finally, the last row evaluates if the explanation runtime is fast or slow, based on the elapsed times

(provided together with the explanations in subsection 4.1.3). PFI has an asterisk because this method
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is included in the RF R package, so its results are immediate. Overall, feature importance/influence

explanation algorithms are faster than rule-based ones. In particular, for these methods, CIU is the most

efficient (visible particularly when looking at the global explanation runtimes in Table B.2), followed by

Shapley and then LIME. Note that the computation time, particularly in SHAP, depends considerably

on the number of samples to generate when exploiting the algorithm. Furthermore, in all methods the

number of features to which an explanation is being computed affects the speed.

Concluding, CIU seems to be the preferable method for this property, as the levels of structure are

covered to the maximum extent, and it is also the most efficient in terms of speed. Nonetheless, all of the

methods, except for Anchors (and kernelSHAP), provide an explanation in a reasonable amount of time.

Moreover, methods that provide influence/importance values seem to cover more the levels of structure

included here, which contradicts the fact that anchors and CFEs are preferable over these. For all

methods, a good structure should be included, leading to end-user efficiency and good understandability

of the method. It is important to mention, that the aspects related with the structure of each method can

always be further developed, when necessary, considering specific necessities or desires of a specific

AI deployer (in fact, there are also other implementations of SHAP and LIME, that provide different

visualizations, not assessed here). A fast method leads to computational efficiency and practical usability

of the method.

Selectivity

Table 4.4 contains the evaluation results for this property, where three different approaches are used

to compute the size of the explanations, depending on their type of output (expressive power). Note that

for this particular data set, the maximum number of features is 11, so, even when all features are present

in the explanation, it is already quite selective. PDP and ICE methods are not included here because

both are always illustrated for one feature at a time (they are selective by default).

Table 4.4: Results of selectivity property. Please check Table 3.2 for labels clarification. In bold are the best results.

Model Metric Anchors CFEs LIME Shapley SHAP CIU PFI
LR Explanation size 2 6 7 6 6 7 N/A
RF Explanation size 2 5 6 8 7 9 6

SVM Explanation size 2 6 7 7 7 8 N/A
Size parameter T T T F F T F

For Shapley, kernelSHAP, CIU, and PFI, the global FS values (in Table B.2) were used to select

the number of features that explain 90% of the underlying model behaviour. For LIME, mean size()

function was used to compute the mean over 100 instances of the training data, as this model only

provides local FS values. This function can also be used for the other FS methods, to have an idea of

how selective are the explanations over the data, as a histogram is plotted together with the result (if

parameter plot = TRUE). Comparing the FS methods, all of them behave in a similar way, showing

the most selective explanation is given by the LR model. The mean number of changed features in the

generated (closest) counterfactuals is similar to the number of features that explain 90% of the underlying

model for FS methods. Anchors are the most selective method, always considering an average of two
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conditions (for all models), which include two features. The distribution over the training data for both

methods is illustrated in R notebook “04 Benchmark.ipynb”, in Selectivity Section.

All the results for the explanation size metric show that giving a selective explanation mostly depends

on the model being explained, on the data (i.e., the feature values), and also on the type of explanation

output. Anchors are usually selective by default. The other methods are not, which does not mean a

selective explanation can not be provided, depending on the end-user. It is better for an explanation

not to be selective, than not showing a truthful or faithful explanation (other properties). A trade-off

should be made, bearing in mind that sometimes it might not be possible to give a selective explanation

without seriously compromising the truthfulness property due to the complexity of the underlying model

or data. In this sense, the most relevant metric to consider is the Size parameter one. The methods

which allow the possibility of changing the explanation size are preferable. For CFEs, it is not possible

to set a number for the maximum number of changed features, but it is possible to choose the number

of counterfactuals to generate. For a lay person, it is possible to generate just one counterfactual as an

explanation. Considering CFEs, it would be possible to show to patient A just one counterfactual (the first

line of the data frame in Figure 4.15, the one that has the clinical values more similar to patient A). For

LIME and CIU, it is possible to select the number of features to display in the bar plot. For this reason,

the T is in bold for these two methods, being the preferred ones for this property. For LIME and Anchors,

it is also possible to choose multiple (or just one, of course) instances to compute an explanation, which

is an advantage.

For FS methods, the function mean size() can actually be employed in a more useful way, by using

it to select the number of features that are crucial to explain the underlying model to the highest extent

(default is 90%, but this parameter can be changed). This is exemplified in Figures 4.20 e 4.21 for

LIME and CIU, respectively, showing that it is possible to give a (more) selective without compromising

other properties. These bar plots are the selective version of the explanations illustrated in Figures 4.10

and 4.17, respectively. As CIU provides distinct FS values, it is possible to select which are the crucial

features considering different CIU variables, as shown on the left of Figure 4.21. On the right, the 7 most

important features (CI as the CIU variable to consider) are used to display the prediction of patient A

using CI, as they should be the ones to display. However, if a person is interested in comparing his/her

prediction with a baseline one, it may be more relevant to use the features selected using CInfl values.

Figure 4.20: LIME selective explanation. Left: Selected features (5 in total) that explain 90% of the LR model’s output. Right:
LIME giving an explanation for patient A prediction only with the crucial (selected) features.
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Figure 4.21: CIU selective explanation. Left: Selected features, considering different CIU variables, that explain 90% of the LR
model’s output. Right: CIU giving an explanation for patient A prediction only with the most important features (7 features were
selected considering CI as the CIU variable).

Contrastivity

Table 4.5 contains the evaluation results for this property, where two different approaches were used

to compute the target sensitivity, depending on the type of output (expressive power). The level of

contrastivity is a qualitative metric that should always be considered, and that assesses how contrastive

the explanations are to a predefined output or/and to the current instance. Global methods (PDP and

PFI) are not included here, as they are not contrastive.

Table 4.5: Results of contrastivity property. Please check Table 3.2 for labels clarification. In bold are the best results.

Model Metric Anchors LIME Shapley SHAP CIU CFEs ICE
Level of contrastivity F T T T T T T

LR Target Sensitivity 0 0.41 0.27 0.23 0.34 N/A N/A
RF Target Sensitivity 0 0.33 0.25 0.23 0.62 N/A N/A

SVM Target Sensitivity 0 0.32 0.21 0.21 0.40 N/A N/A

Regarding the first metric, Anchors does not reveal any level of contrastivity in the explanations

showed in the previous section. CFEs are always contrastive to the current instance, which is clear

from the changes in the feature values. ICE plots, when including the PDP (using a yellow curve, like

in Fig 4.6), are contrastive to the average prediction. FS methods that provide influence values (SHAP,

Shapley, LIME, and CIU) are contrastive to the predefined baseline, which for the current problem is the

average prediction. CIU is in bold (best result) due to the fact that the provided explanations, besides

being contrastive to a predefined output by using CInfl values, are also contrastive to the current instance

by using relative CU values, which show how to improve the respective feature values (CIU is also

counterfactual).

To compute the second metric, an adversarial attack to patient A data was simulated. The closest

counterfactual (first line of each data frame in Figure 4.15) found by CFEs method for each model was

used as the slightly perturbed data instances to fool the respective models into changing the prediction

to class 0. The data with the original values and the changed ones for patient A are depicted in Figure

4.22, together with the predicted probability for class 1.

For Anchors, the percentage of features in the original conditions that are in the “new” conditions
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Figure 4.22: Adversarial attack simulation for patient A. The first row corresponds to the original clinical feature values for patient A.
The others correspond, respectively, to the first rows of the data frames in Figure 4.15, showing the values that fool the respective
models into the prediction depicted in the last column.

is 0 for all models, which means the method is always target-sensitive, i.e., class-specific. For the

methods that provide FS values, the L2 metric between the explanations before and after the adversarial

attack was computed. The results are illustrated in Table 4.5, which shows the best results for CIU (RF

and SVM model) and LIME (LR model). However, these results should be considered with caution,

together with the visualization and summary tools that each method provides. The reader is referred

to R notebook “04 Benchmark.ipynb” Section Contrastivity. All the methods prove to be class-specific,

showing good scores for the target sensitivity metric. However, in the case of the RF, not only the

model is fooled, but also the XAI methods, especially the ones that use a surrogate model/system as

explanations, such as LIME and Anchors (see Figure 4.23). This is due to the unexpected behaviour

of the model around the fooled instance of interest. The other methods also show unexpected FS

values (see Figures 4.24 and 4.25), which may actually lead to the perception that something wrong is

happening (the adversarial attack). However, only by visualizing CIU plots, illustrated in Figure 4.25, it

is possible to in fact understand what is happening - it seems that an outlier was found. In fact, with

these CP plots, it is even possible to understand the reason for the explanations provided by the other

methods.

Figure 4.23: LIME (left) and Acnhors (right) RF explanations after adversarial attack simulation for patient A. Although the real
predicted probability for class 1 is 0.4 (class 0 is predicted), the displayed explanations use the feature weights obtained using
LIME and Anchors surrogate methods, which in fact do not predict class 0, but class 1 with a high probability.
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Figure 4.24: Shapley (left) and kernelSHAP (right) explanations after adversarial attack simulation for patient A. The influence
values displayed in the bar plots are very close to 0, which is unexpected.

Figure 4.25: CIU explanations after adversarial attack simulation for patient A. The CIU values (middle) and CInfl values (right)
that explain the output prediction for class 1 (0.4) seem very weird, as CU values are always 0 (and consequently the CInfl values
are all negative). This can be explained by the input-output plots on the left, that show patient A is a local minimum of the RF
model.

Interactivity

None of the XAI methods being compared includes a demo interactive tool that allows to easily

access the explanations, i.e., without actually going through the implementation code. It is highly rec-

ommended that an interactive tool is added to the authors GitHub page, which can simply be a demo
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example for a common and easy application like performed for the LRP tool presented in Section 3.1.5.

For the tabular domain, a widely known and simple example like the housing price prediction problem,

could be implemented together with an interactive tool (similar to shapash demo - housing price) in

which users would only have to control the feature values (number of floors, year sold, etc.) to obtain a

prediction. Then, it would be possible for AI deployers and end-users to easily access the explanations,

without having to implement any code or functions (this is for AI developers). Considering the present

problem, the heart disease prediction, the deployer would be a hospital and the end-user the doctors

(and possibly patients). Having this type of demo, even if in another application domain, it is possible for

them to conclude if the explanations provided are detailed enough, easily understandable, and also how

controllable and easy to interact they are. The last part is important, as is has been shown that people

tend to prefer interactive explanation results, being more usable and useful than fixed explanations [9].

Then, the specific social context of the explanation should be described by the AI deployer (in this case,

a hospital), so that an effective interactive XAI tool for the target end-users can be “build”.

It is important to mention that the LIME method used here, in R, provides an application for in-

teractively exploring text models, but only when some code is implemented to derive the explanation.

Nonetheless, it is an advantage over the other methods, showing that the integration of an interactive

tool is easily achieved. When implementing the methods, AI researchers can also have an idea on how

easy it is to obtain an explanation. If it is difficult to obtain an explanation, then it is probably also difficult

to make a clear interactive and controllable explanation. For example, anchors and LIME suffer from a

highly configurable setup, where the chosen perturbation space and the tuning hyperparameters have a

great impact on the algorithm which can lead to non-meaningful results. For the end-user, it is good to

have some configurable parameters, such as the explanation size or the type of output to display, but not

complex ones that should be optimized by the methods themselves. For CIU, only the hyperparameter

sample.size related with the configurations of the method itself is controllable (default is 100, meaning

100 instances are sampled for estimating CI and CU), and when tuned the results do not suffer a mean-

ingful modification (related with the accuracy). It is in fact the only non-deterministic parameter in CIU,

which makes it more stable than other perturbation-based methods - see Section 4.2.1.

Fidelity

From all the methods used to create model explanations, only LIME and Anchors implement proxy

approaches and consequently compromise their fidelity. KernelSHAP uses a linear surrogate model g to

estimate shapley values as an explanation. Moreover, both XAI methods that estimate shapley values

(the ”original” and SHAP) are AFA methods, meaning fidelity is compromised, linearity assumptions are

made, but it is not possible to calculate a fidelity score, as the method does not provide any metric

possible to use to estimate it. All the other explainability approaches (PDP, PFI, ICE, CIU, and CFEs) do

not create any proxy model g or make any linearity assumption about the underlying descriptive model,

and therefore the fidelity is 100%, being the preferred ones when considering this property.

The SA metric was used for LIME and PC metric for Anchors. For both methods, the 100 randomly

selected data samples from the training set were used to get the mean score depicted in Table 4.6 and
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Table 4.6: Results of fidelity property. Please check Table 3.2 for labels clarification. For Anchors: precision (coverage).

Model Metric LIME Anchors
LR SA / PC 0.90 0.94 (0.36)
RF SA / PC 0.83 0.90 (0.35)

SVM SA / PC 0.89 0.93 (0.39)

the histograms showing the fidelity distribution over the selected instances (illustrated in Figure B.2).

Overall, LIME performs better than Anchors due to the fact that Anchors have low coverage. Although the

latter are seen as easily understandable, rules can easily “trick” the end-users by having low coverage.

Moreover, it is visible from the histograms that there are some cases where these methods (especially

LIME) do not achieve local fidelity, and therefore show an incorrect explanation (all the data instances to

the left of the red vertical line). This happens above, for the explanations computed after the adversarial

attack on patient A data, for the RF model, and also for patient C. The fidelity score of the explanation

obtained using LIME and Anchors is 0.44 and 0.27 (0.83), respectively. This happens due to the fact

that the RF model is highly non-linear around that instance. LIME fails because it assumes linearity;

Anchors also fails, although theoretically it can deal with non-linear and complex model predictions (note

that coverage is high, which happens due to the fact that a “step” happens in the model function - visible

in Figure 4.25). CIU, being 100% loyal to the model, in that same case, shows unexpected results due

to the unexpected behaviour of the RF model around that specific interest, and clearly shows it through

the input-output plots in Figure 4.25, with respective CIU values calculation (top left). This is preferable

over giving a non-meaningful explanation like it happens for other methods.

Faithfulness

Figure 4.26: The results of fitting a LR model
on the heart dataset. Shown are the features
used in the model and their estimated coeffi-
cients (in terms of the odds).

To evaluate the faithfulness of each XAI method, the three

metrics mentioned in Section 3.2 were used. Regarding the ID

and ROAR metrics, only FS methods (except PDP and ICE, be-

cause they simply provide input-output plots - they are always

faithful to the underlying model) can be assessed. The results

obtained for these two metrics are very similar, and for that rea-

son a table with the obtained scores is not provided. Overall, all

the methods behave well, showing better performances than the

random explainer. In other words, all the XAI methods are able to

catch (globally and locally) the most relevant features used by the

models. This can be visualized in Figure 4.27. Note that PFI, by

being a more translucent method, is more faithful to the underly-

ing model, as it “looks” at the inner workings of the model.

The metric that better evaluates the faithfulness to the under-

lying model is WBC. LR was used because it is a white-box model so the explanations can be compared

to the true reasoning of the model. Figure 4.26 shows the estimated model coefficients (top 9). Despite

being considered an interpretable model, these coefficients represent odds, which are not the most in-
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Figure 4.27: Plots obtained with ROAR (left) and ID (right) faithfulness metrics. ROAR assesses the change in RF model test
accuracy after incrementally remove the features by decreasing order of (global) importance. ID assesses the change in SVM
model prediction after incrementally remove the features by decreasing order of (local) attribution value. The baseline values used
for ID were typical values for person with NO heart disease (healthy).

tuitive values to interpret; still, when the coefficient is positive, increasing that feature value will increase

the heart disease probability. Looking at the data frame, it is visible that the most important features,

in global terms, are ChestPainType, Sex, and ST Slope. Looking at the global feature importance val-

ues presented in Table B.2 for the LR model, all the methods (Shapley, kernelSHAP, and CIU) consider

these 3 as the most important (highest percent values), meaning they agree with the underlying model.

Looking at the local explanations provided in Section 4.1.3 for each method, it is possible to assess the

local faithfulness to the LR model. Focusing on the heatmap provided by LIME in Figure ??, the fea-

ture weights provided as influence values agree to some extent with the LR model, however, although in

terms of sign there is an agreement, in terms of magnitude there is not. For example, ChestPainType=TA

should be redder (contributes less to heart disease prediction) than ST Slope=Flat, according to the un-

derlying model. Anchors explanation for LR prediction for patient A agrees with the underlying model in

a way that the two most important features with a positive contribution for the output are present in the

rule. CFEs is more difficult to evaluate, although it is possible to conclude, from Figure 4.15, that the

changes on the feature values are made accordingly to the LR coefficients.

As mentioned, a logistic regression model is a known model, but it is still not super clear in terms of

feature weights. So, a simple linear regression model was used to compare the explanations provided

by LIME, SHAP(ley), (the most use methods in the literature) and CIU. The example of the calculation

of the weighted average grade of a university student given in page 17 was used11. Paul grades were

used as the instance of interest, and it is possible to check in Table 4.7 that CI, CU and CInfl (ϕ) values

obtained correspond exactly to what was expected and calculated before. It is also confirmed that in

fact LIME, Shapley, and SHAP give influence values (these values were converted using the same utility

function as CIU for comparison), and not importance, meaning they are only relevant when compared

to a predefined baseline. Table B.3 shows results from students with the average and maximum grades

in all courses, showing the extent to which CI and CU values provided by CIU are crucial to explain

11CIU can use the function directly as the studied model, whereas the other methods require the availability of a training set and
a trained model.
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the predictions. For example, for a student with average grade in all courses (15), LIME and Shap(ley)

values give 0, just like CInfl, but CI and CU values provide the actually importance (0.2, 0.3, and 0.5)

of each course and the utility (0.5), respectively. Table B.3 also shows results for the global feature

importance method in using mean(CI) and mean|Shapleyvalue|. Only the CIU method retrieves the

original weights of the linear model with zero variance, as CI values are identical for all instances in the

case of linear models. Therefore, importance as defined by CI is conceptually identical to global feature

importance. Even though Shapley values (standard approach and kernelSHAP) estimate instance-level

influence influence they still give similar values as CI but with a high variance.

Table 4.7: Results of WBC metric for a linear regression model: f(x) = 0.2x1 +0, 3x2 +0, 5x3 - example from page 17. Instance
explained is Paul.

Paul LIME Shapley SHAP CI CU Cinfl
x1=10 -0.1 -0.1 -0.1 0.2 0 -0.1
x2=19 0.14 0.14 0.12 0.3 0.9 0.12
x3=15 -0.06 0.03 0 0.5 0.5 0

Stability

Table 4.8 contains the evaluation results for this property, where two computational metrics were

used: stability for identical (Identity) and stability similar inputs (Similarity). PDP, ICE, PFI, and CFEs are

not included here, as they are completely stable for identical inputs due to the adopted implementation

approaches (deterministic). The Similarity metric does not apply. Regarding Anchors, this method also

computes feature weights, that also vary, although usually it does not change the rule conditions. So,

this property is usually only evaluated for FS methods, specifically the ones that give feature impor-

tance/influence values for all input features (tabular domain).

Table 4.8: Results of stability property. Please check Table 3.2 for labels clarification. The CIU variable used here was CInfl, so it
also applies for CI and CU. In bold are the best results.

Model Metric LIME Shapley SHAP CIU
LR Identity 0.08 0.23 0.06 0.00
RF Identity 0.12 0.28 0.06 0.01

SVM Identity 0.11 0.28 0.05 0.00
LR Similarity 0.28 0.33 0.25 0.17
RF Similarity 0.37 0.40 0.28 0.28

SVM Similarity 0.45 0.54 0.38 0.39

CIU is clearly the most stable method, and secondly is kernelSHAP. Although in the literature the most

used metric is Similarity, the most important metric to be assessed is Identity. Of course, similar input

instances should have similar results, including model predictions and explanations. But identical inputs

should always have identical explanations; a patient (or a doctor) cannot have different explanations for

his/her heart disease prediction result when checking twice (or more times). The method that provides

the higher feature variability for the same input is Shapley, which is problematic for deployment. The

scores presented in Table 4.8 can also be visualized in the form of violin plots, which show the distribution

of ϕ values from 50 (default) runs with the studied instances/models and the studied methods - see

notebook “04 Explanations.ipynb” Section Stability.
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As stated above, it is important that similar inputs provide similar explanations, which usually hap-

pens. That being said, a better use of the function find neighbors used to calculate the feature similarity

can be made: it can be used to show the explanation for the instance of interest together with the expla-

nations, for example, for the 2 most similar instances. In the heart problem, a doctor can see patients

with similar clinical features and assess the explanations.

Certainty

All explanations given by the XAI techniques provide the ML model’s prediction probability, on which

they are based. Regarding (un)certainty of the methods, only LIME and Anchors (developed by the

same authors) provide some confidence measure regarding the (local) explanations. Note that the only

methods that provide a measure of explanation certainty are the ones that use surrogate models, and so

they only provide measures associated with the fidelity of the explanation towards the black box model.

LIME provides the model prediction (right prediction) together with the local model prediction (surrogate

prediction). From here the user can have an idea about the fidelity of the explanation towards the black

box model (this is calculated above – see section 4.2.1). It also provides a probability information mea-

sure called “Explanation Fit”, which corresponds to the surrogate model r2 - which can be considered a

PC metric. However, besides (and more importantly) the model r2, the model fidelity should be provided.

For example, in Figure 4.23, the explanation fit is reasonable, but the fidelity is very low, which can be

misleading to the end-user. Anchors gives explanations with two certainty measures, precision and cov-

erage. It is similar to the r2 value provided by LIME, as it evaluates the proxy model itself - PC metric.

Using the same example, Anchors behaves better than LIME because it actually shows the precision is

very low.

PDP and ICE methods do not need to provide any (un)certainty because they focus in CP profiles,

which simply show the model behaviour over the range of values of a feature i. PFI, CFEs, and ker-

nelSHAP also do not provide any certainty measures regarding the approach they use. Shapley method

summarizes the distributions of the variable-specific contributions for the selected random orderings.

These variance values give an idea of coverage. Finally, CIU values can be “read” directly from input-

output plots, showing exactly where the calculated values come from. This makes CIU quite transparent

at least when compared to other methods, like LIME, Shap(ley), and Anchors. The latter might be con-

sidered black-boxes themselves, as they involve very complex approaches difficult to understand when

the main idea of XAI is in fact to make the model (and of course the explanations) understandable for the

end-users. One big problem with LIME, in particular, is the definition of the kernel settings, which are not

clearly explained by the authors and can lead to big differences in the explanations (affecting mostly the

faithfulness property, besides not providing certainty). Developers can make a design choice whether

their XAI method will contain a certainty measure regarding the output of model f . As it has been argued

that referring probabilities might not be so effective, since people have difficulties to correctly estimate

probabilities [69], it should be decided by the end user, whether to see the certainty measures or not.
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Truthfulness

The truthfulness property assesses if the explanations are in concordance with the user “true” world.

This actually depends on the model itself, on which the explanations are given for. For an explanation

to be truthful, the data provided to the ML models, on which they learn, also needs to be truthful. For

example, it is known that men are more likely to develop heart disease than women; this information

was present in the data; the models learnt from this data; the explanations show that when Sex=M, this

has a positive influence on the heart disease probability. The same happens for ST Slope=Flat.

The two suggested metrics for the evaluation of this property consisted in comparing different XAI

methods across the models (Methods Agreement) and comparing different XAI models across the meth-

ods (Models Agreement). This property was left to the end because until now this type of comparisons

have been made. If the methods prove to have high scores in all the previous properties, it is almost

certain that it will also cover truthfulness. Overall, the methods seem to agree on the selected features

provided in the explanations, specifically in terms of order of importance/influence. In terms of model

agreement, LR and SVM seem to agree more with each other when comparing with RF model. LR and

RF revealed similar predictive accuracy performances. The first, being a more flexible model, missed

an interaction between Age and MaxHR suggested by RF (and SVM), which was shown by PDPs in

Figure 2.4. This type of methods that perform model inspection is very useful for detection of model

bias. Although this interaction was spotted by RF, explanations revealed that this model has associated

bias, specifically for the case presented in Figure 4.25, in which CIU is the most helpful method in terms

of model improvement. Concluding, comparing the models shows that the best model for this problem is

SVM; comparing the methods shows that some methods are more useful than others for bias detection.

In terms of truthfulness, Anchors seems to be the method with the worst performance, as being very

selective, it may miss some important features (note that sometimes selectivity is preferred). Moreover,

with LIME and SHAP, it is possible to hide biases [97], which is a big disadvantage, as the end-users

cannot be sure about the truthfulness of the explanation they are receiving. This is a problem associated

with perturbation-based XAI methods, where generated instances can potentially be out-of-distribution

(OOD), and be used to fool the explanations [97]. CIU is also a perturbation-based method, but, as it

transparently shows how the CIU calculations are performed, it is not possible to hide such biases.

All of the methods introduced here analyze each input features independently from the other features.

However, more often than not, features are correlated and jointly present some aspects of observations

[44], which compromises the truthfulness of the methods. For example, FastingBS and Cholesterol in

the heart data are correlated, and both are related to the blood glucose levels of the patient. Many of

the methods can be generalized to allow a joint analysis of groups of two or more features [44]. CIU

is the only method here that provides that possibility through the use of intermediate concepts (these

were not studied here, but were introduced in Section 2.3.3): permutations are done for a group of

concepts (explanatory variables), allowing for evaluation of the importance, utility and influence of the

entire group. That being said, CIU seems to be the most relevant of the compared methods for the

successful achievement of this property.
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4.2.2 Enhanced Solution

The application of the framework showed that explainability is a multi-faceted concept and that the 10

properties are all connected to some extent and contribute to the complete evaluation of XAI methods

regarding its explanation quality or validation and its target group. Validation properties are fidelity,

faithfulness, stability, (un)certainty, contrastivity, and truthfulness. It is important that all of them are

covered by an XAI method to the maximum extent. It was made clear from the framework application that

fidelity should not be compromised and when this happens, the most important metric to assess is SA,

that should be provided together with the explanations. As the methods usually rely on perturbations of

the input space and observations in changes of the model output, faithfulness is usually present. A white-

box check like the one made with a simple linear regression model is relevant to clearly assess the values

that the methods are giving and see how reliable they are. Stability for identical inputs is not commonly

evaluated in the literature and it should definitely be, as a method that give FS values that change

randomly from one explanation to the next cannot be used in real word scenarios, especially in high-

risk domains, like medicine. Regarding the (un)certainty, more than providing probabilistic measures of

confidence, explanations should be to the most extent transparent in the implemented approaches, and

not themselves black-boxes which are very difficult to actually interpret. Finally, contrastivity in terms

of target sensitivity revealed to be an important aspect to consider, as it is possible to detect, through

explanations (this is the goal), if an adversarial attack happened. Truthfulness is a validation property

in a way that it can detect the capability of a method to detect bias (and to hide), which can then lead

to an improved and unbiased ML model for deployment. Contrastivity and truthfulness also assess the

quality of the explanations, together with the remaining 5 properties. These are relevant, but can usually

depend on the application, and sometimes can actually be improved, like mentioned for the interactivity,

structure, and selectivity properties.

In summary, these observations contribute to an enhanced overview of the developed application-

agnostic framework. It is important to get insight into all properties so that a fair trade-off can be

achieved. Some properties might be more relevant than others in different contexts, and it is on the

AI developer and deployer to choose the best technique(s), bearing in mind that validation properties

increase the usability, and quality properties increase the understandability, which together contribute,

at different levels, to each of the requirements for trustworthy AI. Finally, it was also possible to conclude

about the relevancy of the CIU method, which showed to outperform the others.
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Chapter 5

Conclusions

This chapter highlights the main conclusions of the present dissertation. Additionally, section 5.1

points out the encountered limitations and suggestions for future work.

The main goal of the present dissertation was to build a benchmark framework for XAI methods,

which evaluation is still a novel and inconclusive field in the literature, and compare different XAI meth-

ods using the developed framework. A number of properties was first identified in SoTa literature. In

particular, it was verified the lack of a systematic organization of the properties devoted to XAI evalu-

ation, and the lack of quantifiable and objective metrics. Furthermore, the lack of common agreement

regarding XAI-related concepts makes this task even more difficult. For that reason, terminology clari-

fication was made, and, most importantly, a selection of 10 properties was made, based on the former

identified properties so that a comprehensive and consensual benchmark framework for XAI methods

could be developed. Then, this collection of evaluation properties was extensively described and ob-

jective metrics were proposed for different types of methods and data. As it is highly dependent on the

type of data, the respective metric(s) formalization for tabular data was made, as a concrete example

of the (computational) metrics that can be used. Finally, the framework, which can be applied to any

type of application domain, was validated in a real-word scenario in the medical domain: heart disease

prediction. The comparison of different XAI methods showed the relevancy of the CIU method, which

covers to a better extent the selected properties of explainability, when compared to other methods.

Nevertheless, suggestions regarding each of the methods considering different properties was made,

and it was concluded that explainability is a multi-faceted concept; the 10 properties are all connected

to some extent and contribute to the complete evaluation of XAI methods.

Objective evaluation can provide quantitative (computational) metrics without requiring user-studies

[36]. The latter was the focus of the proposed framework. However, it should be noted that this is not

to replace human-centered evaluations, but can in fact guide in the selection of the best techniques

to present to participants in a user-study. Then, properties, specifically properties that evaluate the

quality of explanations and that users can help improving (structure, interactivity, and truthfulness) may

be evaluated in a human-ground scenario, improving the efficiency of the assessment of XAI methods

[36]. CIU, as one promising XAI method to deploy, can be evaluated in a human-grounded way, so that
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its visualization and controllable tools can be improved and made more efficient. The explanations also

can, and should be checked with domain-experts.

As mentioned above, it might be unreasonable to expect an XAI method to cover completely the

10 selected properties. In practice, trade-offs between desired explanation properties will have to be

made when developing or choosing an XAI method. As examples, faithfulness might contradict with

truthfulness; and selectivity and truthfulness have impact on each other. The application domain, prac-

tical usability, or nature of the prediction task, can determine which properties should be underlined

[8, 72]. In the light of this, it is proposed to firstly evaluate (and consequently improve) explanations for

validation-related properties (fidelity, faithfulness, and stability in particular), without considering the sim-

plification or ”embellishment” of the given explanation. Secondly, a further analysis can consist on the

evaluation (and consequent improvement) of explanations for quality-related properties, where the user

social context, preferences, and cognitive capacity properties should be incorporated. At this step, the

human-grounded evaluation can be integrated together with the proposed objective metrics. Moreover,

insights from experts in the humanities fields (e.g. psychologists, sociologists, and anthropologists) can

also provide a multi-disciplinary view on XAI and contribute to more innovative and relevant results.

To sum up, the present dissertation has as main contribution a benchmark framework, which con-

cretely addresses how to evaluate different aspects of explainability methods, and therefore provides

guidance to AI developers, useful information to AI deployers, and recommendations on how to make

the explanations more accessible to end-users. The benchmark framework provides all the target-groups

resources to assess each of the 10 properties while utilizing a common formalism and taxonomy, which

promotes the uniformity that is lacking in XAI field.

5.1 Limitations and Future Work

The evaluation and comparison of the selected XAI methods considering the 10 properties was

based in a simple case for the tabular domain, where only ML models that learn from structured features

were used; so the explanations are based on feature assessment. As future work, it is relevant that

other more complex ML models, in particular DL models that do not rely on feature engineering, are

used for the comparison of different XAI methods. Future work should assess the relevancy of the CIU

method with NN-based XAI methods (such as the known LRP method), that adopt different strategies,

like gradient-based ones, using the suggested benchmark framework. Further extensions to address

concern the application of the presented work to other models, data types, applications, and contexts.

Regarding the implementation of the XAI methods, kernelSHAP and Anchors R implementation faced

some difficulties; the first did not work in JupyterLab, the second took way more time to run than the

Python implementation. So, in the future, especially when explaining DL models, it might be more

pertinent to perform these experiments in Python.

Finally, despite an objective assessment of explanations is necessary for comparison of XAI methods,

as future work they can be complemented with human-grounded evaluation metrics, putting forward

dynamic design cycles under a human in the loop paradigm.
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[42] K. Främling. Extracting explanations from neural networks. In ICANN’95 proceedings, volume 1, pages

163–168. Paris, France, 9, 1995.

[43] M. T. Ribeiro, S. Singh, and C. Guestrin. Model-agnostic interpretability of machine learning, 2016. URL

https://arxiv.org/abs/1606.05386.

[44] P. Biecek and T. Burzykowski. Explanatory Model Analysis. Chapman and Hall/CRC, New York, 2021. ISBN

9780367135591. URL https://pbiecek.github.io/ema/.
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[240] A. Henelius, K. Puolamäki, and A. Ukkonen. Interpreting classifiers through attribute interactions in datasets,

2017. URL https://arxiv.org/abs/1707.07576.
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Appendix A

Literature Review

Table A.1: XAI SoTa papers distribution.

Type of paper References
Book [6, 44]

Survey/Review [1, 5, 8–12, 33, 36, 63, 68–72, 74, 75, 77, 80, 98–104]
Discussion/Theory [21–27, 31, 32, 34, 37, 43, 55, 105–110]

Evaluation/Comparison study [33, 75, 76, 81, 83, 100, 111–124]
Framework/Approach [35, 68, 106, 125–133]

User study [2, 134–139]
Case/Use study [3, 4, 25, 28–30, 109, 140–151]

Table A.2: Examples of XAI case/use studies in specific application domains.

Application Domain Case/Use studies
Medicine [3, 4, 140, 143–145, 147, 150]

Transportation [25, 109, 141]
Finance [142, 146, 149, 151]
Security [148]

Legal [25]
Military [20]

Table A.3: Post-hoc XAI methods identified in the SoTa literature.

Name Reference Year % surveys Portability Scope Data Problem Software

LIME [40] 2016 80 A L ANY Both Y

Shapley values [58] 2014 69 A L TAB Both Y

SHAP [59] 2017 69 A L ANY Both Y

LRP [78] 2015 53 S L IMG/TXT C Y

Saliency Maps [152] 2013 53 S L IMG/TXT C Y

Anchors [41] 2018 46 A L TAB/TXT C Y

IntGrad [153] 2017 46 S L IMG/TXT C Y

Grad-CAM [38] 2019 46 S L IMG C Y

DeepLIFT [154] 2017 42 S L IMG/TXT C Y

Influence Functions [155] 2017 42 A L IMG C Y

SmoothGrad [156] 2017 38 S L IMG C Y

Local gradients [157] 2010 38 A L IMG/TAB C N
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Table A.3: Post-hoc XAI methods identified in the SoTa literature.

Name Reference Year % surveys Portability Scope Data Problem Software

ICE [59] 2015 34 A G TAB Both Y

DeconvNet [158] 2013 34 S L IMG C Y

PatternNet [159] 2017 34 S L IMG C Y

PatternAttribution [159] 2017 34 S L IMG C Y

PDP [48] 2001 30 A G TAB Both Y

Guided BackProp [160] 2014 30 S L IMG C Y

Meaningful Perturbation [161] 2017 30 S L IMG C Y

DTD [162] 2017 30 S L IMG C Y

Show, Attend and Tell [163] 2015 30 S L IMG C Y

TCAV [164] 2017 30 A G IMG C Y

Activation Maximization [165] 2010 26 S L IMG C Y

GSA [166] 2011 23 A G TAB Both N

DGN [167] 2016 23 S G IMG C N

Rationales [168] 2016 23 S L TXT C Y

PDA [169] 2017 19 S L IMG C Y

CAM [39] 2015 19 S L IMG C Y

TSP [170] 2016 15 S L TAB C N

RISE [171] 2018 15 S L IMG C Y

CIU [42] 2020 11 A L/G IMG/TAB Both Y

Guided Proto [172] 2019 11 A L IMG/TAB C Y

SPRAY [173] 2019 11 S G IMG C N

NAM [174] 2020 11 S L TAB Both Y

LORE [175] 2018 11 A L TAB C Y

RuleMatrix [176] 2018 11 A G TAB C Y

STA [177] 2016 11 S G TAB C N

CEM [178] 2018 11 S L ANY C Y

DICE [179] 2020 11 A L TAB C Y

Grad-CAM++ [180] 2018 11 S L IMG C Y

ACE [181] 2019 11 A G IMG C Y

CaCE [182] 2019 11 A G IMG C N

L2X [183] 2018 11 A L IMG/TXT C Y

CFEs (original) [61] 2017 11 A L IMG/TAB C N

PIMP [52] 2010 11 A G TAB C Y

MAPLE [184] 2018 11 A L TAB Both Y

ConceptSHAP [185] 2020 11 A G IMG C Y

DeepRED [186] 2016 11 S L IMG C N

Soft DT [187] 2017 11 S G IMG C Y

LRP* [188] 2019 7 S L ANY C N

BiLRP [189] 2020 7 S L ANY C N

LIVE [190] 2018 7 A L TAB Both Y

BreakDown [190] 2018 7 A L TAB Both Y

FACE [191] 2019 7 A L ANY C Y

Regularisation [192] 2015 7 S L IMG C Y

ABELE [193] 2020 7 A L IMG C Y

Erasure [194] 2016 7 S L TXT C N
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Table A.3: Post-hoc XAI methods identified in the SoTa literature.

Name Reference Year % surveys Portability Scope Data Problem Software

GFI [195] 2018 7 S L IMG C N

MUSE [196] 2019 7 A L IMG C N

PALM [197] 2017 7 A G ANY Both N

TreeView [198] 2016 7 S G IMG C N

GFA [199] 2016 7 A G TAB Both Y

DT Extraction [200] 2018 7 S G IMG C N

RxREN [201] 2012 7 S G TAB Both N

ALE [202] 2016 7 A G TAB Both Y

GoldenEye [203] 2014 7 A G TAB C N

Multifaceted feature vi-

sualization

[204] 2016 7 S L IMG C N

GAN Dissection [205] 2018 7 S L IMG C Y

PI, ICI [206] 2018 3 A G TAB Both Y

SR map [207] 2019 3 S L IMG C Y

DLIME [208] 2019 3 A L ANY Both Y

LioNets [209] 2019 3 S L TXT C Y

SkopeRules N/A 2020 3 A L/G TAB C Y

GLocalX [210] 2020 3 A L/G TAB C Y

CFX [211] 2020 3 S L TAB C N

XRAI [212] 2019 3 S L IMG C Y

Respond-CAM [213] 2018 3 S L IMG C N

XSPELLS [214] 2020 3 A L TXT C Y

exBERT [215] 2019 3 S L TXT C Y

Slot Activation Vectors [216] 2018 3 S L TXT C Y

Peak Response [217] 2018 3 S L IMG C Y

Autofocus-Layer [218] 2018 3 S L IMG C Y

CLEAR [219] 2017 3 S L IMG C N

DFA [220] 2018 3 S L TAB C N

Privacy-Preserving Ex-

planations

[221] 2020 3 S L TAB C Y

No name [222] 2016 3 S G TAB Both N

Distillation [223] 2015 3 A G IMG C N

Distill-and-Compare [224] 2018 3 A G TAB Both N

Model Extraction [225] 2017 3 A G TAB Both N

Explanatory Graph [226] 2017 3 S G IMG C N

OpenBox [227] 2018 3 S G IMG C N

Probes [228] 2016 3 S G IMG C N

Relevant Features [229] 2017 3 S L IMG C N

Saliency Detection [230] 2017 3 A L IMG C N

Compositionality [231] 2016 3 S L TXT C N

OPIA [232] 2016 3 A G TAB Both N

NNKX [233] 2017 3 S G TAB C Y

Automatic Rule Extrac-

tion

[234] 2017 3 S G TXT C N

RxNCM [235] 2017 3 S G TAB C N
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Table A.3: Post-hoc XAI methods identified in the SoTa literature.

Name Reference Year % surveys Portability Scope Data Problem Software

inTrees [236] 2014 3 S G TAB Both N

MES [237] 2016 3 A L ANY C N

Hypothesis Testing [238] 2019 3 A L IMG/TXT C Y

GAM [239] 2019 3 A G IMG/TAB C Y

ASTRID [240] 2017 3 A L TAB C N

Shapley Values-based [57] 2010 3 A L TAB C N

SA-based [241] 2014 3 A L TAB Both N

Monotone Influence [242] 2017 3 A L IMG C N

QII [243] 2016 3 A G TAB C Y

Rivelo [244] 2017 3 A L TXT C N

RSRS Detection [245] 2012 3 S L TXT C N

Feature Tweaking [246] 2017 3 S L TAB C N

SQB [247] 2018 3 A L IMG/TAB C N

Worst-case perturba-

tions

[248] 2015 3 A L IMG C N

Bayesian Teaching [249] 2017 3 A L TAB Both N

Counterfactual Intro-

spection

[250] 2019 3 S L IMG C N

CADEX [251] 2019 3 S L TAB C N

Counterfactual SHAP [252] 2019 3 A L ANY Both N

Textual CFEs [253] 2018 3 A L IMG C N

InterpNET [254] 2017 3 A L IMG C Y

Discriminative Loss [255] 2016 3 S L IMG C N

Network dissection [256] 2017 3 S L IMG C N

Important Neurons and

Patches

[257] 2017 3 S G IMG C Y

Pertubation-based [258] 2017 3 A L TXT C N

CNN-INTE [259] 2018 3 S G IMG C N

Hidden Activity Visual-

ization

[260] 2017 3 S G IMG C N

Causal Inference [261] 2018 3 S G IMG C N

Autoencoded Activa-

tions

[262] 2018 3 S G IMG C N

Causal Effects [263] 2019 3 S G ANY C Y

LASTS [264] 2020 3 A L TS C No

DoctorXAI [265] 2020 3 A L TS C Y

Multimodal Information [266] 2018 3 S G VID C No
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Appendix B

Results

Table B.1: Local (for patient A) importance, utility and influence values given by different XAI methods for all implemented models.

LR LIME Shapley kernelSHAP CI CU CInfl
Age 0.03 0.02 0.02 0.21 0.75 0.05
Sex 0.30 0.07 0.07 0.37 1.00 0.19

ChestPainType -0.11 -0.02 -0.04 0.25 0.70 0.05
RestingBP -0.01 0.00 0.00 0.00 0.39 0.00
Cholesterol 0.01 0.02 0.01 0.14 0.70 0.03
FastingBS -0.08 -0.01 -0.01 0.04 0.00 -0.02

RestingECG 0.02 0.02 0.02 0.03 1.00 0.01
MaxHR 0.00 0.00 0.00 0.01 0.44 0.00

ExerciseAngina 0.20 0.13 0.12 0.19 1.00 0.09
Oldpeak 0.00 0.02 0.02 0.14 0.45 -0.01
ST Slope 0.39 0.24 0.22 0.48 1.00 0.24
Elapsed < 1s < 1s 1s < 1s < 1s < 1s

RF
Age 0.03 0.05 0.05 0.10 0.94 0.04
Sex 0.13 0.04 0.03 0.17 1.00 0.08

ChestPainType -0.12 -0.06 -0.06 0.13 0.51 0.00
RestingBP -0.01 0.00 0.01 0.18 0.86 0.06
Cholesterol 0.04 0.02 0.02 0.08 0.90 0.03
FastingBS -0.03 0.00 0.00 0.00 0.00 0.00

RestingECG 0.03 0.03 0.03 0.05 1.00 0.02
MaxHR 0.00 0.02 0.02 0.24 0.93 0.10

ExerciseAngina 0.16 0.10 0.10 0.16 1.00 0.08
Oldpeak 0.01 0.01 0.01 0.17 0.48 0.00
ST Slope 0.26 0.22 0.19 0.43 1.00 0.22
Elapsed < 1s < 1s 2s < 1s < 1s < 1s

SVM
Age 0.03 0.02 0.03 0.26 0.92 0.11
Sex 0.22 0.05 0.06 0.27 1.00 0.14

ChestPainType -0.07 -0.02 -0.04 0.08 0.09 -0.03
RestingBP -0.01 0.01 0.00 0.08 0.98 0.04
Cholesterol 0.03 0.02 0.02 0.22 0.98 0.11
FastingBS -0.04 0.00 0.00 0.02 0.00 -0.01

RestingECG -0.01 -0.01 -0.01 0.01 0.00 0.00
MaxHR -0.03 0.00 0.00 0.26 0.84 0.09

ExerciseAngina 0.16 0.11 0.11 0.20 1.00 0.10
Oldpeak -0.01 0.02 0.01 0.15 0.44 -0.01
ST Slope 0.37 0.26 0.24 0.53 1.00 0.27
Elapsed < 1s < 1s 2s < 1s < 1s < 1s
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Figure B.1: Illustration of the LIME heatmap for heart disease prediction with LR (class label = C1) for 20 randomly selected
instances from the training data.

Figure B.2: Fidelity histograms for LIME (left) and Anchors (right) for RF model predictions explanations. Vertical red line repre-
sents 50% fidelity. Vertical blue line represents mean fidelity (mean precision for Anchors). It is important to assess both precision
and coverage values on the right.
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Table B.2: Global importance of input features in percent (range [0,1]) for heart data set. The values were computed using the
entire training data: 527 instances (for Shapley, kernelSHAP and CI).

LR Shapley kernelSHAP CI PFI
Age 0.06 ± 0.04 0.06 ± 0.04 0.10 ± 0.03
Sex 0.14 ± 0.09 0.14 ± 0.09 0.14 ± 0.06

ChestPainType 0.18 ± 0.06 0.18 ± 0.06 0.20 ± 0.07
RestingBP 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00
Cholesterol 0.03 ± 0.03 0.03 ± 0.03 0.07 ± 0.02
FastingBS 0.02 ± 0.02 0.02 ± 0.02 0.03 ± 0.01

RestingECG 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01
MaxHR 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00

ExerciseAngina 0.13 ± 0.04 0.13 ± 0.04 0.09 ± 0.02
Oldpeak 0.10 ± 0.05 0.10 ± 0.05 0.13 ± 0.05
ST Slope 0.30 ± 0.08 0.30 ± 0.07 0.23 ± 0.07
Elapsed 334s 559s 73s

RF
Age 0.06 ± 0.04 0.06 ± 0.04 0.10 ± 0.04 0.01
Sex 0.08 ± 0.06 0.08 ± 0.06 0.06 ± 0.06 0.13

ChestPainType 0.18 ± 0.06 0.18 ± 0.06 0.13 ± 0.07 0.20
RestingBP 0.03 ± 0.04 0.03 ± 0.03 0.08 ± 0.03 0.02
Cholesterol 0.04 ± 0.03 0.03 ± 0.03 0.06 ± 0.03 0.01
FastingBS 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00

RestingECG 0.02 ± 0.02 0.02 ± 0.02 0.03 ± 0.02 0.04
MaxHR 0.06 ± 0.05 0.06 ± 0.04 0.10 ± 0.06 0.12

ExerciseAngina 0.14 ± 0.06 0.14 ± 0.06 0.09 ± 0.06 0.16
Oldpeak 0.10 ± 0.07 0.11 ± 0.06 0.16 ± 0.07 0.08
ST Slope 0.27 ± 0.10 0.27 ± 0.09 0.18 ± 0.11 0.22
Elapsed 366s 1407s 72s < 1s

SVM
Age 0.06 ± 0.04 0.06 ± 0.04 0.10 ± 0.05
Sex 0.11 ± 0.07 0.11 ± 0.07 0.08 ± 0.05

ChestPainType 0.10 ± 0.03 0.10 ± 0.02 0.06 ± 0.03
RestingBP 0.02 ± 0.02 0.02 ± 0.02 0.07 ± 0.03
Cholesterol 0.04 ± 0.03 0.04 ± 0.03 0.08 ± 0.04
FastingBS 0.01 ± 0.01 0.01 ± 0.02 0.01 ± 0.01

RestingECG 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
MaxHR 0.06 ± 0.04 0.06 ± 0.04 0.13 ± 0.06

ExerciseAngina 0.11 ± 0.04 0.12 ± 0.04 0.06 ± 0.02
Oldpeak 0.13 ± 0.09 0.13 ± 0.00 0.20 ± 0.12
ST Slope 0.35 ± 0.10 0.34 ± 0.09 0.20 ± 0.06
Elapsed 350s 1628s 42s

Table B.3: Extra results of WBC metric for a linear regression model: f(x) = 0.2x1 + 0, 3x2 + 0, 5x3 - example from page 17.
Instances explained are from a student with the average grade in all courses and from a student with the maximum grade in all
courses. Global importance values are also shown, computed using 1000 randomly selected instances (total data size is 9261).

C2 LIME Shapley SHAP CI CU Cinfl
x1=15 -0.03 0 0 0.2 0.5 0
x2=15 -0.04 -0.02 0 0.3 0.5 0
x3=15 -0.07 0 0 0.5 0.5 0

C3 LIME Shapley SHAP CI CU Cinfl
x1=20 0.09 0.11 0.1 0.2 1 0.1
x2=20 0.14 0.16 0.15 0.3 1 0.15
x3=20 0.23 0.25 0.25 0.5 1 0.25
Global Shapley SHAP CI

x1 0.22 ± 0.15 0.21 ± 0.14 0.2 ± 0.0
x2 0.31 ± 0.18 0.31 ± 0.18 0.3 ± 0.0
x3 0.47 ± 0.20 0.48 ± 0.21 0.5 ± 0.0

Elapsed 196s 3631s 6s
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