
Multi-Harmonic Identification with Swept-Sine Excitation in

Nonlinear Dynamics

Eduardo Sousa
eduardo.sousa@tecnico.ulisboa.pt
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Abstract

The Digital Tracking Filter (DTF) is a technique to obtain good estimations of the amplitude
and phase of the measured response of the system and applied force, and hence of the structural
Frequency Response Functions (FRFs), under swept-sine excitation. It is normally more accurate than
the harmonic estimator in presence of tonal disturbances. The goal of this work is to extend the DTF
procedure to nonlinear structures. Indeed, while the response of a linear structure manifests only at the
fundamental excitation frequency ω, a nonlinear structure vibrates also at integer multiples of ω, n×ω,
called harmonics. The proposed technique, labelled Multi-Harmonic Digital Tracking Filter (MHDTF),
estimates the amplitude and phase of these higher-orders harmonics as well. The procedure is first
applied to simulated data and compared with the harmonic balance (HB) method estimations. Then,
experimental data are also analyzed, and the results are compared with the ones of an adaptive filter.

The multi-harmonic capabilities of the MHDTF open the way to its potential use in the nonlinear
system identification area. In this context, the methodology of obtaining a multi-harmonic State-Space
model is described and used for time simulations. The procedure is applied to a demo airplane
experimental setup. The advantage of this approach is its simple use and the possibility to better
approximate a response with multi-harmonic contributions. The clear drawback lies in the linearisation,
hence, its accuracy only at the level of excitation used during the identification. Keywords: Nonlinear
System Identification, Higher-order harmonics, Nonlinear Frequency Response Curve, Dynamic Testing,
Digital Filter, Multi-harmonic State-space Model.

1. Introduction and Theoretical Background
Understanding the dynamical behaviour of a me-
chanical system is key in the pursuit of reliable,
cheaper and more efficient structures that positively
affect the world.
A frequency response function (FRF) in struc-

tural dynamics is a complex frequency domain func-
tion that describes response of a point per unit force
at the input location [1]. The FRF can be obtained
analytically, assuming previous knowledge of the
mathematical model of the system, or experimen-
tally. In experimental testing, the input and output
data of a structure subjected to dynamic forcing is
measured.
The current work is pivoted on the analysis of

swept-sine excited structures. This type of exci-
tation is able to excite most of the resonances of
the system, as long as they are in the excitation
bandwidth, while ensuring a good trade-off between
magnitude of excitation level and testing time [2].
Processing the response of the structure in order

to estimate the amplitude and phase of this signal
is vital in undertaking system identification. Fur-

thermore, paired with the H1 estimator, the FRF
of the structure is then constructed. An accurate
estimation of the force and the response amplitude
and phase during a structural acquisition is a key
process to obtain good quality FRFs [1].

The harmonic estimator is a tracking technique
already rooted in the industry, simple and effective.
The Digital Tracking Filter (DTF) fulfills the same
purpose as the harmonic estimator yet it has shown
to reject more efficiently disturbances in the signal
[3]. Both techniques take advantage of the known
time-frequency relation of swept-sine testing.

The DTF, with previous developments carried in
[3], has the capability of tracking the fundamen-
tal harmonic, that contains the same procedure as
the widely electronics industry used lock-in ampli-
fier [4]. The procedure, pictured in Figure 1, is
carried out in three stages: dual-phase homodyn-
ing, followed by lowpass filtering and amplitude and
phase extraction.

Dual-phase homodyning is the first stage. The
response signal is mixed with two Constant Output
Level Amplitude (COLA) reference signal with the
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Figure 1: MHDTF procedure diagram.

same frequency content of the response/excitation,
one of them shifted by 90◦:
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The outcome of each mixing, or homodyning, can
be separated into two new homodynes, that is, two
new signal frequencies: a DC component, at 0 Hz,
and a 2×ω component, with all the required track-
ing information easily obtained from the DC com-
ponents.
The lowpass filtering is the following stage, aim-

ing to attenuate all components above DC: the 2×ω
homodyne component and all other disturbances in
the signal.
Following the filtering stage, only the DC homo-

dynes remain. The DC component originated from
Equation 1 and Equation 2 are labelled in-phase
and quadrature respectively, from which the ampli-
tude and phase are obtained.
The DTF is best suited for linear systems. Non-

linear systems, instead, exhibit a much more com-
plex response with diverse nonlinear phenomena [5]
[6]. One of the most relevant phenomena is the
multi-harmonic response for single-harmonic input,
particularly at integer multiples of the fundamental
excitation frequency, called harmonics.
Although methods to identify this multi-

harmonic content are already present in the liter-
ature, as for instance the adaptive filter [7], the
motivation of this work is to take advantage of
the DTF suitability in processing data in presence
of noise and tonal disturbances, and extend its
use to a multi-harmonic identification. The goal
is then to build a solid identification method, the
Multi-Harmonic Digital Tracking Filter (MHDTF),
to identify the different harmonics response, in a
robust and reliable way, during MIMO swept-sine
testing of complex structures.

In this paper, first, the estimations of the
MHDTF are compared with the ones of the HB
method, a numerical method that approximates the
steady-state response of a system with known prop-
erties as the summation of a definite number of
harmonics. The specific HB method implementa-
tion used in this work can be found in [8]. Sec-
ondly, experimental data of an airplane with non-
linear properties are analyzed, and the estimations
of the MHDTF are compared with ones of an adap-
tive filter [7], a data-driven method based on a least
mean squares (LMS) algorithm.

2. Implementation
The MHDTF procedure is summarized in Figure 2.
In this section, each block of the diagram is briefly
introduced and explained.

Figure 2: MHDTF procedure diagram.

2.1. Multi Dual-Phase Homodyning
The MHDTF procedure starts with the multi dual-
phase homodyning. Since the response of a non-
linear structure is composed not only of the fun-
damental frequency but also of its harmonics, the
homodyning mixing products differ from the single
harmonic homodyning of Figure 1.

For illustration, a multi harmonic example sig-
nal, with two components, is defined: fundamental
component at 10 Hz, with unit amplitude and null
phase and a 2nd harmonic component, trivially at
20 Hz, with half unit amplitude and null phase. The
Fourier transform of this signal is in Figure 3.
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Figure 3: Fourier transform of example signal be-
fore mixing.

The mixing products of this signal with the ref-
erence signal, ref signal(t) = sin(ω × t), provide
two homodynes, at DC and 20 Hz, and also two
heterodynes, at 10 Hz and 30 Hz, as visualized in
Figure 4.
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Figure 4: Fourier transform of example signal after
mixing at ω.

In general, the mixing product of the multi har-
monic response signal with the reference signal, as
well as the 90◦ phase shifted reference signal, will
contain two homodynes and as many pair of het-
erodynes as there are higher order harmonics in the
response signal. The products of this dual-phase ho-
modyning with the COLA reference signals at the
fundamental frequency contain information regard-
ing the 2nd harmonic, at the heterodynes. However,
it is more convenient to also perform a dual-phase
homodyning targeted at the 2nd harmonic order, in
an effort to bring the respective harmonic content
to DC where it is more easily extracted after the
lowpass filtering.

Therefore, mixing the original signal in Figure 3
with a COLA reference signal at double the funda-
mental frequency, ref signal(t) = sin(2ω × t) pro-
vides the Fourier transforms in Figure 5.

0 10 20 30 40 50

Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

A
m

p
lit

u
d

e

Figure 5: Fourier transform of example signal after
mixing at 2ω..

As observed, there are two homodynes, at DC
and 40 Hz, and two heterodynes, at 10 Hz and 30
Hz, the latter resultant of the mixing with the fun-
damental harmonic component of the response sig-
nal. Ultimately, the multi dual-phase homodyning
stage of the MHDTF procedure provides for a pair
of mixing products per harmonic order, with the
content of the respective harmonic conveniently sit-
uated at 0 Hz but also at h order × 2f , with other
pairs of heterodynes respective to the other har-
monic orders also present. Of course, more hetero-
dynes may appear due to noise in the signal, and
tonal disturbances. This multitude of homodynes
and heterodynes is very relevant as they may inter-
fere with each other and perturb the amplitude and
phase estimation.

2.2. Discrete Variable Bandwidth Lowpass
Filtering

In this stage, ideally, all frequencies above DC are
filtered out. The parameters of the employed low-
pass filter influence the tracking accuracy and an
optimal design is required to ensure the best out-
come. The most influential parameters are: design
method, filter order and cut-off frequency.

The design method implemented in the develop-
ment of the MHDTF is the Butterworth design. As
suggested by [9], the Butterworth design is versatile
and offers a smooth monotonic frequency response
that is maximally flat in the passband.

The filter order also plays a significant role in
the performance of the filter. Increasing the filter
order improves unwanted components rejection, as
the transition of the filter is steeper at a cost of a
slower filter response.

Another trade-off choice must be made on the
cut-off frequency. Lower cut-off frequencies reject
unwanted homodyne, heterodyne and noise compo-
nents more efficiently, but perform slower. Since
the filtering purpose is to attenuate all frequen-
cies above DC, delineating the cut-off frequency
evolves around this purpose. Previous studies [3]
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on the single-harmonic DTF have shown that the
cut-off frequency, fc, is optimal in the vicinity of
15% of the lowest signal frequency, f0, for good re-
sponse and noise rejection, fc/f0 ≈ 0.15. For multi-
harmonic purposes, this cut-off ratio is updated to
the lowest signal frequency of the respective har-
monic, fc/(h order ∗ f0) ≈ 0.15.
More importantly, for swept sine excitation, as

the signal frequency increases, the constant pass-
band bandwidth imposed by this cut-off ratio re-
sults in poor filter performance at higher frequen-
cies. Therefore, a variable bandwidth filter should
be employed to assure tracking quality, with the
cut-off frequency evolving at the same pace of the
sweeping frequency, f , to which the notion of cut-
off ratio is redefined as the ratio of the cut-off fre-
quency and the sweeping frequency of the specific
harmonic order to track, fc/(h order ∗ f) ≈ 0.15.
Regarding the filter itself, although there are al-

ready solutions to create varying bandwidth filters
[10], the employed method is much more discrete
and simple, aiming to use the MATLAB filtfilt func-
tion, that performs zero-phase digital filtering by
processing the input data in both the forward and
reverse directions. It allows the use of higher filter
orders and lower cut-off ratios without performance
loss.
The method consists in dividing the entire sample

interval in N sub-intervals (Figure 6). For optimal
results and computation efficiency, the number of
sub-intervals, N , must be correlated to the excita-
tion bandwidth, since the decrease in performance
at the end of the sub-interval occurs for increased
frequency differences between the start and end of
the sub-interval.
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Figure 6: Response divided in 5 sub-intervals, N =
5, equally divided in samples/time. The red lines
represent the wider interval for the 3rd sub-interval.

Additionally, another relevant discrete varying
filtering detail emanates from the delay and poor
performance associated with the start and end of
each filtering cycle. Therefore, a wider interval

must be filtered and then the correct sample allo-
cation must be done to the original sub-interval.
The best trade-off for the current application is a
4th-order filter with a cut-off ratio of 15% of the
sweeping frequency. The latter can possibly be
scaled downwards to 10% without any major es-
timation drawbacks.

Harmonic Interference Mitigation

Harmonic interference mitigation is an extra stage
of this procedure that rises solely from the multi
harmonic content of the nonlinear responses. The
clearest way to demonstrate the need of this mit-
igation is to apply the described multi-harmonic
identification procedure on a single harmonic sig-
nal. Theoretically, without interference, the higher-
order harmonics content is expected to be irrele-
vant.
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Figure 7: Multi-harmonic amplitude tracking of
single-harmonic swept-sine, without interference
mitigation, N = 1, cut-off ratio = 15%.

Instead, Figure 7 shows that the tracking of the
2nd and 3rd order harmonics is not null. This is due
to the influence of the 1st harmonic heterodyne on
the mixing products of the 2nd and 3rd harmonics,
as the curves similar shape of the curves might sug-
gest. The influence on the 2nd harmonic is greater
than the 3rd because the 1st harmonic heterodyne is
further away from DC for the 3rd harmonic homo-
dyning products than for the 2nd harmonic prod-
ucts.

Decreasing the amplitude of the fundamental har-
monic, which is the interfering harmonic in this sit-
uation, also decreases the interference curves by the
same amount, which is an indicator of the primary
influence of the difference between the higher and
lower amplitude harmonics. Concluding, harmonic
interference arises from all the heterodyne products
resultant of the multi dual-homodyning stage. All
orders interfere with each other. It is only when the
amplitude difference between these orders is very
large that there is a need to mitigate this phenom-
ena.
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The current method for the harmonic interfer-
ence mitigation is to recreate the interfering single
harmonic order signal and then subtract the hetero-
dyne products of this recreated single harmonic sig-
nal with the different order reference signals to the
mixing products of the initial dual-phase homodyn-
ing stage. Ultimately, this is identical as eliminating
the interfering component from the response signal
and then perform the dual-phase homodyning of the
interfered orders, but much more compact.
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Figure 8: Multi-harmonic amplitude tracking of
single-harmonic swept-sine, with interference mit-
igation, N = 1, cut-off ratio = 15%.

The mitigation is not fully achieved in Figure 8,
since the recreated single harmonic signal is only an
approximation of the single harmonic signal itself.
However, it does allow to lower the interference level
so that the resultant amplitude estimation of the
higher orders that reside below this cap are clear to
the user as erroneous, in contrast to the previous
amplitude estimation that could induce in error.

For swept-sine excitation, when N > 1 (Fig-
ure 6), it is possible to use an interference indica-
tor to verify if the amplitude tracking of a certain
harmonic order is composed or not of interference.
This indicator operates by verifying the initial sam-
ple of a filtering interval and the previous sample,
and assessing the difference in amplitude between
these two points. If this difference is bigger than
a defined amount, as in Figure 9, at 20 Hz, 30 Hz
and 40 Hz for the 2nd and 3rd harmonic orders, the
interference is detected.

These amplitude leaps occurs due to the differ-
ent cut-off frequencies of each sub-interval. As
the cut-off frequency increases for the next sub-
interval, it instantly rejects less the interfering het-
erodyne, which causes the sudden increase in am-
plitude. This method has proven sufficient enough
in the assessment of harmonic interference and re-
mains tunable by the user according to the obtained
results.
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Figure 9: Multi-harmonic amplitude tracking of
single-harmonic swept-sine, without interference
mitigation, N = 4, cut-off ratio = 15%.
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Figure 10: Multi-harmonic amplitude tracking of
single-harmonic swept-sine, without interference
mitigation, N = 4, cut-off ratio = 15%.

To tie the interference indicator in a procedure
that evaluates and mitigates interference, the infor-
mation on which harmonic interferes with the oth-
ers is required. This information is stored in the in-
terference vector. For illustration, a vector as [1 2 3]
delineates that the 1st harmonic interferes with the
2nd and the 3rd. Additionally, the 2nd harmonic in-
terferes with the 3rd. The mitigation procedure fol-
lows this same order. The interference of harmonic
1 is mitigated on harmonic 2 and 3 and the inter-
ference of harmonic 2 is mitigated on harmonic 3.
An interference matrix is then composed of several
interference vectors, resultant of the permutation of
the several harmonic orders, with the fundamental
order always being the 1st order of each vector.

From this, the mitigation procedure on Figure 2
focuses on rejecting the interference vectors that
have the wrong interference order and trying to find
the most appropriate vector. It is also important to
reassure in this procedure that the interference that
one harmonic causes on the others is only mitigated
once.
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3. Results on simulated data
The 3-degrees-of-fredom (DOFs) system in Fig-
ure 11, whose properties are depicted in Table 1
and Table 2 is analyzed.

Figure 11: 3-DOF system. Cubic spring at the 1st

mass is the source of nonlinearity.

Table 1: 3-DOF system parameters (I).
Mass(Kg) Stiffness (N/m)
m1 = 10 k11 = 1
m2 = 1 k12 = 3
m3 = 1 k23 = 1

k33 = 1

Table 2: 3-DOF system parameters (II).
Nonlinear cubic Damping (Ns/m)
stiffness (N/m3) c11 = 0.3

knl = 1 c12 = 0.01
c23 = 0.01
c33 = 0.01

From one side, these properties are processed
with the HB method, providing a steady-state solu-
tion that establishes a great benchmark to compare
to the MHDTF results. On the other side, the sys-
tem is excited with a swept-sine and the response
is retrieved using the Newmark solver. The input-
output data are then processed with the MHDTF,
following the already described procedure. The
same excitation amplitude (0.05 N) and location
(mass 1) is used in both cases.
The results of the comparison are shown in Fig-

ure 12. The amplitude of the displacement, ex-
pressed in dB, and the absolute phase, in degrees,
of DOF 1 of the described system is portrayed, for
the 1st and 3rd harmonic orders. By virtue of the
cubic nonlinearity, these two harmonic orders are
the most significant.
In the results comparison there is a clear corre-

spondence between the two responses for both har-
monics down to the -250 dB amplitude level, where
the tracking of harmonic 3 is clearly corroded. This
can be due to the tolerance error used in the New-
mark simulation, transient and in general the dif-
ference between 1st and 3rd harmonic-order ampli-
tude. Furthermore, there is no interest in estimat-
ing such a low response contribution, also because in

experimental measurements the signal-to-noise ra-
tio is expected to be lower than 190 dB.
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Figure 12: DOF1 displacement amplitude and
phase of 1st and 3rd harmonic order per HB method
and MHDTF tracking.

4. Experimental Results
The experimental setup of an airplane mock-up is
shown in Figure 13. Despite of the simple design,
its dynamic behavior presents several complex non-
linear phenomena. The source of nonlinearity are
mainly the two pylons under the wings, but also
the bolted connections between the different com-
ponents. The measurements of both input and out-

Figure 13: Experimental setup.

put data is recorded using force cells and accelerom-
eters. These are situated on the wing, fuselage, hor-
izontal and vertical tail, and on the pylon masses.
The airplane is excited at approximately midway
of each wing, with electrodynamical shakers, under
swept-sine excitation. The bandwidth of excitation
is 5 to 110 Hz.

From the measurements of both the input force
and acceleration signals, two tracking methods, the
adaptive filter and the MHDTF, are applied, allow-
ing the calculation of the nonlinear frequency re-
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sponse curve (NLFRC) utilizing the H1 estimator.

It is important to remark that the noise distur-
bance can be more significant than the harmonic
interference. Therefore, for computation efficiency,
the harmonic interference mitigation stage is ig-
nored in the shown identifications.

The structural NLFRC is plotted in Figure 14 for
the two methods, in dB. LPyl1 is the point on the
top mass of left pylon while LWing4 is the driving
point in the middle of the left wing. The estima-
tions of harmonic 1 are clear and identical for both
methods, except in the vicinity of 45 Hz. Harmonic
2 and 3, due to their lower amplitude, are more
subjective to disturbances in the signal.
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Figure 14: NLFRC amplitude estimation for
left pylon 1/left wing 4.

The MHDTF is more effective in rejecting these
disturbances when comparing to the adaptive fil-
ter. This is evident for harmonic 1, at around 45
Hz, and for harmonics 2 and 3 all across the band-
width. The MHDTF cut-off ratio utilized is 10%,
which has proven to be the inferior limit for tracking
accuracy and optimal noise rejection. However, in
the frequency range between 5 and 30 Hz, and espe-
cially at around 26 Hz for harmonic 3, the MHDTF
is not fully capable of attenuating the noise.

In Figure 15, the measured acceleration signal is
plotted together with the amplitude of the tracked
harmonics 1, 2 and 3 from the MHDTF, and their
sum. RPyl2 is one of the two points at the bottom
mass of right pylon. It is very noticeable how the
higher-order harmonics contribution becomes sig-
nificant when resonances are excited. In particular,
at 7.6 Hz and 48.5 Hz, the harmonic sum much bet-
ter approximates the time series amplitude, and, at
40.6 Hz and 44.3 Hz, harmonic 2 is even larger than
harmonic 1. The identification error that is commit-
ted in identifying the fundamental harmonic only is
hence very clear.
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Figure 15: RPyl2 acceleration signal and MHDTF
estimations.

5. Multi-Harmonic State-Space Modelling
Hugely facilitated by state-of-the-art tools in the
linear system identification and modal analysis
fields, many conveniently embedded in the Siemens
Testlab software, the proposed methodology at-
tempts to linearise a nonlinear structure, through
its harmonic estimations provided by the MHDTF,
and create a multi-harmonic State-Space (SS)
model. The advantage of this approach is its sim-
ple use and the possibility to better approximate a
response with multi-harmonic contributions. The
clear drawback lies in the linearisation, hence, its
accuracy only at the level of excitation used during
the identification.

5.1. Theoretical Synopsis
The employed techniques are briefly introduced:
PolyMAX and Maximum Likelihood estimation of
a Modal Model (MLMM) algorithm to obtain the
modal model and then the posterior conversion to
SS model.

5.1.1 PolyMAX and MLMM

PolyMAX is referenced as a new standard for modal
parameter estimation, as introduced in [11]. It is a
non-iterative frequency-domain parameter estima-
tion method based on a weighted least-squares ap-
proach. It constructs a modal model, by extracting,
from MIMO FRFs, a meaningful set of modes and
their associated modal parameters including: natu-
ral frequencies, damping values and mode shapes.

PolyMAX relies on modal fitting process, compa-
rable to that used for curve fitting. Different poly-
nomial orders are tested during the curve fitting
process, and the polynomial coefficients are then
calculated to reduce the discrepancy between the
curve and the data. Similar steps are taken in the
calculation of modal curves, where varying numbers
of modes are taken into account before determining
the modal shapes, natural frequencies, and modal
damping values to best match the measured FRFs.
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Shortly, PolyMAX, in its procedure, starts with
the creation of a stabilization diagram containing
frequency, damping and participation information.
From here, the modal modes are selected, either
by the user or automatically. A faithful mode se-
lection is important, they must correlate the modes
from the inputted FRFs. Validation of the obtained
modal model can be obtained with the comparison
of the synthesized FRFs, as constructed from the
modal model, and the originally inputted FRFs.
In order to improve the fit of the modal model,

that is, a better match of the synthesized FRFs, the
MLMM algorithm can be employed [12]. MLMM
automatically iterates on the parameters of the ini-
tial modal model to optimize the fit between the
identified model and the inputted FRFs.

5.1.2 State-Space and Modal Model Con-
version to Modal State-Space Model

The SS model is a method of representing dynami-
cal systems. It transfers observations of a response
variable to unobserved states or parameters by an
observation model. These state variables describe a
system of first-orders differential equations, reduc-
ing its complexity.
The continuous-time state space model consists

of Equation 3a, state equation and the observation
equation, Equation 3b. The calculated output re-
sponse, in the time domain, y ∈ Rno×1 is calcu-
lated as a function of the n internal states vector
x ∈ Rn×1 of the system through the output ma-
trix C ∈ Rno×n and of the input vector u ∈ Rni×1

through the direct throughput matrix D ∈ Rno×ni .
In this case, D is null. A ∈ Rn×n corresponds to the
state matrix and B ∈ Rn×ni to the input matrix.

ẋ = Ax+Bu (3a)

y = Cx+Du (3b)

The pairing of the modal and State-Space model
is covered in depth in [13].

5.2. Methodology and Guidelines
It is easier to first introduce the procedure and out-
comes for linear systems and then dive into the non-
linear implications and consequent changes.
Briefly, the response time series contain the be-

haviour of the structure to a specific input force.
This behaviour is then generalized in the FRFs.
From here, the curve fitting algorithm creates the
modal model that best approximates these FRFs
and therefore the structure itself. This model is
converted to a SS model, in the aforementioned A,
B and C matrices. From Equation 3, only the input
force u is missing to calculate the simulated time re-
sponse y. In structural utopia, if the same input

vector that originated the time series and FRFs
of the system is provided to the SS simulation, y
matches the response time series. Additionally, dif-
ferent input force u should numerically predict the
actual response of the structure to the same u.

Figure 16: Multi-harmonic State-Space modelling
and simulation procedure.

The first predicament of nonlinear systems is that
they respond at also its harmonics. Second predica-
ment is that the concept of FRF falls. The be-
haviour of the structure is not generalized and the
NLFRCs are only specific to the input force that
generated it. Therefore, predicting the behaviour
of the response of the system to different inputs
than the one that originated this modal system will
not lead to good predictions.

The proposed procedure of multi-harmonic SS
modelling and respective time domain simulation
is proposed in Figure 16.

5.2.1 MHDTF Estimation

Utilizing the MHDTF is the first step. The time se-
ries, either simulated or acquired from experimental
testing, are processed. The purpose is to obtain a
set of high-quality NLFRCs for each tracked har-
monic.

Additionally, if the simulated time response ob-
jective is to compare its results to the time series
that originated it, the MHDTF also has the purpose
of providing the in-phase and quadrature compo-
nents of harmonic 1.

5.2.2 PolyMAX + MLMM

Following, the modal models of each harmonic order
are obtained utilizing PolyMAX. In a nutshell, each
harmonic order is processed as its own individual
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system to process, with its own modal model and
respective modal parameters.

In this framework, modal validation from the per-
spective of the user should focus on obtaining a
proper fit of the synthesised FRFs, as the modeset
and consequently MAC validation have a secondary
value in this application. The fit really is of primary
importance to have good time predictions. While
this has proven to be fairly achievable for the fun-
damental harmonic, the higher orders have proven
to be quite troublesome, since the NLFRCs can be
corroded by noise or harmonic interference. Addi-
tionally, using a curve fitting method designed for
linear systems on nonlinear systems can contribute
to the poor modal validation. In this context, the
user should guide the fit towards the modes with
higher amplitude as these are the main contribu-
tors in the grand scheme. In a way, with the em-
ployment of MLMM, this is already done, since this
algorithm may shift several modes to one resonance.

5.2.3 Multi-Harmonic State-Space Re-
sponse Simulation

The input force time series given to the simula-
tions is the non-orthodox aspect of this methodol-
ogy. First, it is important to remark that nonlinear
system responds at the frequency ω and also at its
harmonics for a single-harmonic input at ω. There-
fore, this multi-harmonic SS model should react in
the same fashion, introducing a single-harmonic in-
put at ω should provide a multi-harmonic time re-
sponse. As previously stated, each harmonic order
is its own SS model from which the time simulated
responses of each order are calculated, summing up
all these responses to this single-harmonic input
must provide the desired outcome. However, the
SS simulation is linear, introducing an input signal
at frequency ω will always output a response at ω.
It is easy to see how this becomes problematic for
the higher orders, since the input force at ω will not
lead to a response at h order × ω.

Therefore it is required that the input of the
higher-orders simulations is manifested in its cor-
rect BW. The frequency of the input must be mod-
ified. In the case of simple constant spectrum inputs
with a known frequency content, this modification
is trivial. Otherwise, for the simulation of a spe-
cific harmonic-order, the instantaneous Fourier co-
efficients of harmonic 1, or in-phase and quadrature
components, previously retrieved from the initial
MHDTF processing, are multiplied with Constant
Output Level Amplitude (COLA) reference signals
of the respective order, as in Equation 4, resulting
in a signal with the same amplitude and phase con-
tent of the original harmonic 1 recreated signal, but

at the desired multiple of its frequency.

input forceh(t) = in− phase1(t)× sin(h×ω× t)

+ quadrature1(t)× sin(h× ω × t+ 90◦) (4)

The obtained signal is used as input for the simula-
tion of the hth order SS model. After, the responses
from each SS model, i.e. from each order, are
summed respecting the initial relation between ex-
citation frequency and response frequencies, leading
to the desired multi-harmonic simulated response.

5.3. Application on a Demo Airplane Exper-
imental Setup

The experimental setup to be modelled is the same
as discussed in section 4, where it was shown to
present a strong harmonic 2 and 3 contribution.
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Figure 17: LWing6, sweep 1 measured response con-
trasted with state-space simulation harmonic sum
and harmonic 1 amplitudes.

The procedure starts with the measured signals
MHDTF processing. After, PolyMAX and MLMM
were utilized. The fits of harmonic 1 were overall
very adequate. Harmonics 2 and 3 were inferior but
still optimal since the experimental model has the
advantage of having a strong higher-order contri-
bution that facilitates PolyMAX’s work. However,
the model fit has shown to be not good when dis-
turbances are present in the NLFRCs.

The harmonic sum and harmonic 1 amplitudes of
the SS simulated time response are contrasted with
the measured time series in Figure 17. It is possible
to see, not only the accuracy of the SS model, by
comparing the time series with the harmonic sum,
but also the improvement of including higher-order
harmonics in the model by comparing the harmonic
sum and the harmonic 1 amplitudes. In general,
better predictions were obtained where the fits were
best.

6. Conclusions
The MHDTF is proven to be a very efficient tool to
estimate the multi-harmonic response of a nonlin-
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ear system under swept-sine excitation. The contri-
bution of the higher-order harmonics can be signifi-
cant, especially in case of modal interactions. First,
it is validated on a simulation system using the har-
monic balance method for comparison. Then, its
estimations are compared with the ones of an adap-
tive filter, processing experimental data corrupted
by nonlinearity and noise. The very good suitability
of the DTF to reject noise disturbances is kept in
its multi-harmonic extension. Future developments
on the MHDTF should focus on the lowpass filter-
ing stage. In the end, this is where the good dis-
turbance attenuation capabilities of this technique
originate from. Additionally, the MHDTF identifi-
cation of sub-harmonics is yet to be explored.
The developed multi-harmonic state-space mod-

elling procedure, possible due to the estimations of
the MHDTF, provided a clear improvement by con-
sidering the higher-orders contributions, however,
its accuracy is only at the level of excitation used
during the identification, due to the underlying lin-
earisation. To this prediction, the use of Polymax
and MLMM to obtain a good fit of the higher-order
NLFRC should be further investigated. However,
the underlying linearisation does not allow to ob-
tain a good model behaviour at arbitrary excita-
tion amplitudes. To overcome this limitation, the
model in equation Equation 3(a) and Equation 3(b)
should include additional terms to account for the
nonlinearity.
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