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granting me the opportunity of taking this endeavour. I am also very grateful of Eng. Giancarlo Kosova,

who closely guided me these last months. Without his expertise and dedication this work would not be

possible.

I also have to thank Siemens Digital Industries Software for the internship opportunity. I could not have

asked for a better environment to develop from and I can only wish for more colleagues of mine to

experience the same I did.

This work also reflects the last 5 years of my life. All the friends and memories, Lisbon, Helsinki and

Leuven will never be forgotten as they truly are the best of these years.

At last, I could not thank enough the endless support of my family.

v



vi



Resumo

O Digital Tracking Filter (DTF) é uma técnica que obtém boas estimações de amplitude e fase de

medições de resposta de um sistema e da força aplicada, e consequentemente das Funções de Re-

sposta de Frequência (FRFs) da estrutura, sobre excitação swept-sine. É mais precisa que o harmonic

estimator na presença de distúrbios tonais. O objectivo desta dissertação é estender o procedimento

do DTF para estruturas não-lineares. De facto, enquanto que a resposta de uma estrutura linear ape-

nas se manifesta à frequência fundamental de excitação ω, uma estrutura não-linear também vibra nos

múltiplos de ω, n × ω, chamados harmónicos. A técnica proposta, nomeada Multi-Harmonic Digital

Tracking Filter (MHDTF), estima a amplitude e fase dos harmónicos de ordem superior. O procedi-

mento é aplicado a dados de simulação e experimentais e a influência de certos parâmetros do MHDTF

é estudada. Os resultados também são comparados com outras técnicas do estado da arte.

As capacidades multi-harmónicas do MHDTF abrem a possibilidade do seu uso na área de identificação

de sistemas não-lineares. Neste contexto, a metodologia de construção de um modelo multi-harmónico

de State-Space é descrita e aplicada para simulações em tempo. O procedimento é aplicado a um

modelo simulado de parâmetros discretos e a um setup experimental de uma aeronave demo. A van-

tagem desta abordagem é o seu uso simples e a possibilidade de obter uma melhor aproximação da

resposta com as contribuições multi-harmónicas. A desvantagem encontra-se na linearização e, con-

sequentemente, a precisão apenas se encontra ao nı́vel de excitação usado na identificação.

Palavras-chave: Identificação de Sistemas Não-Lineares, Harmónicos de Ordem Superior,

Curva de Resposta de Frequência Não-linear, Ensaios Dinâmicos, Filtro Digital, Modelo State-space

Multi-harmónico.
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Abstract

The Digital Tracking Filter (DTF) is a technique to obtain good estimations of the amplitude and phase

of the measured system’s response and applied force, and hence of the structural Frequency Response

Functions FRFs, under swept-sine excitation. It is normally more accurate than the harmonic estimator in

presence of tonal disturbances. The goal of this dissertation is to extend the DTF procedure to nonlinear

structures. Indeed, while the response of a linear structure manifests only at the fundamental excitation

frequency ω, a nonlinear structure vibrates also at integer multiples of ω, n × ω, called harmonics. The

proposed technique, labelled Multi-Harmonic Digital Tracking Filter (MHDTF), estimates the amplitude

and phase of these higher-orders harmonics as well. The procedure is first applied to simulated data

and after experimental data and the influence of certain MHDTF parameters is studied. The results are

also compared with the ones of other state of the art techniques.

The multi-harmonic capabilities of the MHDTF open the way to its potential use in the nonlinear system

identification area. In this context, the methodology of obtaining a multi-harmonic State-Space model

is described and used for time simulations. The procedure is applied to a simulated lumped parameter

model and after a demo airplane experimental setup. The advantage of this approach is its simple

use and the possibility to better approximate a response with multi-harmonic contributions. The clear

drawback lies in the linearisation, hence, its accuracy only at the level of excitation used during the

identification.

Keywords: Nonlinear System Identification, Higher-order harmonics, Nonlinear Frequency Re-

sponse Curve, Dynamic Testing, Digital Filter, Multi-harmonic State-space Model.
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Chapter 1

Introduction

1.1 Motivation

The main purpose of system identification is the everlasting improvement of vibrating structures. The

reconciliation of the numerical predictions, from the mathematical model, and the experimental obser-

vations, from input and output measurements performed on the real structure, allows for its further

development. In the aircraft industry, Ground Vibration Test (GVT) aims to perform this evaluation at a

large scale, and with the European aircraft industry requiring for costs and time reduction without dimin-

ishing the accuracy of the data, swept-sine excitation has emerged as a promising excitation signal for

this structural acquisition. In this realm, an accurate estimation and processing of the response is key,

especially, due to the inherent disturbances during testing. Two techniques, the Harmonic Estimator and

the Digital Tracking Filter (DTF) have demonstrated to give accurate results of the measured amplitude

and phase of the response, for this specific type of excitation. Between the two methods, the DTF has

shown to reject more efficiently disturbances in the signal [1].

Nonlinearities are inherent in real world structures, and even though the approximation of these systems

as linear has allowed great improvements on structural analysis, addressing nonlinear effects is vital

to understand and improve the performance of any structure. Ordinary sources of nonlinearity in the

aerospace industry can be backlash and friction in control surfaces, engine-to-pylon connections and

saturation effects in hydraulic actuators.

The most relevant nonlinear phenomenon for this work is the multi-harmonic response to a single-

harmonic excitation. While the response of a linear structure appears only at the frequency of the force

ω, called fundamental frequency, a nonlinear structure vibrates also at integer multiples of ω, n × ω,

called harmonics. The impact of the higher order harmonics on the measured response can be consid-

erable, therefore their identification is mandatory. The extension of the DTF for multi-harmonic nonlinear

responses is the objective of this dissertation, expanding the amplitude and phase estimations to the

higher-orders. This poses a challenge, since the overall reduced content makes them more subjec-
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tive to disturbances in experimental testing. In this aspect, it is important to examine if the great noise

attenuation capabilities of the DTF are translated to its multi-harmonic equivalent.

1.2 State of the Art

In the field of nonlinear system identification, unlike its linear counterpart, the analytical prediction of the

behaviour of the system is not possible. Therefore, only through experimental testing can a structural

dynamicist characterize the structure in study. There are three steps in this process:

• Detection - determine the presence of nonlinearity in the structural behaviour;

• Characterization - location, type and functional form of the nonlinearity;

• Parameter Estimation - estimation of the nonlinearity model coefficients.

A more detailed study on nonlinear system identification and its evolution can be found in [2, 3].

1.2.1 Detection

Many assumptions that act as the foundation for the analysis of linear systems do not apply to their non-

linear counterparts. The violation of the superposition can be a prime indicator of nonlinearity presence.

Considering the responses y1(t) and y2(t) of a structure to the input forces x1(t) and x2(t), respectively.

The principle of superposition is violated if αy1(t) + βy2(t) is not the structural response to the input

αx1(t) + βx2(t).

Additionally, for swept-sine excitation, the peculiarities of nonlinear phenomena can also act in favor of its

detection, such has the visual inspection of the hardening/softening effects or jump phenomena in reso-

nance. Hysteresis phenomena is also visible in resonance when contrasting the sweep-up and sweep-

down responses in swept-sine excitation. Additionally, the multi-harmonic response to single-harmonic

excitation is another nonlinear dynamic behaviour, the detection can be made by either visualization of

the sinusoidal wave, although it may be harder to verify due the noise presence, or by the unsymmetrical

overall response of the signal. These definitions and examples of these phenomena will be manifested

throughout this dissertation.

Numerical approaches in the detection step include the ordinary coherence function. This function,

ranges from 0 to 1, and it is required to be unity if and only if the system is linear and noise-free. It can be

a convenient and rapid detection tool for nonlinear behaviour; however, it is unable to distinguish between

the cases of a nonlinear system and noisy signals [4]. The Hilbert transformation is another technique

that diagnoses the nonlinearities based on the measured Frequency Response Function (FRF) data [5].

1.2.2 Characterization

To characterize a nonlinear system, the location, type, and functional form of all nonlinearities present in

the system must be determined. Prior to parameter estimation, it is essential to accurately characterize
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the nonlinear elastic and dissipative behavior of the physical structure and the identification method will

fail if the nonlinear mechanisms involved are not understood. This step of the identification procedure is

truly difficult since nonlinearity can originate from a wide range of sources and produce a wide range of

dynamic phenomena.

Analysing the deformation shapes of the modes that are most corrupt by the nonlinear response can

indicate the location, as the biggest relative displacement of these mode shapes may point out to the

nonlinearity source.

There are several aspects that amount to the type of the nonlinearity: if it comes from stiffness and/or

damping, hardening or softening characteristics, symmetric or asymmetric, smooth or non-smooth restor-

ing force and weak or strong nonlinearity. These aspects may be retrieved by looking at the distortions

in measured FRFs of nonlinear systems. However, because one class of nonlinearity can behave like

another in a certain input–output amplitude range, this method is not always conclusive of a particular

nonlinearity. At last, the functional form is the last step of characterization. Polynomial expansion is

the broader attempt to solve the task at hand. Nevertheless, some structures cannot necessarily be

modeled accurately even with high-order polynomial or even by integer power series.

These characterization step can be very ambiguous and can be answered by some of the tools detailed

in the parameter estimation step.

1.2.3 Parameter Estimation

In the last step of nonlinear system identification, numerous tried-and-true techniques for parameter

estimation are listed. It is also possible to group them as:

• By-passing nonlinearity - linearisation: the tools of structural linear analysis, like modal analysis,

are very effective. Applying them directly to nonlinear systems would provide a linear system

that explains and approaches the nonlinear system best. However, the nonlinear system deeply

changes its response as the level of excitation increases. The obtained linear model is then in-

valid. With modifications on this approach, the techniques of equivalent linearisation, introduced

by Caughey [6] and statistical linearisation, found in Roberts and Spanos [7], were developed.

• Time Domain methods: the data is analysed through its time series. In this category, the Restor-

ing Force Surface (RFS) method, initiated by Masri and Caughey [8], has proven to be a strong

addition to the toolbox of a structural dynamicist. Other examples include the NARMAX method,

developed by Leontaritis and Billings [9] [10].

• Frequency Domain methods: this time, the data is processed in the frequency domain, taking

the form of FRFs or spectra. A few examples are the Voltera and Wiener series, as described in

Schetzen [11], and the reverse path method [12].

• Modal methods: with the use of the concept of Nonlinear Normal Mode (NNM), approached in

subsection 2.1.2, it is possible to extend modal analysis to nonlinear systems.
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• Time-frequency analysis: time–frequency transformations aid in understanding the dynamics of

nonlinear systems. Some established methods in this category include the wavelet and Hilbert

transforms [13, 14].

• Black-box methods: these methods are applied in the absence of proper nonlinearity characterisa-

tion. Without prior knowledge of the structure, the methods take advantage of flexible mathematical

structure to capture all relevant physics in measured data. From there, mapping to the outputs of

the system can be performed with artificial neural networks, fuzzy networks, statistical learning

theory and kernel methods.

• Structural model updating: employing a Finite Element Method (FEM), improvements on this model

are made in order to approximate the predictions of this model to the experimental results.

1.3 Objectives

The current work pivots on the multi-harmonic identification of nonlinear systems and the possible ap-

plications in the nonlinear system identification field. The followings objectives trace the path to achieve

said goals:

• Understand nonlinear dynamics and the consequent nonlinear effects on the modal behavior of a

structure;

• Conduct experimental campaigns to collect data with strong nonlinear effects from a mock-up

airplane;

• Extend the methods for linear system identification, namely the DTF, to nonlinear cases;

• Apply the developed method to nonlinear simulation data from numerical solvers;

• Apply the developed method to the measured data;

• Compare the developed method with other state of the art methods;

• Create a multi-harmonic modal State-Space (SS) model with the estimations with the developed

method.

1.4 Thesis Outline

The structure of this thesis can be divided into seven parts:

• Chapter 1: the motivation and objectives behind this work are clearly detailed. Additionally, the

layout of the present document is defined;

• Chapter 2: an introduction of the most important concepts required for the development of this work

is made. Not only regarding the dynamics of linear and nonlinear systems but also the techniques

and theorems behind the developed method;
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• Chapter 3: the implementation of the developed method is described in detail, with particular focus

on offline processing;

• Chapter 4: application of the method on simulation data and consequent results discussion. The

results are compared with other state of the art methods;

• Chapter 5: application of the method on measured data from experimental tests and consequent

results discussion. The results are compared with other state of the art methods;

• Chapter 6: the procedure for multi-harmonic modal State-Space model is described in detail, along

with key guidelines. A synopsis of the techniques used in this procedure is also written. A lumped

parameter simulated model and a demo airplane experimental setup are modelled and simulated

responses obtained. These results are discussed;

• Chapter 7: the work of this dissertation is recapped along with its contributions to the state of the

art. Directions for future improvements/developments are listed.

5



6



Chapter 2

Theoretical Background

2.1 Linear and Nonlinear Dynamics

2.1.1 Modal Analysis

Modal analysis allows the determination of the dynamical behaviour of a mechanical structure under

dynamic loading conditions. This process translates the complex structure’s response into a set of

vibration characteristics: natural frequencies, mode shapes and damping factors.

Before introducing the process of modal analysis, analytical and experimental, it is first convenient to

establish the concept of Degree-of-Freedom (DOF). Every deformable structure is composed of infinite

number of infinitesimal rigid body masses, therefore all structures have an infinite number of DOFs that

allow the location and definition of the structure and its mass in space and time. From this, a faithful

approximation of such structure can be made with a finite number of DOFs, n. The dimension of the

analytical mass, stiffness, and damping matrices, as well as the number of hypothetically existing natural

frequencies and mode shapes, are all defined by n. Furthermore, Experimental Modal Analysis (EMA)

will include a ni input DOFs, where the input forces are applied and no output DOFs where the response

of the structure is recorded [15].

Analytical Modal Analysis

There are several assumptions for modal analysis theory [15]:

• linear superposition: the response of the system to any combination of loads equals the sum of

the individual responses to each of the loads acting separately. Therefore, mathematically, the

dynamics can be represented by linear, second order differential equations.

• time invariance: the dynamic characteristics are invariable with respect to time. Mathematically,

the coefficients of the differential equations are constants.

• Maxwell’s reciprocity principle states that the response at A due to input at B is the same as
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response at B due to input at A. This assumption translates to symmetric mass, stiffness and

damping matrices.

Starting in the simplest case to analyse, a Single Degree-of-Freedom (SDOF) system. The equilibrium

between inertial, damping, elastic and external forces is expressed in the equation of motion:

mẍ(t) + cẋ(t) + kx(t) = fext(t) (2.1)

The system is represented by a mass m, spring with constant k and a damper with coefficient c. The

displacement, velocity and acceleration of the mass are portrayed in x(t), ẋ(t) and ẍ(t), respectively.

These three just mentioned variables and also the external force, fext(t), are, of course, a function of

time, t.

Figure 2.1: Diagram of a SDOF system.

Transforming the time domain into the Laplace domain, variable s, assuming the free vibration response

has died out, it is possible to rewrite Equation 2.1:

(
ms2 + cs+ k

)
X(s) = F (s) (2.2)

And also define the dynamic stiffness Z(s):

Z(s)X(s) = F (s) (2.3a)

Z(s) =
(
ms2 + cs+ k

)
(2.3b)

Inverting Equation 2.3a provides:

X(s) = H(s)F (s) (2.4)

With the complex valued transfer function H(s):

H(s) = Z−1(s) =
1/m

s2 + (c/m)s+ k/m
(2.5)

The denominator of the transfer function designate the characteristic equation of the system, and its

roots, are the poles of the system, λ1,2:

λ1,2 = − c

2m
±
√( c

2m

)2
− k

m
(2.6)
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From Equation 2.6, some important concepts can be mathematically defined. First, if the system is

conservative, i.e. disregarding damping, c = 0, the undamped natural frequency wn, the frequency at

which a system tends to oscillate in the absence of any driving force, is calculated as:

wn =

√
k

m
(2.7)

The critical damping ccr is obtained equaling to zero the term under the square root in Equation 2.6:

ccr = 2m

√
k

m
(2.8)

From this, the damping ratio ζ is defined as:

ζ =
c

ccr
(2.9)

Also, Equation 2.6 yields in the time domain a solution of homogeneous system equation:

x(t) = x1e
λ1t + x2e

λ2t (2.10)

The critical damping acts as the threshold value between overdamping and underdamping. Systems

with ζ > 1 are classified as overdamped, if ζ = 1 critically damped and if ζ < 1 underdamped. The

response of overdamped systems consists of decay only with no tendency to oscillate, returning to its

equilibrium position. Critically damped systems return to their equilibrium position as quickly as possible,

without oscillating, forming the border case between over and underdamped systems. Henceforth, only

the underdamped case will be considered, in which case, Equation 2.6 yields two complex conjugate

roots, where σ1 is the damping factor and ωd the damped natural frequency, also known as resonance:

λ1 = σ1 + jωd and λ∗1 = σ1 − jωd (2.11)

The transfer function can be rewritten as:

H(s) =
1/m

(s− λ1)(s− λ∗1)
(2.12)

Having applied partial fraction expansion, where A1 and A∗1 are the residues:

H(s) =
A1

(s− λ1)
+

A∗1
(s− λ∗1)

with A1 =
1/m

j2ωd
(2.13)

The transfer function, i.e. the relation between the input force and the displacement can be translated

to the frequency domain. The transfer function evaluated along the frequency axis (jω) is called the

Frequency Response Function (FRF):

H(s)|s=jω = H(ω) =
A1

(jω − λ1)
+

A∗1
(jω − λ∗1)

(2.14)
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In Figure 2.2 it is possible to observe a generic FRF of SDOF system, after the transform of the complex

valued response from Equation 2.14 to amplitude and phase.

Figure 2.2: Example of an FRF for an SDOF system.

The observed peak in the amplitude, accompanied by a shift in the phase response, corresponds to

the resonance frequency. It is also important to remark that the resonance frequency, in this case the

damped natural frequency, is proportional to the undamped natural frequency, wd = wn
√

1− ζ2. Thus

meaning that if damping is disregarding, ζ = 0, the resonance assumes the value of the undamped

natural frequency.

As previously stated in the introductory chapters of the present subsection, it is required to describe

the majority of systems under analysis with several DOFs. Such Multiple Degree-of-Freedom (MDOF)

system behaviour can be described with n equations of motion. Subsequently, the translation to matrix

notation of such equations leds to:

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)} = {fext(t)} (2.15)

The mass M ∈ Rn×n, damping C ∈ Rn×n and stiffness K ∈ Rn×n matrices are symmetric. The

displacement is represented by x(t) ∈ Rn×1, velocity by ẋ(t) ∈ Rn×1, acceleration by ẍ(t) ∈ Rn×1 and

force vector by fext(t) ∈ Rn×1.

Figure 2.3: Free Body Diagram of a three DOF system.
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Translating Equation 2.15 to the Laplace domain:

(
[M ] s2 + [C] s+ [K]

)
{X(s)} = {F (s)} (2.16)

Defining the dynamic stiffness matrix, Z(s) ∈ Cn×n:

[Z(s)] {X(s)} = {F (s)} (2.17a)

[Z(s)] =
(
[M ] s2 + [C] s+ [K]

)
(2.17b)

Inverting Equation 2.17a provides:

{X(s)} = [H(s)] {F (s)} (2.18)

With the complex valued transfer function matrix H(s) ∈ Cn×n, where adj(Z(s)) is the adjoint matrix of

Z(s):

[H(s)] = [Z(s)]
−1

=
adj ([(Z(s)])

|Z(s)|
(2.19)

The denominator of the transfer function matrix is the characteristic equation of the system. The roots of

this equation contain the poles of the system that define the natural frequencies and damping ratio. To

determine these roots, Equation 2.17a is transformed into an eigenvalue problem formulation, with the

aid of the identity (s [M ]− s [M ]){X(s)} = 0:

(s [A] + [B]){Y } = {F ′} (2.20)

Where:

A =

 0 M

M C

 B =

 −M 0

0 K

 Y =

 sX

X

 F ′ =

 0

F

 (2.21)

If the force vector is null, the result is a generalized eigenvalue problem with real valued matrices:

(s [A] + [B]){Y } = 0 (2.22)

This generates 2×n complex valued eigenvalues, appearing in complex conjugate pairs, λ1 to λn and

λ∗1 to λ∗n, in which, once again, the damping factor is the real part of the pole whilst the imaginary

part corresponds to the damped natural frequency. Associated with each eigenvalue is an eigenvector.

These eigenvectors portray the concept of mode shape vectors, or modal vectors, ψ, that also appear in

complex conjugate pairs. Physically, a mode shape is the shape of the deformed system when excited

by a dynamic force at the same frequency as the natural frequency of the structure. The transfer function

matrix H(s), expressed in terms of the poles of the system yields, where E is a constant:

[H(s)] =
adj ([(Z(s)])∏n

r=1E(s− λr)(s− λ∗r)
=

adj ([(Z(s)])∏2n
r=1E(s− λr)

(2.23)
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Employing partial fraction expansion, where Ar and A∗r are the residues:

[H(s)] =

n∑
r=1

(
[Ar]

s− λr
+

[A∗r ]

s− λ∗r

)
(2.24)

Making s = jω Equation 2.24 provides the FRF of the system, as a sum of the FRFs of n SDOF systems.

Experimental Modal Analysis

Analytically calculating the modal parameters of complex structures can be very challenging due to the

difficult description of the structure into M , C and K matrices. Also, as previously stated, for theoretical

modal analysis, linearity is required and with the focus of this thesis on nonlinear systems there is a

need to estimate the modal parameters of the structure via other methods.

Experimental Modal Analysis (EMA) starts with excitation of the structure under test. The input force

is applied to the structure in a certain location and direction, and the amount of force used for each

measurement is precisely recorded. After, it is possible to calculate the FRF combining the input force

measurement, input, that acts as the reference, with the series of response measurements, output. The

typical output used in EMA is the acceleration output.

Ultimately, the FRFs are complex frequency domain functions, with amplitude and phase information,

that describe how the structure moves at each measurement location per unit force at the input location.

The modal parameters, natural frequencies, damping ratios and mode shapes are included in the FRFs.

More information on this parameterisation from the FRFs can be found in Heylen et al. [15].

The H1 estimator is the most employed algorithm to compute the FRFs. It assumes no noise on the

input and minimizes uncorrelated noise in the output. It has a tendency to underestimate the amplitude

at resonance, resulting in damping overestimation. Its calculation is done according to:

[H1(ω)] = [GXF (ω)] [GFF (ω)]
−1 (2.25)

H1 ∈ Cno×ni requires a posterior translation into amplitude and phase from the complex domain for a

clearer system’s behaviour interpretation. In the end, there is ni FRFs for each output DOF.

The output-input cross-power matrix GXF ∈ Cno×ni and input auto-power matrix GFF ∈ Cni×ni can be

obtained:

[GXF (ω)] = [X(ω)] [F (ω)]
T (2.26a)

[GFF (ω)] = [F (ω)] [F (ω)]
T (2.26b)

X(ω) ∈ Cno×nsw and F (ω) ∈ Cni×nsw contain the amplitude and phase information of the output and

input measurements in the complex domain, with nsw referring to the number of sweeps, or runs, in the

testing acquisition. To accurately process the FRFs, the input auto-power matrix must be non-singular,

therefore the number of performed sweeps must be at least equal to the number of input forces applied

to the system, nsw ≥ ni. The forces of each sweep cannot be correlated either, that is, the excitation
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configuration needs to change from one sweep to another [16].

2.1.2 Nonlinear Dynamics

Nonlinearity is inherent in real world systems. At small amplitudes, the system can be approximated as

linear as the nonlinearity sources are not activated. Nonetheless, the transition to a nonlinear system

occurs if these are activated by higher excitations. In this nonlinear domain, many of the concepts and

techniques risen by modal analysis are not applicable, and any attempt to do so will result in suboptimal

design, since linear superposition introduced in the beginning of section 2.1.1 cannot be extended to

nonlinear systems. Consequently the concept of FRF needs adaptation, rendering a different frequency

response per level of excitation. The equivalent term for nonlinear systems can be defined as Nonlinear

Frequency Response Curve (NLFRC) [2].

Attempts have been made to lineariase nonlinear systems, since these simplified models are preferred

by the industry where modal analysis techniques are embedded. Nevertheless, there is an ultimate

need to accurately portray nonlinear models and the first step is to interpret the peculiar dynamics and

phenomena associated with nonlinear systems.

Regarding the model of these nonlinear systems in the equation of motion, the nonlinearity is introduced

by fnl, the nonlinear restoring force vector :

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)}+ {fnl(x(t), ẋ(t))} = {fext(t)} (2.27)

Moving forward, the following 2 DOF system with a cubic spring is defined, in order to illustrate the

phenomena and features of a nonlinear system:

ẍ1 + (2x1 − x2) + 0.5x31 = F cosωt (2.28a)

ẍ2 + (2x2 − x1) = 0 (2.28b)

This example system and its dynamics are featured in Kerschen et al. [17]. Computation and numerical

methods for this system are broadly approached in the same article.

Dynamical Features and Phenomena

First, the frequency-energy dependence of free oscillations is a dynamical feature of nonlinear re-

sponses. Increase in amplitude/energy will increase the frequency of response of an unforced nonlinear

system with hardening properties. The frequency decreases for systems with softening properties. This

dynamics leads to instability of the free periodic responses of undamped nonlinear oscillators, the non-

existence of analytic solutions for free damped nonlinear responses and complex nonlinear phenomena

in the unforced dynamics, such as nonlinear mode localisation in periodic arrays of nonlinear oscillators

[17].
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To better interpret nonlinear phenomena, the extension of Linear Normal Mode (LNM) to the nonlinear

domain needs to be made. Physically, LNM is the vibration in unison of a conservative system, where

all material points of the system reach their extreme values and pass through zero simultaneously, with

a fixed, linear relation between the displacements of each point. LNM are also orthogonal, the excitation

of one mode will never cause motion of a different mode.

The definition of Nonlinear Normal Mode (NNM) was pionereed by Rosenberg [18, 19], as a vibration in

unison of the sytem with a nonlinear relation between the displacements, and later continued by Shaw

and Pierre [20] with the inclusion of the invariant manifold approach. Ultimately, Kerschen et al. [17]

extended this definition to a non necessarily synchronous periodic motion of the conservative system.

The frequency of motion of the material points does not need to be equal and the relations between the

displacements linear. Figure 2.4 not only shows the nonlinear displacement relation, by visualization

of the configuration space, but also hints at another dynamics of nonlinear systems response: the

time series of the displacement x1 defines a sinusoidal response that is clearly composed by multiple

harmonics.

(a) Time series (— x1, - - x2) (b) Configuration space

Figure 2.4: NNMs of the nonlinear system of Equation 2.28 in free vibration [17].

One of the properties of NNMs is the frequency-energy dependence of their oscillations. The modal

curves and frequencies of oscillation depend on the total energy of the system, preventing the direct

separation of space and time in the equation of motion of the system and its analytical calculation and

also rendering invariant the FRFs of nonlinear systems. In Figure 2.5 the NLFRCs of a system in

Equation 2.28, that possesses hardening properties, is observed. The increase in forcing amplitude

leads to further separation from the peak of the smallest amplitude, that can be approximated as linear,

and the subsequent increase in the resonance frequency.

The representation of this property is most clear in a Frequency-Energy Plot (FEP). In a FEP, NNM

motion is represented by a point, attached to the corresponding frequency of motion and total conserved

energy in the system. The solid lines represent a branch, that is, a family of NNM motions with the same

qualitative features.
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Figure 2.5: NLFRCs of system in Equation 2.28, with added damping, as the level of excitation increases

[17].

In the following image, the FEP of the system in Equation 2.28 is observed. The branches S11+ and

S11− represent the in-phase and out-of-phase synchronous NNMs, respectively. The letter S refers to

symmetric periodic solutions, while unsymmetric periodic solutions are denoted by the letter U . The

indices in notation reference the relation between the frequency of motion of the two DOFs. The con-

Figure 2.6: FEP of system in Equation 2.28 in free vibration [17].

figuration space is also attached to the corresponding NNM. The interpretation of this FEP evidentiates

the frequency-energy dependence of NNMs, as they can be approximated as linear at small energy

values. When the energy increases the frequency of these NNMs also increases for both branches and

the configuration spaces indicate nonlinear relations between the displacements of the 2 DOFs.

Another property of NNMs is that they may interact during general motion of the system. Modal in-

teractions may result in internally resonant frequencies due to energy exchange between the different
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modes, in a reversible or irreversible fashion. For the same nonlinear system, the FEP in Figure 2.7

shows the appearance of another branch of periodic solutions for higher energy values. This branch,

termed tongue, emerges from the backbone branch S11+. On this tongue, there is a 3:1 internal res-

onance between the in-phase and out-of-phase NNMs. Both the FEP and the time series for this 3:1

internal resonance are pictured below.

(a) FEP (b) Time series (— x1, - - x2)

Figure 2.7: FEP and time series featuring a 3:1 internal resonance of system in Equation 2.28 in free

vibration [17].

The third property of NNMs is that they can exceed in number of DOFs in the system, due to mode bifur-

cations that lead to mode instabilities and bifurcating branches of nonlinear localised modes. Bifurcation

occurs when different dynamics develop in the vicinity of a point in space.

The aforementioned dynamic features and NNMs properties contribute to the following dynamics only

associated with nonlinear systems:

• Multiple co-existing stable equilibrium positions;

• Chaotic motion, that possess unpredictable, irregular and random-like dynamic behaviour;

• Multi-harmonic response for single-harmonic input;

• Harmonic excitation may lead to forced resonances, such as subharmonic, superharmonic, com-

bination or autoparametric resonances;

• Sudden nonlinear transitions, also known as jumps, caused by nonlinear hysteresis phenomena.

These jumps are essentially transitions between co-existing stable branches of solutions that may

result in swift changes in amplitude and phase of the motion for abrupt variations of the excitation

frequency. In Figure 2.8, two jumps are perceptible in the vicinity of resonance, for a softening

nonlinearity. The I-II jump occurs for a forward sweeping frequency and jump III-IV for backward

sweeping.
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Figure 2.8: Nonlinear jump phenomena [17].

2.1.3 Dynamic Forcing

In experimental modal analysis, in order to evaluate the response of the structure it is first needed to

excite the structure. There are several types of excitation signals waveforms, such as random-stochastic

signals that include pure random excitation and pseudo random. Also, there are periodic signals like

multi-sine signals and transient signals like swept-sine signals.

As stated before, the current thesis pivots on swept-sine excitation. In the analysis of aerospace struc-

tures, swept-sine excitation provides a good trade-off between magnitude of excitation level needed for

large aircraft and testing time. Additionally, it allows for the excitation of all resonances of the structure

in the frequency range of the forcing excitation [21].

A swept-sine signal is a sinusoidal signal whose frequency increases, sweep-up, or decreases, sweep-

down. The excitation force can be written as:

f(t) = F (t) sin(ϕ(t)), ϕ̇(t) = ω(t) (2.29)

F (t) represents the amplitude of the signal. The phase of the signal, ϕ(t) is the derivative of the instan-

taneous angular frequency ω(t). The time evolution of ω(t), besides increasing or decreasing, can also

be linear or logarithmic. For a linear sweep it yields:

ω(t) = ωs + at, a =
ωe − ωs
T

(2.30)

The linear sweep rate, a, expressed in rad/s2, is a function of the start frequency, ωs and the end

frequency, ωe, over the excitation time period T . Therefore, the excitation can be calculated according

to these parameters as follows:

f(t) = F (t) sin
(a

2
t2 + ωst+ ϕ0

)
(2.31)

The instantaneous angular frequency of the logarithmic sweep, the most commonly applied in the current
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work, is calculated by:

ω(t) = ωs2
St/60 (2.32)

Where the logarithmic sweep rate, represent by S, is expressed in octaves per minute. Thus leading to

a logarithmic sweep excitation function:

f(t) = F (t) sin

(
60ωs
S ln(2)

(2St/60 − 1) + ϕ0

)
(2.33)
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Figure 2.9: Logarithmic and linear swept-sine signals.

2.2 Harmonic Balance Method

The Harmonic Balance (HB) method is a numerical approximation method that is able to compute

steady-state periodic solutions of the dynamics of nonlinear systems, described by ordinary differen-

tial equations. It provides computational efficiency, reduced numerical instability and computation of

physically unstable conditions [22].
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As introduced before, it is possible to describe a nonlinear dynamical system with n DOFs through the

following equation of motion:

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)} = {f(x(t), ẋ(t), ω, t)} (2.34a)

where {f(x(t), ẋ(t), ω, t)} = {fext(ω, t)} − {fnl(x(t), ẋ(t))} (2.34b)

M,C and K portray the mass, damping and stiffness matrices, respectively. The two vectors, x(t) and

f(x, ẋ, ω, t) , both periodic, can be approximated by Fourier Series truncated to the nthh harmonic:

x(t) =
cx0√

2
+

nh∑
k=1

(
sxk sin(

kωt

ν
) + cxk cos(

kωt

ν
)

)
(2.35)

f(t) =
cf0√

2
+

nh∑
k=1

(
sfk sin(

kωt

ν
) + cfk cos(

kωt

ν
)

)
(2.36)

In Equation 2.35 and Equation 2.36, the integer ν accounts for sub-harmonics of the excitation frequency

ω and sk and ck represent the vectors of the Fourier coefficients associated to the sine and cosine terms,

respectively. The new unknowns of the problem are the Fourier coefficients of the displacement x(t).

It should also be known that the coefficients of f(t), sfk and cfk , are dependent on sxk and cxk. All these

coefficients can be arranged into (2nh + 1) n× 1 vectors:

z =
[

(cx0)T (sx1)T (cx1)T ... (sxnh
)T (cxnh

)T
]T

(2.37)

b =
[

(cf0 )T (sf1 )T (cf1 )T ... (sfnh
)T (cfnh

)T
]T

(2.38)

This allows for a more compact representation of displacement and force:

x(t) = (Q(t)⊗ In) z (2.39)

f(t) = (Q(t)⊗ In) b (2.40)

In represents the identity matrix, size n, and ⊗ the Kronecker tensor product. Q(t) contains the cosine

and sine series as follows:

Q(t) =

[
1√
2

sin(
ωt

ν
) cos(

ωt

ν
) ... sin(nh

ωt

ν
) cos(nh

ωt

ν
)

]
(2.41)

From this notation, Equation 2.34 can be compactly written in as Equation 2.42, with all due mathemati-

cal justifications demonstrated in [22].

h(z, ω) ≡ A(ω)z − b(z) = 0 (2.42)
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The matrix A, (2nh + 1)n× (2nh + 1)n describes the linear dynamics of the system:

A = ∇2 ⊗M +∇⊗ C + I2nh+1 ⊗K (2.43)

In matrix form:

A =



K

K −
(
ω
ν

)2
M −ωνC

ω
νC K −

(
ω
ν

)2
M

. . .

K −
(
nh

ω
ν

)2
M −nh ωνC

nh
ω
νC K −

(
nh

ω
ν

)2
M


(2.44)

Since Equation 2.42 is nonlinear, it has to be solved iteratively, with, for example, a Newton solver. At

each iteration, an evaluation of b and of ∂h∂z has to be provided. When f has an established analytical

sinusoidal expansion and when it can be precisely approximated by a small number of harmonics, along

with expression of the Jacobian matrix of the system, the analytical expressions relating the Fourier

coefficients of the forces b and of the displacements z can be determined.

A different method is the Alternating Frequency/Time-domain (AFT) technique, with the intent of com-

puting b. More information on this method can be found in Cameron and Griffin [23]. Another efficient

alternative, termed trigonometric collocation is explored in Xie and Lou [24], also with further mathemat-

ical justifications and procedure in Detroux et al. [22].

At last, since the HB method is computed to only a specific frequency ω, a continuation procedure must

be applied and coupled with the HB to ensure the computation over a vast range of frequencies. In De-

troux et al. [22], a continuation procedure based on tangent predictions and Moore-Penrose corrections

is demonstrated.

2.3 Digital Signal Processing

A signal is defined as any physical quantity that varies with time, space, or any other independent

variable or variables. The majority of the signals encountered in research and engineering are analog

in nature. These signals are function of a continuous variable, often time, and usually undertake values

on a continuous range. Althought, there are tools capable of processing analog signals for diverse

applications, frequently these analog signals are converted into digital signals, which are function of a

discrete variable, time, with discrete values as well [25].

Since an analog signal is defined at every point in time and value/amplitude, it contains an infinite number

of points. Such is not feasible to digitize. Additionally, since processing infinite points requires an endless

amount of memory and processing capacity, it is inappropriate to use a digital signal processor or a

computer. Sampling resolves this problem by taking samples at the fixed time interval. This sampling
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interval or sampling period ∆T is then defined as the time span between consecutive sample points

[26].

Figure 2.10: Analog signal and display of sampling [26].

Sampling can also be defined by its sampling rate or frequency, fs, expressed in samples per second or

Hz:

fs =
1

∆T
(2.45)

One concern that needs to be tackled is that sampling occurs at a high enough rate so that the original

analog signal can be reconstructed or recovered and no information is lost. If such is not verified,

aliasing occurs, resulting in undesirable signals in the desired frequency band. The Nyquist–Shannon

sampling theorem implies that an analog signal must be sampled at least twice of the highest frequency

component of the signal, fs ≥ 2fmax.

Figure 2.11: Example of appropriately and inappropriately sampled signals [26].

Figure 2.11 portrays two sinusoidal waves where ∆T = 0.01s and consequently the sampling frequency

is 100 Hz. A sine wave with a frequency of 40 Hz and its sampled amplitudes are shown in the first plot

of the figure. Since 2fmax = 80Hz < fs, the sampling theorem condition is met. The circles in the first

plot are used to label the sampled amplitudes. Given that the sampled values are clearly originated from

the analog representation of the 40 Hz sine wave, it can be concluded that this is sufficiently sampled.
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The sine wave with a frequency of 90 Hz is sampled at 100 Hz, as can be seen in the second plot.

The signal is undersampled due to 2fmax = 180Hz > fs. As a result, the requirement of the sampling

theorem is not fulfilled. Once again, analysing the sample amplitudes labeled with the circles on the

second plot, it cannot be determined if the sampled signal originates from sampling a 90 Hz sine wave

(solid line) or a 10-Hz sine wave (dot-dash line). They are not distinguishable, hence, they are aliases of

one another. The 10 Hz sine wave is referred in this example as the aliasing noise.

From the Nyquist–Shannon sampling theorem also rises the definition of Nyquist frequency, which is

half of the sampling frequency fs
2 .

Another important step of the analog to digital conversion is the quantization. It has been seen that

a digital signal consists of a series of numbers (samples), each of which is represented by a certain

number of digits (finite precision). Quantization is the process of transforming a discrete-time continuous-

amplitude signal into a digital signal by representing each sample value as a limited (as opposed to an

infinite) number of digits. Quantization error, also known as quantization noise, transpires from the

representation of a continuous valued signal by a limited collection of discrete value levels. Nowadays,

quantization error is minimized due to large bit levels in today’s computing.

2.3.1 Heterodyning

Heterodyning is a processing technique that mixes two different signals. The components from this

mixing can be obtained according to the following trigonometrical identity:

sin(θ1)× sin(θ2) =
1

2
(cos(θ1 − θ2)− cos(θ1 + θ2)) (2.46)

From this equation, acknowledging two signals at frequencies f1 and f2, the mixing of these signals

generates two new signals. One at the sum of the two original frequencies, f1 + f2, and other at the

difference of the original frequencies, f1 − f2. These new signal frequencies are labelled heterodynes.

In most applications, including the DTF, this technique is used to shift signals from one frequency range

to another, therefore transferring the content of the signal to a frequency where it can be more easily

processed, transported or filtered. For this effect, one of the signals to be mixed contains the information,

the input signal, whilst the other, the reference signal, is typically a local oscillator.

2.3.2 Digital Filter

Transfer Function

Interpreting x(n) and y(n) as the input and output, respectively, of a Digital Signal Processing (DSP)

system, the relation between the output and input can be expressed by the following difference equation

[27]:

y(n) = b0x(n) + b1x(n− 1) + ...+ bMx(n−M)− a1y(n− 1)− ...− aNy(n−N) (2.47)
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where bi and aj depict the coefficients of the system and n is the time or sample index.

It is observable from Equation 2.47 that the output of this DSP system is the weighted sum of the current

and previous input values, x(n) and x(n−1), ..., x(n−M) and the past output values: y(n−1), ..., y(n−N).

This processing technique is referred as digital filtering and it can be verified as linear, time invariant and

causal.

Starting from the difference equation it is possible to derive the z-transfer function of the filter, which is

the ratio of the z-transform of the output and input of the system. The z-transform of a causal sequence

x(n), designated by X(z) is defined as:

X(z) =

∞∑
n=0

x(n)z−n (2.48)

After the z-transforms of the x(n) and y(n) the Equation 2.47 can be rewritten::

Y (z) = b0X(z) + b1X(z)z−1 + ...+ bMX(z)z−M − a1Y (z)z−1 − ...− aNY (z)z−N (2.49)

Rearranging this equation:

H(z) =
Y (z)

X(z)
=
b0 + b1z

−1 + ...+ bMz
−M

1 + a1z−1 + ...+ aNz−N
=
B(z)

A(z)
(2.50)

The transfer function, termedH(z), represents the digital filter in the z-domain, allowing for better stability

and frequency response analysis. In order to verify stability, a translation to the analytical form and

multiplication of the numerator and denominator of the transfer function by zn is made, where n is the

filter order. This parameter is the largest delay in the difference equation or the largest power of z in the

transfer function.

Figure 2.12: z-domain and unit circle [27].

The multiplication by the same value on the top and bottom accounts for equality. The locations of the

zeros are the roots of our numerator equation, and the poles are the roots of our denominator equation,

in analytical form. The magnitudes of the poles must be less than 1 for stability. Poles directly on the

unit circle provide for marginal stability and poles outside will cause instability.
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Types of Digital Filters

Figure 2.13: Normalized magnitude response of a

lowpass filter [27].

Digital filters can be categorized in four main

types, each with a specific application in DSP:

lowpass, highpass, bandpass, and bandstop. In

general, the passband, stopband, and transition

band of the filter frequency response serve as

the primary design criterion for the filter. The fre-

quency range where the amplitude gain of the fil-

ter response is about equal to one is known as

the filter passband, also referred as bandwidth

(BW). The frequency range across which the fil-

ter magnitude response is attenuated to exclude

the input signal whose frequency components fall

within that range is known as the filter stopband. The frequency region between the stopband and the

passband is referred to as the transition band [27]. In the context of this dissertation, it is important

to establish the lowpass filter. Its design criteria and framework are shown in Figure 2.13. As visible

from its normalized magnitude response, the low frequency components pass through whilst the high

frequency components are filtered. Ωp and Ωs represent the cut-off frequency and the stopband cut-off

frequency, respectively. Additionally, the design parameter of the ripple (fluctuation) of the frequency

response in the passband is δp, whereas the ripple in the stopband is specified by δs.

Phase Response and Filter Delay

The phase response Θ(ω) of a digital filter is defined as the phase (or angle) of the frequency response

H(ejωT ), that is given by its transfer function H(z) evaluated on the unit circle [28]:

Θ(ω) = ∠H(ejωT ) (2.51)

The real-valued phase response Θ(ω) gives the radian phase shift added to the phase of each sinusoidal

component of the input signal. It is often more intuitive to consider instead the phase delay P (ω), defined

as:

P (ω) = −Θ(ω)

ω
(2.52)

The phase delay gives the time delay in seconds experienced by each sinusoidal component of the input

signal. That is, the offset between the input and output of the phase. Group delay D(ω), a more common

representation of filter phase response, may be interpreted as the time delay of the amplitude envelope

of a sinusoid at frequency ω:

D(ω) = − d

dω
Θ(ω) (2.53)

It is the offset between input and output amplitude envelope.
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Chapter 3

Multi-Harmonic Digital Tracking Filter

The capability of tracking the amplitude and phase of the multi-harmonic response of a nonlinear system

is paramount in the detection of modal interactions and the overall understatement of said structure. The

proposed technique for this tracking, particular to structures subjected to sinusoidal excitation with a

known frequency content over time, such as swept-sine excitation, is the Multi-Harmonic Digital Tracking

Filter (MHDTF).

This technique has evolved from the Digital Tracking Filter (DTF), capable of only tracking the fundamen-

tal harmonic, that contains the same procedure as the widely electronics industry used Lock-In Amplifier

[29]. The procedure, pictured in Figure 3.1, is carried out in three stages: dual-phase homodyning,

followed by lowpass filtering and amplitude and phase extraction.

Figure 3.1: Sketch of a typical lock-in measurement[29].

It is convenient to explain the simpler procedure of the DTF, also interpreted in Musella et al. [1], before

diving in the divergences and the details of the implementation of the MHDTF developed in this thesis.

The dual-phase homodyning is the first stage. Deriving from heterodyning, introduced in subsec-

tion 2.3.1, homodying is the mixing of two signals with same frequency content. In the particular ap-

plication of amplitude and phase tracking of the DTF, the input signal would be the response of the

system, which of course occurs at the excitation frequency. The reference signal is then a Constant
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Output Level Amplitude (COLA) that has the same frequency as the excitation by design. Therefore,

since the frequency of both signals, that is the input and reference signal, are identical, this technique

is termed homodyning. It is then easy to observe how after the mixing, the obtained homodynes are a

zero frequency signal (DC component) and a double excitation frequency signal.

As the title of this stage suggests, two homodyning mixing processes take place: the input signal is

multiplied with the COLA reference signal and also with a 90◦ phase shifted COLA reference signal.

Considering a signal at frequency ω, resp signal(t) = A(t) sin(ω × t + φ(t)), A(t) and φ(t) are the

amplitude and phase to track, respectively, and also the COLA reference signal ref signal(t) = sin(ω ×

t), the resultant homodynes, two per equation, yield:

resp signal(t)× sin(ω × t) =
1

2
A(t)

(
cos(φ(t))− cos(2ω × t+ φ(t))

)
(3.1a)

resp signal(t)× sin(ω × t+ 90◦) =
1

2
A(t)

(
sin(φ(t)) + sin(2ω × t+ φ(t))

)
(3.1b)

The outcome of each mixing, or homodyning, can be separated into two new homodynes, that is, two

new signal frequencies: a DC component, 0 Hz, and a 2ω component, with all the required tracking

information easily obtained from the DC components.

Following is the lowpass filtering stage, aiming to attenuate all components above DC: the 2ω homodyne

component and all other disturbances in the signal. The representation of these two stages and the

consequent development of the input signal is best visualized by their Fourier transform:

Figure 3.2: Two stages of a digital tracking filter applied on a 50 Hz sine tone signal [1].

After a successful filtering stage, only the DC homodynes remain. Increasing twofold these components,

originated from Equation 3.1a and Equation 3.1b, equates the in-phase and quadrature components,

respectively:

in− phase(t) = A(t) cos(φ(t)) (3.2a)

quadrature(t) = A(t) sin(φ(t)) (3.2b)

The amplitude and phase is obtained:

A(t) =
√

(in− phase(t))2 + (quadrature(t))2 (3.3)
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φ(t) = arctan

(
quadrature(t)

in− phase(t)

)
(3.4)

Starting from this procedure, extra stages and adaptations to the already established ones were imple-

mented to meet some of the problems encountered due to the multi-harmonic content of the tracked

nonlinear responses.

3.1 MHDTF Offline Implementation

The MHDTF procedure, with particular focus on offline processing, is summarized in Figure 3.3. In this

section, each block of the diagram is introduced and explained. The MATLAB code of this procedure is

present in section A.1.

Figure 3.3: MHDTF procedure diagram.
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3.1.1 Multi Dual-Phase Homodyning

The MHDTF procedure starts with the multi dual-phase homodyning. Since the response of a nonlinear

structure is composed not only of the fundamental frequency but also of its harmonics, the homodyning

mixing products differ from the single harmonic homodyning of Figure 3.1. For illustration, a multi-

harmonic example signal, with two components, is defined: fundamental component at 10 Hz, with unit

amplitude and null phase and a 2nd harmonic component, trivially at 20 Hz, with half unit amplitude and

null phase. The difference in amplitude permits to more easily distinguish the two components in the

Fourier transform, not only of the signal itself, Figure 3.4, but also of the following Fourier transforms of

the mixing products with this example signal.
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Figure 3.4: Fourier transform of the example multi-harmonic signal.

The mixing products of this signal with the reference signal, ref signal(t) = sin(ω × t), provide two

homodynes at DC and 20 Hz, resultant of the mixing of the fundamental harmonic component, and two

heterodynes at 10Hz and 30Hz, resultant of the mixing of the 2nd harmonic component, as visualized

in Figure 3.5. All these homodynes and heterodynes have an amplitude of half of the component in the

signal that originated them. In the presence of noise in the signal, it may surprass this value. The mixing

product of this multi-harmonic signal with the 90◦ phase shifted COLA reference signal is identical to the

one pictured with the exception of a null component at 0 Hz.

In general, the mixing product of the multi-harmonic response signal with the reference signal, as well

as the 90◦ phase shifted reference signal, will contain two homodynes, mathematically demonstrated

in Equation 3.1, and as many pair of heterodynes as there are higher-order harmonics in the response

signal.

The products of this dual-phase homodyning with the COLA reference signals at the fundamental fre-

quency contain information regarding the 2nd harmonic, at the heterodynes. However, it is more conve-

nient to also perform a dual-phase homodyning targeted at the 2nd harmonic-order, in an effort to bring

the respective harmonic content to DC where it is more easily extracted after the lowpass filtering.
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Figure 3.5: Fourier transform of the mixing products of the multi-harmonic example signal and reference
signal.

Mixing the example signal with a COLA reference signal at double the fundamental frequency, ref signal(t) =

sin(2ω0 × t) , provides the Fourier transforms in Figure 3.6. As observed, there are two homodynes, DC

and 40 Hz, and two heterodynes, 10 Hz and 30 Hz. The latter resultant of the mixing with the funda-

mental harmonic component of the example signal.
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Figure 3.6: Fourier transform of the mixing products of the multi-harmonic example signal and 2nd order

reference signal.

Ultimately, the multi dual-phase homodyning stage of the MHDTF procedure provides for a pair of mixing

products per harmonic-order, with the content of the respective harmonic conveniently situated at 0 Hz,

with other pairs of heterodynes respective to the other harmonic-orders also present. Of course, more

heterodynes may appear due to noise or tonal disturbances in the signal, as observed in Figure 3.5 and

Figure 3.6. This multitude of homodynes and heterodynes is very relevant as they may interfere with

each other and disturb the amplitude and phase estimation.
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3.1.2 Discrete Variable Bandwidth Lowpass Filtering

At this stage, ideally, all frequencies above DC are filtered out. Not only the horder × 2ω homodyne and

other heterodynes stemming from the different harmonics but also noise and tonal disturbances present

in experimental measurements.

Filter Parameters

The parameters of the employed lowpass filter influence the tracking accuracy and a practical analysis

around these is required to ensure the best outcome. The most influential parameters are: design

method, filter order and cut-off frequency.

The design method implemented in the development of the MHDTF is the Butterworth design. As

suggested by All [30], the Butterworth design is versatile and it offers a smooth monotonic frequency

response that is maximally flat in the passband. Figure 3.7 backs this claim when comparing to a

regular IIR lowpass filter that has a higher passband ripple, less filtering capability in the vicinity of the

cut-off frequency and the same transition band footprint at later frequencies.
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Figure 3.7: Magnitude response comparison be-

tween lowpass IIR and Butterworth filters, both with

order 2.
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Figure 3.8: Magnitude response comparison be-

tween several lowpass Butterworth filters, order 1

to 5.

The filter order also plays a significant roll on the performance of the filter. Increasing the order of a filter

improves unwanted components rejection, as the transition is steeper, Figure 3.8, at a cost of a slower

response, as seen by the group delay per filter order in Figure 3.9.

In Figure 3.10 it is also possible to observe the rise in delay for the decrease in cut-off frequency,

fc. Again, another trade-off choice must be made as lower cut-off frequencies reject the unwanted

homodyne, heterodynes and noise components more efficiently.
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Butterworth per cut-off frequency, for the same filter

order.

Since the filtering purpose is to attenuate all frequencies above DC, delineating the cut-off frequency

evolves around this purpose. Previous studies on single harmonic DTF, carried out by Musella et al. [1]

have shown that the cut-off frequency is optimal in the vicinity of 15% of the lowest signal frequency of

the signal, f0, for good response and noise rejection, fcf0 ≈ 0.15.

For multi-harmonic purposes, the cut-off ratio should regard the lowest signal frequency of the respec-

tive harmonic, fc
horderf0

≈ 0.15. That is, when filtering the mixing products relative to the fundamental

harmonic-order content of the example signal, the cut-off frequency should be ≈ 15% of 10 Hz. As for

filtering the 2nd harmonic-order content, the cut-off frequency should be ≈ 15% of 20 Hz. Additionally,

with multi-harmonic content, cut-off ratios in the vicinity of the 15% value also accomplish the attenu-

ation of heterodynes that may be present near to the DC component, when this DC component has a

significant amplitude over the nearing heterodyne.

More importantly, for swept sine excitation, as the signal frequency increases, the constant passband

bandwidth (BW) imposed by this cut-off ratio of the lowest signal frequency results in poor filter per-

formance at higher frequencies, as visible in Figure 3.12. Therefore, a variable bandwidth filter should

be employed to be assure tracking quality, with the cut-off frequency evolving at the same pace of the

sweeping frequency, f , to which the notion of cut-off ratio is redefined as the ratio of the cut-off frequency

and the sweeping frequency of the specific harmonic-order to track, fc
horderf

≈ 0.15.

Discrete Varying Bandwidth Filtering

Althought there are already solutions to create varying bandwidth filters, such as in Moorer [31], with the

use of Conformal Mapping, and pre-designed implementations in mainstream numerical and simulation

software such as SIMULINK, the employed method is much more discrete and simple, aiming to use the

MATLAB filtfilt function. The method consists of dividing the entire sample interval in N sub-intervals.

31



0 100 200 300 400 500 600

Time(s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

A
m

p
lit

u
d
e

Time series

Start of each sub-interval

Filtered interval for

the 3
rd

 sub-interval

Figure 3.11: Response divided in 5 sub-intervals,

N = 5, equally divided in samples/time. The red

lines represent the wider interval for the 3rd sub-

interval.

The cut-off frequency of each filter is then pro-

portional to the sweeping frequency at the start

of each sub-interval. All the other parameters are

equal for all filters. For optimal results and com-

putation efficiency, the number of sub-intervals

N must be correlated to the excitation bandwidth

since the decrease in performance at the end of

the sub-interval occurs for bigger frequency dif-

ferences between the start and end of the sub-

interval.

Additionally, another relevant discrete varying fil-

tering detail emanates from the delay and poor

performance associated with the start and end of

each filtering cycle, a wider sub-interval must be filtered and then the correct sample allocation must be

done to the original sub-interval, as visualized in Figure 3.11.
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Figure 3.12: Amplitude tracking of a single harmonic logarithmic response signal, with constant or dis-

crete variable bandwidth filtering. The use or not of wider filtering intervals is also pictured for the variable

bandwidth filtering. N = 5, equally divided in time, and cut-off ratio = 15%.

Figure 3.12 displays the importance of a varying bandwidth lowpass filter for sweeping excitations. The

performance decrease from the constant bandwidth and the improvements of the current method are

clear, as well as the need for filtering wider intervals. The discrete variable filtering also accounts for

smaller group delays at higher frequencies, since the cut-off frequency itself is higher, for the same

cut-off ratio. This smaller group delay translates in two significant aspects at higher frequencies: the

amplitude tracking delay to the signal itself is smaller as well as the filter delays at the start of each
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interval, that is the difference between the red dashed (- -) and continuous (–) lines.

Table 3.1: Frequency at sub-interval start for

different interval division. Bandwidth of 10 to

110Hz, N = 5.
Interval Division

Time/samples Frequency

10 Hz 10

16.15 Hz 30

26.1 50

42.16 70

68.1 90

One more discrete varying filtering facet is the signal in-

terval division: either equally divided in samples/time,

as in Figure 3.11, or in frequency. Both options are

identical when the sweep is linear. However, when the

sweep is logarithmic, the time dividing option accounts

for small frequency differences between the start of

consecutive sub-intervals at the first sub-intervals and

a large difference at the later sub-intervals, as inter-

preted from Table 3.1. This may result in poor filter

performance at these later sub-intervals and, therefore,

frequency dividing is advised.

To obtain the sample location for each sub-interval, represented by aux1, for linear sweeps and for time

divided intervals:

aux1(n) = 1 + n× n samples

N
, n = 0, 1, ..., N − 1 (3.5)

Where n samples is the number of samples of the response signal. For logarithmic, frequency divided

sub-intervals, where fstart and fend represent the start and end frequencies of the excitation bandwidth:

aux1(n) = 1 + n samples× log fend
fstart

(
n

N

(
fend
fstart

− 1

)
+ 1

)
n = 0, 1, ..., N − 1 (3.6)

After defining all the parameters for each filtering interval, the filtering process is executed with the MAT-

LAB function filtfilt. This function has the convenience of performing zero phase filtering by processing

the input data in both the forward and reverse directions. After filtering the data in the forward direction,

the function reverses the filtered sequence and runs it back through the filter. Consequently, this function

is only practicable for offline processing. The outcome has zero phase distortion, it removes the phase

response associated with causal digital filters. As seen in Figure 3.13, the group delay is eliminated as

the amplitude tracking clearly matches the envelope of the response signal.

This proved to be a major asset of the filtering stage, as the zero phase filtering results in the proper

sample/time/frequency allocation of amplitude and phase. It also allows the use of higher filter orders

and lower cut-off ratios thus improving the noise rejection and estimation, without the drawback of higher

group delays. However, when the variations in response amplitude are extreme, resultant of dynamic

phenonema such as beating, observed in the 2nd and 3rd modes of the response signal in Figure 3.13

[32], or signal perturbations from tonal disturbances, these changes in cut-off ratios are noticeable and

therefore must remain changeable by the user of the MHDTF in order to obtain better results for that

specific application.

The best trade-off for the current application is a 4th-order filter with a cut-off ratio of 15% of the sweeping

frequency. The latter can possibly be scaled downwards to 10% without major estimation drawbacks.

33



0 100 200 300 400 500 600

Time(s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

A
m

p
lit

u
d
e

Time Series

Amp. tracking, without filtfilt function

Amp. tracking, with filtfilt function

Figure 3.13: Amplitude tracking of a single harmonic response signal due to a logarithmic swept-sine
excitation, with discrete variable bandwidth filtering. The use or not of the filtfilt function is portrayed.
N = 5, equally divided in time, and cut-off ratio = 15%.

3.1.3 Harmonic Interference Mitigation

Harmonic interference mitigation is an extra stage of this procedure that rises solely from the multi-

harmonic content of the nonlinear responses. The clearest way to demonstrate the need of this mit-

igation is to apply the described multi-harmonic identification procedure on a single harmonic signal.

Theoretically, without interference, the higher-order harmonics content is expected to be irrelevant.
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Figure 3.14: Amplitude tracking of the 1st, 2nd and 3rd harmonic-orders of single harmonic sine signal
with varying amplitude.

Instead, Figure 3.14 shows that the tracking of the 2nd and 3rd order harmonics is not null. This is due

to the influence of the 1st harmonic heterodyne on the mixing products of the 2nd and 3rd order, as the

similar shape of the curves might suggest. Additionally, decreasing the cut-off ratio reduces the influence
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of the 1st harmonic on the 2nd and 3rd orders, as expected. It also makes sense that the influence on the

2nd order is greater than the 3rd order, plainly because the first order heterodyne is further away from

DC for the 3rd order homodyning products than for the 2nd order products.

Decreasing the amplitude of the fundamental harmonic, which is the interfering harmonic in this situa-

tion, also decreases the interference curves by the same amount, which is an indicator of the primary

influence of the difference between the higher and lower amplitude harmonics.

If the amplitude content of the 2nd and 3rd harmonic-orders in the signal are substantially higher than

the interference levels of Figure 3.14 there is no concern of harmonic interference. On the contrary, if it

is substantially lower, only interference is tracked and the same results of Figure 3.14 are obtained.

Concluding, harmonic interference arises from all the heterodyne products resultant of the multi dual-

homodyning stage. All orders interfere with each other, it is only when the amplitude difference between

these orders is large enough to interfere with the amplitude and phase estimation that there is a need to

mitigate this phenomena.

Since in experimental data there is an inherent noise intrusion in the measured response signals, in-

terference mitigation is not required as the interference levels are situated well below the noise levels.

However, for simulated data, the demand is clear.

Mitigation Procedure

The current method for the harmonic interference mitigation is to recreate the interfering order signal as

described further ahead in subsection 3.3.1, and then subtract the heterodyne products of this recreated

single harmonic signal with the different order reference signals to the mixing products of the initial dual-

phase homodyning stage. Ultimately, this is identical as eliminating the interfering component from the

response signal and then perform the dual-phase homodyning of the interfered orders, but much more

compact.
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Figure 3.15: Amplitude tracking of the 1st, 2nd and 3rd harmonic-orders of single harmonic sine signal

with varying amplitude. Harmonic interference mitigation was applied.
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Figure 3.15 shows the results of this interference mitigation method. The mitigation is not fully achieved

since the recreated single harmonic signal is only an approximation of the single harmonic signal itself.

However, it does allow to lower the interference level and the resultant amplitude estimation of the

higher-orders that reside below this cap are clear to the user as erroneous. In contrast to the previous

amplitude estimation that could induce the user in error. From Figure 3.15, it is also possible to infer that

for different cut-off ratios, the result after mitigation is sensitively the same.

For swept-sine applications of the MHDTF, when N > 1, an interference indicator function was created

to verify if the amplitude tracking of a certain harmonic-order is composed or not of interference. This

function operates by verifying the initial and previous sample of a filtering interval and assessing the

difference in amplitude between these two points. If this difference is bigger than a stipulated amount,

an amplitude leap occurs. Examples of amplitude leaps are visible below, at 20, 30 and 40 Hz for the

2nd and 3rd harmonic-orders:
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Figure 3.16: Amplitude tracking of a single harmonic logarithmic signal, 10 to 50 Hz. Amplitude leaps

are visible due to harmonic interference. N = 4, equally divided in frequency, and cut-off ratio = 15%.

This amplitude leap occurs due to the different cut-off frequencies of each interval. As the cut-off fre-

quency increases for the next interval, it instantly rejects less the interfering heterodyne, which causes

the sudden increase in amplitude. This method has proven sufficient enough in the assessment of

harmonic interference and remains tunable by the user according to the obtained results.

There are two settings that adjust this interference indicator, whose MATLAB can be found in section A.2:

leap detection is the amplitude difference limit before it is considered a leap and leap percentage is the

percentage limit of leaps allowed, in relation to the amount of leaps possible, i.e. N − 1, before the

harmonic is appraised as composed by interference or not. The demand for this leap percentage comes

from the big difference in amplitude that some harmonics may have, in their lowest value they may reach

the limit of the interference mitigation and present leaps resultant of the mitigation procedure, as the

ones visible for DOF3 in Figure 4.7.

To tie the interference indicator in a procedure that evaluates and mitigates interference, the information
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of what harmonic interferes with the others is required. This information is stored in the interference

vector. For illustration, a vector as [1 2 3] delineates that the 1st harmonic, the fundamental harmonic,

interferes with the 2nd and the 3rd. Additionally, the 2nd harmonic interferes with the 3rd. The mitigation

procedure follows this same order. The interference of harmonic 1 is mitigated on harmonics 2 and 3

and the interference of harmonic 2 is mitigated on harmonic 3.

The interference matrix is then composed of several interference vectors, resultant of the permutation of

the several harmonic-orders, with the fundamental order always being the first order of each vector. For

example, when tracking the 1st, 2nd and 3rd harmonics, the interference matrix is:

interference matrix =

 1 3 2

1 2 3

 (3.7)

From this, the mitigation procedure on Figure 3.3 focuses on rejecting the interference vectors that have

the wrong interference order and tries to find the most appropriate vector. It’s also important to reassure

in this procedure that the interference that one harmonic causes on the others is only mitigated once.

After the filtering and harmonic interference mitigation stages, there is one in-phase and quadrature

component for each harmonic-order, from which the amplitude and phase is obtained according to Equa-

tion 3.2a - Equation 3.2b.

3.2 MHDTF Online Implementation

The knowledge obtained from multi-harmonic estimations can have diverse applications. One of them

resides in the Control field. In the end, that is the application of the single-harmonic DTF and harmonic

estimator developments in Musella et al. [1] and also of other state of the art methods such as the

adaptive filter in Abeloos et al. [33]. Consequently, it is also of the interest of the author to briefly expand

the methodology constructed in section 3.1, for offline processing, to online processing.

The adopted procedure, developed in the SIMULINK software, is reduced to essentials. The harmonic

interference mitigation stage is neglected and the lowpass filtering simplified, largely due to the existence

of a Butterworth variable bandwidth lowpass filter block. As a result, since the processing is online, the

filters must be causal and the group delay associated is inevitable.

In Appendix B. is displayed the block diagrams relative to the online methodology as well as a brief

explanation of its implementation.

3.3 Additional Computations

The following computations and estimations are capable due to the MHDTF outcomes. It is important

to briefly explain the implementation of these computations as they not only portray the estimations of

MHDTF in different techniques but are also required in the interference mitigation procedure such as the
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signal recreation computation.

3.3.1 Signal Recreation

It is important to remark that the in-phase and quadrature components of all harmonic-orders correspond

to instantaneous Fourier coefficients, in similar fashion to what is mentioned in section 2.2. With these

coefficients, it is possible, by definition, to attempt to recreate the original response signal. This is even

extra convenient in the MHDTF procedure since the already created COLA reference signals are the

necessary pair for the coefficients.

A specific single harmonic signal is calculated with multiplication of the respective harmonic-order instan-

taneous Fourier coefficients and COLA reference signals, as demonstrated in Equation 3.8a. Summing

all nh these single-harmonic signals provides the multi-harmonic response signal, Equation 3.8b.

responseh(t) = in− phaseh(t)× sin(h× ω0 × t) + quadratureh(t)× sin(h× ω0 × t+ 90◦) (3.8a)

response(t) =

nh∑
h=1

responseh(t) (3.8b)

3.3.2 Harmonic Sum

The harmonic sum is the combined amplitude of all harmonics. Consequently, it is also the amplitude

envelope of the recreated multi-harmonic signal. To calculate this pretended amplitude, at each sample,

a single fundamental period sinusoidal wave is created for each harmonic-order, with the respective

amplitude and phase values. The maximum value of the sum of all sinusoidal waves, for this single

period, is regarded as the harmonic sum for that sample point. As visualized in Figure 3.17.
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Figure 3.17: Illustration of the computation of the harmonic sum for a single sample point.

The MATLAB code of this computation is present in section A.3.
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3.3.3 Nonlinear Frequency Response Curve

At this stage, it is important to better explain the concept of Nonlinear Frequency Response Curve

(NLFRC) and how it is approached in this dissertation: the NLFRC of a certain harmonic-order relates

the behaviour of this order to the input force that originated it, more particularly to this thesis, to the

tracking of the 1st harmonic of the aforementioned force.

The NLFRC, obtained using the H1 estimator is calculated according to the mathematical expressions

detailed in section 2.1.1. Each harmonic-order has its own set of NLFRCs, with the input of the H1

always being the harmonic 1 estimation of the input forces and the output is the response estimation of

the relative harmonic-order.

The MATLAB code of the H1 algorithm is present in section A.4.

3.4 Limitations and Improvements

The MHDTF accuracy finds its limitations from the procedure itself and also from input signal character-

istics. Internal to this procedure, these limitations may rise from the techniques and filter performance

and also from improper defined settings. Because of the latter, it is paramount for the MHDTF to remain

tunable by the user.

The harmonic interference governs the capability and accuracy of the relative lower amplitude harmon-

ics tracking. Additionally, since the harmonics to track are selected by the user, stored in the harmonic

selection vector, if the interfering harmonic is not being tracked, it is not possible to mitigate its interfer-

ence. Furthermore, from Figure 3.15 and Figure 3.16, the limit of the harmonic interference mitigation

method is exposed at around 200 dB amplitude difference to the interfering harmonic.

Adding to the importance of correctly defined settings is the proper selection of the interference indicator

parameters. There may be examples, like harmonic 3, DOF3, in Figure 4.7, where the appearance of

leaps at the lower amplitudes of the tracked harmonic, due to the mitigation method, may induce the

interference indicator in a wrong evaluation. Increasing the leap percentage is advised in these cases.

The MHDTF performance is also dependent on the number of intervals N . Higher the N , the less dis-

crete the filtering process and the better the performance. However, this comes at the cost of extremely

increased CPU time due to the wider filtering intervals. The use of a variable bandwidth lowpass filter

would erase this trade-off, however it must be paired with a different interference indicator.

External to the MHDTF, certain characteristics of the input signal may induce difficulties in its tracking.

First, complying with Nyquist–Shannon sampling theorem is of extreme relevance in the application

of the MHDTF since, due to the system nonlinearity, the response also occurs for the harmonics of

the excitation frequency. If it’s desired to track the hth harmonic response, it is required to assure the

conformance of the sampling frequency in regards to this hth harmonic frequency, fs > 2 × h × fmax,

where fmax is assumed to be the maximum value of the excitation bandwidth. From the experience of
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the author of processing undersampled and borderline undersampled signals, fs must be conservatively

20% higher than what is proposed in the Nyquist–Shannon sampling theorem.

Jumps between several solution branches, a unique phenomenon of nonlinear systems, and beating

phenomena, as entailed in [32], cause sudden variations in the measured signal. In these situations, the

tracking accuracy decreases, the MHDTF cannot react quickly enough. The influence of the cut-off ratio

will be studied further ahead for these situations. Nevertheless, beating phenomenon can be avoided

with lower sweep rates.

The presence of signal disturbances in the signal also affects the estimations. Different categories can

be used to differentiate noise. Electrical noise from the circuit that turns measured accelerations into

a voltage signal causes some tonal disturbances at the alternate current frequency. In experimental

testing, this was identified at a frequency of 50 Hz. In some sensors, short circuits can also happen,

resulting in the capture of an incorrect signal. It is necessary to eliminate the measurements of these

sensors from the analysis. Mechanical noise can come from a variety of sources, such as vibrational

noise from the surroundings or noise from thermomechanical sources, inducing a constant white noise

in the measurements. The influence of the cut-off ratio on signal disturbances will also be studied further

ahead in this document.

At last, the time-frequency evolution of the signal is not flawlessly clear. The discrepancies from the input

signal frequency and its numerical assumption, used in the COLA reference signals and consequently

in the reconstructed signal, may limit the estimation.
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Chapter 4

Application on Simulation Data

Simulation data are very helpful in the development stage of any technique, since the perturbance

free signal ensures that any estimation mistake stems from the method, assuring its validation before

processing experimental data. A lumped parameter system and its mathematical model are defined,

granting the calculation of simulation data, through a Newmark solver, expressed in acceleration and

displacement time series.

In this chapter, these resultant responses act as input of the Multi-Harmonic Digital Tracking Filter

(MHDTF). The results will be analysed as well as the influence that some parameters have. The same

signals will also be processed with the adaptive filter and the consequent results compared with the

MHDTF. The mathematical model of the system, translated into the equation of motion is also solved by

the Harmonic Balance (HB) method. Contrasting this solution with the MHDTF results is paramount on

the validation of the proposed procedure.

4.1 Simulated Lumped Parameter System

In this chapter, the simulation data refers to a 3 DOF lumped parameter system, Figure 4.1, consisting

of 3 masses and 4 springs and dampers. Between the 1st mass and the ground there is a cubic spring,

which is the source of nonlinearity in the system.

Figure 4.1: 3 DOF system. Cubic spring at the 1st mass is the source of nonlinearity.
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The structural parameters of the employed system are depicted in Table 4.1.

Table 4.1: 3-DOFs system 1 parameters.

Mass(Kg) Stiffness (N/m) Nonlinear cubic stiffness (N/m3) Damping (Ns/m)

m1 = 10 k11 = 1 knl = 1 c11 = 0.3

m2 = 1 k12 = 3 c12 = 0.01

m3 = 1 k23 = 1 c23 = 0.01

k33 = 1 c33 = 0.01

From the structural parameters, disregarding the nonlinear cubic spring, the natural damped frequencies

can be analytically calculated: 0.36 rad/s, 1.29 rad/s and 2.15 rad/s.

In order to obtain the time series of the response of the system, a 0.05N constant amplitude logarithmic

swept-sine input force, bandwidth of 0.1rad/s to 3 rad/s, was applied at the 1st mass. From there, a

Newmark solver constructed the following displacement and acceleration response signals processed

in this chapter.
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Figure 4.2: Simulation displacement signals.

Figure 4.2 and Figure 4.3 are the displacement and acceleration response time series, respectively. At

first sight, in the 1st mode, nonlinear phenomena is visible, particularly, jump phenomenon. The sudden

transition in amplitude and the non-symmetry, around the resonance frequency, are visible for both re-

sponses due to the hardening nonlinearity. Therefore, a significant higher harmonic-order amplitude is

expected at the first mode. The other two modes, however, do not resemble any of the just mentioned

nonlinear effects and can be approximated as linear. The higher harmonic-orders should have insignif-

icant contributions in the response. The goal of the MHDTF is to quantify this and identify exactly their

amplitude and phase.
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Figure 4.3: Simulation acceleration signals.

4.2 MHDTF Application

The MHDTF procedure is applied on the acceleration response signal of Figure 4.3. The number of

sub-intervals N is equal to 10 and the cut-off ratio is 15%. The interference indicator parameters,

leap percentage and leap detection, were set at 30% and 5dB, respectively. These parameters can be

considered as universal for unprecedented data processing.

The first result to analyse is the amplitude estimation. In Figure 4.4, Figure 4.5 and Figure 4.6, the

envelopes of the estimated amplitude are contrasted with the time series of the acceleration. By virtue

of the cubic nonlinearity, harmonics 1 and 3 are the most significant, hence only the ones being tracked.
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Figure 4.4: DOF1 acceleration signal and respective MHDTF tracking.
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Figure 4.5: DOF2 acceleration signal and respective MHDTF tracking.
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Figure 4.6: DOF3 acceleration signal and respective MHDTF tracking.

Visualizing the amplitude envelopes, that is, the harmonic 1 and 3 tracked amplitudes and their sum,

the assumptions made in section 4.1 appear to be correct. In all DOFs, the influence of harmonic 3 can

not be neglected for the first mode, the harmonic sum better approximates the time series amplitude

and the identification error that is committed in identifying the fundamental harmonic only is hence very

clear. For the remaining orders, at this scale, they are irrelevant in the overall response, the harmonic

sum and harmonic 1 amplitudes match and approximate the time series evenly.

The structural Nonlinear Frequency Response Curve (NLFRC) also provides great insight of the nonlin-

ear effects on the response. The amplitude of the NLFRC, expressed in dB, and the absolute phase,

in degrees, of all DOFs of the described system are portrayed, for the 1st and 3rd harmonic-orders in

Figure 4.7.

Once again, strong nonlinearity at the 1st mode is verified as well as the constant decay of the nonlinear
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Figure 4.7: Acceleration NLFRC estimation of all 3 DOFs.

effects at higher frequencies, hence the imperceptible contribution of harmonic 3 in Figure 4.4, Figure 4.5

and Figure 4.6 on the 2nd and 3rd modes.

Moreover, due to the shift of the x − axis from time to frequency, the resonance frequencies can be

identified. The frequency of the 1st fundamental mode is approximately 0.39 rad/s, while the natural

damped frequency of the underlying linear system (knl = 0) is 0.36 rad/s. This increase in resonance

frequency due to the hardening nonlinearity is not remarkable in the other modes.

In harmonic 3, superharmonic resonance also occurs. For all DOFs, in the amplitude of this order are 6

peaks: 3 corresponding to the resonance peaks, at the same frequency of the peaks in the fundamental

harmonic, and 3 superharmonic resonance peaks. The latter occur at 1/3 of the resonance frequency,

that is, the 1st superharmonic takes place at 0.39/3 = 0.13 rad/s, the 2nd at 1.29/3 = 0.43 rad/s and the

3rd at 2.15/3 = 0.72 rad/s. Once again, another particular nonlinear phenomenon identified!

The amplitude and phase estimations are very clear up until the -230 dB amplitude level where the

tracking of harmonic 3 is clearly corroded. This can be due to the tolerance error used in the Newmark

simulation and in general the difference between 1st and 3rd harmonic-order amplitude, underlining

the possible limitations of the harmonic interference mitigation. Furthermore, there is no interest in

estimating such a low response contribution, also because in experimental measurements the signal-

to-noise ratio is expected to be lower than 200 dB. In the NLFRC of DOF 3, in harmonic 3, there is also

some unwanted traces of amplitude leaps, resultant of the harmonic interference mitigation procedure.

The construction of the NLFRCs for the same data without the harmonic interference mitigation and

posterior contrast with Figure 4.7 demonstrates the importance of this step on simulation data. Portrayed

in Figure 4.8, up until the amplitude level of -120 dB, the estimations are clear. The amplitude range of

-120dB to -150dB signals the extremely oscillatory in amplitude transition from harmonic 3 content to

harmonic 1 interference content, mimicking the harmonic 1 amplitude combined with amplitude leaps,
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from the frequency of 1 rad/s forward.

The CPU time of performing harmonic mitigation increased 17 %, referenced to not performing this

procedure. This may increase rampantly with the inclusion of higher-orders, due to the permutation

operation that calculates the interference matrix.
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Figure 4.8: Acceleration NLFRC estimation of all 3 DOFs, without harmonic interference mitigation.
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Figure 4.9: DOF1 acceleration signal and respective multi-harmonic and 1st order single-harmonic signal

recreation.

Another possible outcome of the MHDTF is the reconstruction of the tracked signal. In Figure 4.9, two

recreated signals are contrasted with the tracked response signal, for DOF1. The multi-harmonic signal
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was constructed with the sum of reconstructed signals from harmonic 1 and 3, as entailed in subsec-

tion 3.3.1, inherently, its envelope is the multi-harmonic sum of Figure 4.4. The other reconstructed

signal is solely composed of the reconstructed harmonic 1 signal, and its envelope matches the tracking

of harmonic 1 in Figure 4.4.

The multi-harmonic reconstruction matches faithfully the tracked time series and its distinction is not

visually possible, however, the comparison with the harmonic-order 1 reconstruction is another indication

of the identification error that is committed in identifying the fundamental harmonic only.

Due to the lack of disturbances in the signal, the mathematical difference of this recreated signal and

the tracked signal appoints to the errors committed on the estimation. Of course, associated with this

error are some of the already described limitations of the MHDTF procedure and the analysed signal:

discrepancies from the input signal frequency and its numerical assumption, however in simulation data

this discrepancy should be very minimal, or null; harmonic interference mitigation limitations; significant

variations in the signal, although, from Figure 4.3, there is not any trace of this phenomena in the tracked

signals.
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Figure 4.10: Multi-harmonic and 1st order single-harmonic estimation error, for DOF1.

Nevertheless, the difference between estimation errors extends great insight as to the importance of

multi-harmonic identification as well as the influence of the parameters of the proposed procedure, as

investigated in subsection 4.2.1. The identification error of only estimating the fundamental harmonic

is portrayed in Figure 4.10, as well as the error of multi-harmonic identification. As expected, the error

difference of including harmonic 3 in the estimation is as greater as the significance of harmonic 3, that

is, in the first mode.

In general, the estimation error is consistently greater in the vicinity of the 1st resonance and decays with

the sweeping frequency. The nonlinear effects appear to heavily influence the error and may appoint to
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the necessity of including higher-order harmonic or even sub-harmonics in the estimation.

4.2.1 MHDTF Parameter Influence

The MHDTF has the advantage of being fundamentally tuned by the user according to their results

and needs. In this context, it is important to investigate the impact of different parameters, namely the

number of sub-intervals N and the cut-off ratio. In principle, both of these parameters influence the

filtering stage in the same way, that is, the cut-off frequency fc relation to the sweeping frequency f .

The impact of the number of sub-intervals is difficult to interpret. First of all. it was defined in section 3.1

that the cut-off frequency of a sub-interval is calculated according to the frequency at the start of that

sub-interval fstart, therefore fc = cut− off ratio× h order × fstart. When the next sub-interval starts,

fstart is updated. The higher N , the more fstart corresponds to the actual sweeping frequency and the

filtering stage is less discrete. With this in mind, for small values of N the filter performance starts to

deteriorate at end of the sub-interval, since the sweeping frequency is demanding the same evolution it

presents to the cut-off frequency that remains constant in that sub-interval.
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Figure 4.11: Cut-off ratio influence on estimation error, for DOF1.

In the current work it is important then to understand what values of N equate to the perfect scenario,

continuous variable bandwidth filtering stage. The easy answer for this would be to consider very large

values of N , however the CPU time would increase at the same rate, due to other wider filtered intervals.

A compromise must be achieved. Figure 4.11 displays, by zooming in on the last two modes of the

acceleration of DOF1, Figure 4.3, that the employemnt of N = 10 resulted in good tracking of the entire

bandwidth, demonstrating why this is the referenced value for this work. The CPU time increased 12%,

for N = 3, and 96%, for N = 10 , when referenced to N = 1. It is also interesting to visualize the

updating event of this procedure as the N = 3 curve equals the N = 1 curve for the 2nd mode. Between
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the two modes, the sub-interval for curve N = 3 is updated and good tracking is observed for the 3rd

mode.

The estimating error considering constant variable bandwidth N = 1 can be seen as satisfactory for this

example, due to the absence of sudden variations in amplitude. The clear advantage is the simplicity

and decreased CPU time it presents. However, there are situations with sudden amplitude variations,

referring to Figure 3.12, where the need of N > 1 is clear.

Assuming an adequate value of N , in such a way that fstart ≈ f , the impact of the cut-off ratio can

be studied and its understanding is very important for future users of this technique, as it impacts the

filtering performance uniformly in the excitation bandwidth. Its influence is more easily interpreted since

fc is proportional to this ratio. This analysis is done through the estimation error, in Figure 4.12. The

differences are consistent all across the bandwidth. Higher cut-off ratios are associated with increased

performance and the estimation error is smaller. The difference of 5% cut-off ratio and the 10% and

15% is more accentuated than the difference between 10% and 15%. Decreasing the ratio more than

this exponentially increases this difference and the estimation error. The major drawback of increased

cut-off ratios is the noise rejection, however due to the lack of signal disturbances, further conclusions

on the influence of this parameter must be retrieved from experimental data.
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Figure 4.12: Cut-off ratio influence on estimation error, for DOF1.

4.2.2 Comparison with the Adaptive Filter

The adaptive filter is an LMS data driven method. A complete mathematical derivation of the algorithm

can be found in Haykin and Widrow [34], with pratical applications in Abeloos et al. [33].

The adaptive filter and the MHDTF have the same purpose, obtain instantaneous Fourier coefficients.
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The methodologies are non-identical, however both methods suffer from some of the same limitations.

Most importantly is the discrepancy from the input signal frequency and its numerical assumption.

Therefore, the estimation error, or residual error in the adaptive filter terminology, should provide an

accurate contrast of the performance of both methods. The constructed NLFRCs are also a great

benchmark to analyse.
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Figure 4.13: DOF1 acceleration NLFRC estimation, via MHDTF and Adaptive Filter.
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Figure 4.14: MHDTF and Adaptive Filter estimation error, for DOF1.

The structural NLFRCs are plotted in Figure 4.13 for the two methods. The estimations of harmonic 1

are clear and identical, in both amplitude and phase. Harmonic 3 is also very similar up to the vicinity of
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0.5 rad/s. Beyond this range, the amplitude and phase of harmonic 3 for the adaptive filter estimation is

clearly corroded. It is not the objective of this thesis to understand or explain the phenomena leading to

this inaccurate estimation. As far as the author knows, this error may occur due to the unfamiliarity with

the adaptive filter leading to a wrongful use of the algorithm, even though the guidelines of the state of

the art were followed.

With this in mind, only the range of 0.1 rad/s to 0.5 rad/s is considered when evaluating the estimation

error of both methods, plotted in Figure 4.14 for all DOFs. The MHDTF can be regarded as a more

accurate tracking tool by a small margin, with both methods presenting the same peak of estimation

error.

The comparison between these two methods is continued with experimental data.

4.3 Harmonic Balance Method Validation

Another important step to validate the MHDTF procedure is to compare the obtained results to the HB

method. This numerical method produces a steady-state solution that establishes a great benchmark to

compare to the MHDTF results.
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Figure 4.15: DOF1 displacement amplitude and phase of harmonic 1 and 3 per HB method and MHDTF

tracking.

Regarding the two methods, there is a clear correspondence between the two responses for both har-

monics up until the -250 dB amplitude level, where the interference mitigation reaches its limit and the

tracking of harmonic 3 is clearly corroded. This is more evident for DOF2 and DOF3, where the ampli-

tude of harmonic 3 is lower and it reaches this threshold value earlier in the simulation.
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Discrepancies in the results may also stem from the simulation data itself, besides the already appointed

limitations of the MHDTF procedure. For instance, tolerance errors used in the Newmark simulation, as

well as transient. These flaws were not relevant in the analysis estimation error since the contrast was

made with the simulated data. Now it is done with the HB method results, that are steady-state solutions.
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Figure 4.16: DOF2 displacement amplitude and phase of harmonic 1 and 3 per HB method and MHDTF

tracking.
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Figure 4.17: DOF3 displacement amplitude and phase of harmonic 1 and 3 per HB method and MHDTF

tracking.
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Chapter 5

Application on Experimental Testing

Data

After the validation of the method with simulation data, analysing experimental data poses different

challenges. The disturbances in the signal can lead to errors in the estimation. In Musella et al. [1],

the single-harmonic DTF has proven to be more effective at attenuating these disturbances than the

harmonic estimator and it is important to verify if this is true for the higher orders.

Since the higher harmonics frequently respond at lower amplitude, the estimation of these is more

influenced by the disturbances, specially when pairing to this estimation are higher cut-off frequencies,

as higher as the harmonic order is, that reject disturbances less efficiently.

Therefore, it is vital in the assessment of the MHDTF performance the analysis of experimental data

and the particular effect of lower cut-off ratios in Nonlinear Frequency Response Curves (NLFRCs)

construction and multi-harmonic sum. The MHDTF will also be contrasted with the adaptive filter.

5.1 Experimental Setup

The experimental setup of an airplane mock-up is shown in Figure 5.1. It is composed of wings, tail, with

horizontal and vertical stabilizers, fuselage and two masses simulating the engines connected via pylons

to the wings. Despite of the simple design, its dynamic behavior presents several complex nonlinear

phenomena. The source of nonlinearity arises mainly from the two pylons under the wings, but also the

bolted connections between the different components. Moreover on the pylon, its nonlinearity emanates

from large beam deformations and contact beam-top masses.

The airplane is suspended through elastic bungees, as in a Ground Vibration Test (GVT), reproducing

free-free conditions. The acceleration response was measured using 27 accelerometers placed along

the entire structure. A total of 21 accelerometers used were uniaxial and six triaxial for a total of 39

DOFs. The excitation is provided by two eletrodynamic shakers approximately at the center and beneath
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each wing. The connection between the shakers and the experiment object was done with stingers.

On top of the stinger, force cells record the excitation to the structure. The accelerometers and force

cells are connected by cables to a Simcenter SCADAS Lab. It is important to avoid their interference

with the mechanical system. Tape was also placed beneath the accelerometers in order to attenuate

any electrical interference between the devices. The effect of the accelerometers mass loading on

the experiment must be minimized, therefore, the accelerometers of the engine masses are the lighter

miniature models. All the data acquisition was made using the Simcenter Testlab.

Figure 5.1: Experimental setup.

Figure 5.2: Nonlinear pylon connection.

The input of the shakers, the drives, have a constant spec-

trum along the excitation bandwidth, with a determined volt-

age amplitude. However, the excitation force of the experi-

ment is not so straightforward. Some coupling between the

shaker and the structure can not be avoided, the shaker be-

comes an active part of the tested system and the response

of the structure may impact the input force. As a conse-

quence, it differs significantly from the constant spectrum

drive inputted to the shaker. Therefore, it must be recorded

and processed by the MHDTF to compute the structural NL-

FRCs.

The experimental runs had a logarithmic excitation band-

width of 5Hz to 110Hz, for a sweep rate of 0.4 octaves per

minute, totalling 11 minutes and 9 seconds per run. Section

2.1.1 demands that, since two forces are applied, two test-

ing sweeps, or runs, must be done. Additionally, the force

configurations of the sweeps must differ, so, in the second

sweep the force applied on the right wing, cited as RWing Force, has a phase difference of 180◦ ref-

erencing to the force on the left wing, LWing Force. The first sweep is symmetric and second one is
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antisymmetric.

5.2 MHDTF Application

The MHDTF procedure is applied on the measured acceleration time series. In an effort to reduce data

processing, out of all the 39 DOFs, particular attention is given to the pylon and wings DOFs, since these

are most affected by the pylon nonlinearity. These DOFs are labeled as LWing and LPyl if they reside

on the left side of the wing and RWing and RPyl for the right side of the wing. They are also numbered

from LWing1 to LWing6,according to Figure 5.1, and LPyl1 to LPyl3. As visible in Figure 5.2, Pyl1 is

situated at the pylon connection as Pyl2 and Pyl3 in the mock-up engine mass itself. This configuration

is chosen to detect the pylon torsional mode.

The MHDTF processing parameters were: number of sub-intervals N equal to 10 and the cut-off ratio

10%, instead of the previously referenced values for simulation data due to disturbance presence in the

signal. This presence can also be more disruptive to the estimation than the harmonic interference.

Therefore, for computation efficiency, the harmonic interference mitigation stage is ignored in the shown

identifications.
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Figure 5.3: LWing (top) and RWing (bottom) force signals and respective amplitude tracking, sweep 1.

First, it is convenient to point at the nonlinear effects on the input forces of the structure, labelled LWing

Force and RWing Force, due to the aforementioned shaker-structure relation. In Figure 5.3, the ampli-

tude tracking of harmonic 1, 2, 3 and their sum is displayed. A moderate impact of harmonic 2 and 3 on

the signal is verified from 0s to 100s. The shaker-structure coupling effects are clear: the harmonic sum

is not leveled or even single-harmonic, even though the voltage inputted to both shakers is. Sweep 2,

not displayed in this work, presents the same features.
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The time series of the measured acceleration and respective tracking of harmonics 1, 2 and 3 from

the MHDTF, and their sum, of RWing3, sweep1, and Rpyl2, sweep2, are portrayed in Figure 5.4 and

Figure 5.5, respectively.
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Figure 5.4: RWing3 acceleration amplitude envelope, sweep 1.
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Figure 5.5: RPyl2 acceleration amplitude envelope, sweep 2.

The harmonic 2 and 3 contribution in these estimations is significant, specially when resonances are

excited. In Figure 5.4, these can be mainly identified at 90s and at 620s and 640s with a primary
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harmonic 2 contribution. Figure 5.5 indicates a sizeable harmonic 3 contribution at 90s and harmonic

2 at 460s and 490s. the consequent identification error that is committed in identifying the fundamental

harmonic only is hence very clear at these time ranges.

In all the time series presented and consequent estimations, Figure 5.3, Figure 5.4 and Figure 5.5, the

difference of the harmonic sum and the time series amplitude envelope may manifest efficient noise

rejection of the MHDTF and/or the need of higher order harmonics tracking. However, the tracking

of harmonic 4 and 5, not presented in this thesis, lead to insignificant contributions, that is why only

harmonics 1, 2 and 3 were tracked. Additionally, regarding Figure 5.4 and Figure 5.5, this difference

is very noticeable in the 70s to 100s range. It is in the 10% range for Figure 5.5 but it is even more

accentuated for Figure 5.4. Noise may be disregarded as the cause in this extreme situation and there

can be a clear estimation error. Less trivial causes could point to nonlinear chaos phenomenon or other

particular nonlinear effects.
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Figure 5.6: NLFRC amplitude estimation for RPylon and LPylon DOFs/LWing Force.

Moving on to structural NLFRCs. All the pylon DOFs, except for RPyl1 since its acceleration was incor-

rectly captured, are included in Figure 5.6. In Figure 5.7, the NLFRCs LWing5,6 and RWing5,6 are also

displayed. The computation of these NLFRCs for the various harmonic orders was done as detailed in

subsection 3.3.3.

The amplitude of the NLFRCs is expressed in dB. Due to the many DOFs displayed, the interpretation

of these figures is not trivial. Nonetheless, the goal from the point of view of the reader is to perceive

the clear contribution of the higher-orders. At some modes, the amplitude of harmonic 2 and 3 is higher

than harmonic 1, for example, at 40 Hz. The x − axis shift to frequency and the overlap of the many

DOFs allows the identification of the modes of the structure. This identification is not detailed as it is not

the objective of this dissertation.

Furthermore on the NLFRCs, the MHDTF is not fully capable of attenuating the noise. The estimations

of harmonic 2 and 3 at lower amplitudes are close to noise floor and it becomes very hard to identify

57



clean curves. This occurs for almost the entire bandwidth of Figure 5.6 and mainly from 5Hz to 30Hz for

Figure 5.7. As investigated further in subsection 5.2.1, cleaner NLFRCs would have been obtained if a

5% cut-off ratio was considered.
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Figure 5.7: NLFRC amplitude estimation for LWing5,6 and RWing5,6 DOFs/LWing Force.

5.2.1 MHDTF Parameters Influence

The analysis of the MHDTF parameters in experimental data is crucial in the full awareness of its per-

formance. The parallel analysis made on simulation data, subsection 4.2.1, gave a great foundation

of what to expect in experimental data. Recollecting what was previously concluded, it is important to

identify the number of sub-intervals N that induces fstart ≈ f . In Figure 5.8, it is perceived that once
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Figure 5.8: Number of sub-intervals influence on harmonic sum estimation for RWing3, sweep1.
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again N = 10 is a conservative value, hence the one being employed in this chapter.
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Figure 5.9: Cut-off ratio influence on NLFRC amplitude estimation for LPyl3/LWing Force.

From here, the influence of the cut-off ratio, central in this process, can be studied. The objective is to

understand the balance between efficient noise rejection, leading to better NLFRCs that are paramount

in the grand scheme of system identification, while assuring the tracking is adequate in general and

particularly on sudden amplitude variations like beating phenomenon, consequently improving the signal

reconstruction and its possible applications.
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Figure 5.10: Cut-off ratio influence on harmonic sum estimation, for LPyl3, sweep2.
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The performance associated with 10% cut-off ratio appears to be the best of both worlds. In Figure 5.9,

the noise rejection is better, comparing to the results for 15%, and slightly inferior, referenced to 5%

cut-off ratio, being significant for harmonic 2, at 54Hz. From Figure 5.10, the implications of the 5%

cut-off ratio are clear, it fails to track the sudden variations in amplitude. The estimations of 10% and

15% are more responsive, with the latter being marginally better, as expected.

5.2.2 Comparison with the Adaptive Filter

Comparing the estimations of the MHDTF on experimental data with other techniques create a great

benchmark for industry applications, understanding where the advantages and disadvantages are of

both methods. The adaptive filter, as already introduced, has the capability of tracking higher order har-

monics and a previous comparison with the MHDTF was initiated with simulation data. It was concluded

that the MHDTF was able to better track the lower amplitude of the higher-orders but the major challenge

resides on the noise rejection efficiency.

From Figure 5.11, the MHDTF is more effective in rejecting disturbances when comparing to the adaptive

filter. This is evident for harmonic 1, at around 45 Hz, and for harmonics 2 and 3 all across the bandwidth.

The MHDTF cut-off ratio utilized is 10%, meaning that there is more room for improvement as analysed

in Figure 5.9.

From Figure 5.12, the tracking accuracy is compared for the adaptive filter. The adaptive filter harmonic

sum is more reactive to the sudden amplitude variations. It better aproximates the time series, however

it also displays a noisier sum. The accuracy of the MHDTF could be maximized at the cost of noise

rejection, by employing a higher cut-off ratio.
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Figure 5.11: NLFRC amplitude estimation for LPyl1/LWing Force, via MHDTF and Adaptive Filter.
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Figure 5.12: LPyl3, sweep2, acceleration signal and respective harmonic sum estimation, via MHDTF

and Adaptive Filter.

5.2.3 Control Applicability

In this section, it is discussed the potential applicability of the MHDTF in real-time controllers. The

method developed in SIMULINK, section 3.2, emulates what would be online processing. As a result,

the filtfilt function is not applicable: the filtering stage is causal and the group delay inherent to the filter

will be manifested in the resultant estimations.
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Figure 5.13: RPyl2, sweep2, acceleration signal and respective online MHDTF tracking.
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The group delay is visualized in Figure 5.13. The shift of the amplitude envelope of the time series and

the harmonic sum is significant in the early instants of the time series. In the later modes, it is much less

detectable, confirming the higher cut-off frequency, less group delay relation indicated in Figure 3.10.

Besides analysing the performance of the online tracking, it is also interesting to compare it to its offline

counterpart. Both lowpass filters employed have the same parameters: Butterworth design, filter order

4 and 10% cut-off ratio.
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Figure 5.14: LPyl1/LWing Force acceleration NLFRC estimations, online and offline.

In Figure 5.14, the NLFRCs amplitude estimations of harmonic 1,2 and 3 of the online MHDTF procedure

are compared with the offline MHDTF procedure. Althought not very perceptible, the group delay is also

visible. Regarding the noise rejection, it is very similar as expected. Harmonic 2 is somewhat more clear

for the offline procedure, while the reverse happens for harmonic 3.
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Chapter 6

Multi-Harmonic State-Space Modelling

From the results obtained in chapter 4 and 5, the Multi-Harmonic Digital Tracking Filter (MHDTF) is

proven to be an efficient tool to estimate the multi-harmonic response of a nonlinear system under

swept-sine excitation. The subject of this chapter is then to investigate potential use in the nonlinear

system identification area.

Hugely facilitated by state-of-the-art tools in the linear system identification and modal analysis fields,

many conveniently embedded in the Siemens Testlab software, the proposed methodology attempts to

linearise a nonlinear structure, through its harmonic estimations provided by the MHDTF, and create

a multi-harmonic State-Space (SS) model. The advantage of this approach is its simple use and the

possibility to better approximate a response with multi-harmonic contributions. The clear drawback lies

in the linearisation, hence, its accuracy only at the level of excitation used during the identification.

6.1 Theoretical Synopsis

In this section, the employed techniques are briefly introduced: PolyMAX and MLMM to obtain the modal

model and then the posterior conversion to SS model.

6.1.1 PolyMAX and MLMM

PolyMAX is referenced as a new standard for modal parameter estimation, as introduced in Peeters

et al. [35]. It is a non-iterative frequency-domain parameter estimation method based on a weighted

least-squares approach. It constructs a modal model, by extracting, from MIMO FRFs, a meaningful set

of modes and their associated modal parameters including: natural frequencies, damping values and

mode shapes.

PolyMAX relies on modal fitting process, comparable to that used for curve fitting. Different polynomial

orders are tested during the curve fitting process, and the polynomial coefficients are then calculated to

reduce the discrepancy between the curve and the data. Similar steps are taken in the calculation of
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modal curves, where varying numbers of modes are taken into account before determining the modal

shapes, natural frequencies, and modal damping values to best match the measured FRFs.

Shortly, PolyMAX, in its procedure, starts with the creation of a stabilization diagram containing fre-

quency, damping and participation information. From here, the modal modes are selected, either by the

user or automatically. A faithful mode selection is important, they must correlate the modes from the

inputted FRFs. After, the mode shapes and the upper and lower residuals are calculated. The modal

model is then characterized by its transfer function, or FRF, H(s) ∈ Cno×ni , Equation 6.1, as a linear

sum of the different nm modes, with the inclusion of the upper UR ∈ Rno×ni and lower LR ∈ Rno×ni

residuals. ψr ∈ Cno×1 corresponds to the mode shape column vector, λr ∈ C to the mode from which

the natural frequency and damping ratio are obtained and Lr ∈ C1×ni is the participation factor row

vector.

H(s) =

(
nm∑
r=1

(
ψrLr
s− λr

+
ψ∗rL

∗
r

s− λ∗r

))
+
LR

s2
+ UR (6.1)

The equation is more compactly written as Equation 6.2. Ψ ∈ Cno×2nm contains the mode shape vectors

and their complex conjugates, Λ ∈ C2nm×2nm contains all the modes and their complex conjugates and

L ∈ C2nm×ni contains all the participation factors and their conjugates.

H(s) = Ψ [sI − Λ]
−1
L+

LR

s2
+ UR (6.2)

Validation of the obtained modal model can be obtained with the comparison of the synthesized FRFs,

as constructed in Equation 6.2, and the originally inputted FRFs. Additionally, validation can also be

obtained from the Modal Assurance Criterion (MAC). An in-depth guide on the correct utilization of

PolyMAX is found in [36].

In order to improve the fit of the modal model, that is, a better match of the synthesized FRFs, the

Maximum Likelihood estimation of a Modal Model (MLMM) algorithm can be employed [37]. MLMM au-

tomatically iterates on the parameters of the initial modal model to optimize the fit between the identified

model and the inputted FRFs. A guide on its use can be found in [38].

6.1.2 State-Space and Modal Model Conversion to Modal State-Space Model

The SS model is a method of representing dynamical systems. It transfers observations of a response

variable to unobserved states or parameters by an observation model. These state variables describe

a system of first-orders differential equations, reducing its complexity. The continuous-time state space

model consists of Equation 6.3a, state equation and the observation equation, Equation 6.3b. The

calculated output response, in the time domain, y ∈ Rno×1 is calculated as a function of the n internal

states vector x ∈ Rn×1 of the system through the output matrix C ∈ Rno×n and of the input vector u ∈

Rni×1 through the direct throughput matrix D ∈ Rno×ni . In this case, D is null. A ∈ Rn×n corresponds

to the state matrix and B ∈ Rn×ni to the input matrix.

ẋ = Ax+Bu (6.3a)
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y = Cx+Du (6.3b)

The state space model also allows for the construction of the transfer functions of the system, as in

equation Equation 6.4.

H(s) = C [sI −A]
−1
B +D ∈ Cno×ni (6.4)

The similarities of Equation 6.2 and Equation 6.4 provide the basis for the conversion of the modal

model to SS model where the calculation of a time series response is possible. The work of Elkafafy

and Peeters [39] covers in depth this pairing of the modal and SS model.

6.2 Methodology and Guidelines

As in chapter 3, it is easier to first introduce the procedure and outcomes for linear systems and then

dive into the nonlinear implications and consequent changes.

Briefly, the response time series contain the behaviour of the structure to a specific input force. This

behaviour is then generalized in the FRFs. From here, the curve fitting algorithm creates the modal

model that best approximates these FRFs and therefore the structure itself. This model is converted

to a SS model, in the aforementioned A, B and C matrices. From Equation 6.3, only the input force

u is missing to calculate the simulated time response y. In structural utopia, if the same input vector

that originated the time series and FRFs of the system is provided to the SS simulation, y matches the

response time series. Additionally, different input force u should numerically predict the actual response

of the structure to the same u.

Figure 6.1: Multi-harmonic State-Space modelling and simulation procedure.
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The first predicament of nonlinear systems is that they also respond at their harmonics. Therefore,

directly applying this procedure on the fundamental harmonic only, as is only possible without the multi-

harmonic estimations of the MHDTF, would register the same errors that the single-harmonic DTF does,

as many times indicated in this thesis.

Second predicament is that the concept of FRF falls. The behaviour of the structure is not generalized

and the NLFRCs are only specific to the input force that generated it. Therefore, predicting the behaviour

of the response of the structure to different inputs than the one that originated this modal system will not

lead to good predictions. The main objective of this work is then to accurately predict the response for

the same input that originated the SS model.

The proposed procedure of multi-harmonic SS modelling and respective time domain simulation is pro-

posed in Figure 6.1. In this section, each block of the diagram is introduced and explained. Certain

guidelines of the procedure are also provided.

6.2.1 MHDTF Estimation

Utilizing the MHDTF is the first step. The time series, either simulated or acquired from experimental

testing, are processed. The purpose is to obtain a set of high-quality NLFRCs for each tracked harmonic.

For this, the estimator employed is the H1 estimator. Just like the previous NLFRCs estimations in this

thesis, the harmonic 1 tracking of the input force were considered as the input of the estimator and,

as outputs, the tracking of the respective harmonic-order. In this phase, it is important to consider the

influence of the different cut-off ratios, in the 5% to 15% range, on the quality of the NLFRCs, specially for

the higher orders. The analysis of the influence of this parameter in subsection 5.2.1 has shown that the

employment of a 5% cut-off ratio leads to increased noise rejection at the cost of tracking accuracy. This

disadvantage may be ignored in the pursuit of more refined NLFRCs that are more easily interpreted by

PolyMAX.

Another requirement of the use of estimated NLFRCs in PolyMAX is the associated frequency vector.

While in this thesis, the plotted results are always associated with the fundamental sweeping frequency,

for ease of representation, the sets of this procedure must be related to their ”true” frequency. As an

example, if the excitation BW is from 1Hz to 10Hz, the harmonic 2 estimations must be represented from

2Hz to 20Hz.

Additionally, if the simulated time response objective is to compare its results to the time series that

originated it, the MHDTF also has the purpose of providing the in-phase and quadrature components of

harmonic 1. More on this will be more conveniently entailed further in this section.

6.2.2 PolyMAX + MLMM

Following, the modal models of each harmonic order are obtained utilizing PolyMAX. In a nutshell, each

harmonic order is processed as its own individual system to process, with its own modal model and

respective modal parameters.
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In this framework, particular guidelines towards this methodology are detailed. Modal validation from

the perspective of the user should focus on obtaining a proper fit of the synthesised FRFs, as the

modeset and consequently MAC validation have a secondary value in this application. The fit really

is of primary importance to have good time predictions. While this has proven to be fairly achievable

for the fundamental harmonic, the higher orders have proven to be quite troublesome as observed in

Figure 6.6, since the NLFRCs can be corroded by noise or harmonic interference. Additionally, using a

curve fitting method designed for linear systems on nonlinear systems can contribute to the poor modal

validation.
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Figure 6.2: Modal synthesis before MLMM.

In this context, the user should guide the fit towards the modes with higher amplitude as these are

the main contributors in the grand scheme. In a way, with the employment of MLMM, this is already

done, since this algorithm may shift several modes to one resonance, as observed from the modal

models differences from Figure 6.2 to Figure 6.3. The superharmonic modes that were selected were

not resulting in a proper fit, neither for the superharmonic resonance or the resonance. MLMM shifted

these superharmonic resonance modes to the resonance, thus obtaining a proper fit solely at this higher

amplitude. This proved to be efficient in this work, however different scenarios may require different

solutions.

The consequent conversion of the modal models to SS models is done according to the already de-

scribed procedure. The multi-harmonic SS model is acquired.
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Figure 6.3: Modal synthesis after MLMM. Mode shifting operation is visible.

6.2.3 Multi-Harmonic State-Space Response Simulation

The computation of the simulated SS time responses is done according to the lsim MATLAB function.

This function requires the respective aforementioned modal SS model and input force time series, the

vector u of Equation 6.3. It also requires the time vector that guides the simulation. The latter is trivially

equal for all simulations and its the same vector that guides the input force.

The input force time series given to the simulations is the non-orthodox aspect of this methodology. First,

it is important to remark that nonlinear system responds at the frequency ω and also at its harmonics for

a single-harmonic input at ω. Therefore, this multi-harmonic SS model should react in the same fashion,

introducing a single-harmonic input at ω should provide a multi-harmonic time response. As previously

stated, each harmonic order is its own SS model from which the time simulated responses of each order

are calculated, summing up all these responses to this single-harmonic input must provide the desired

outcome. However, the SS simulation is linear, introducing an input signal at frequency ω will always

output a response at ω. It is easy to see how this becomes problematic for the higher orders, since the

input force at ω will not lead to a response at h order × ω.

Therefore it is required that the input of the higher-orders simulations is manifested in its correct BW. The

frequency of the input must be modified. In the case of simple constant spectrum inputs with a known

frequency content, this modification is trivial. Otherwise, the input signal modification is done in a very

similar fashion to the signal recreation of Equation 3.8a. For the simulation of a specific harmonic-order,

the instantaneous Fourier coefficients of harmonic 1, or in-phase and quadrature components, previ-

ously retrieved from the initial MHDTF processing, are multiplied with Constant Output Level Amplitude

(COLA) reference signals of the respective order, as in Equation 6.5, resulting in a signal with the same

amplitude and phase content of the original harmonic 1 recreated signal, but at the desired multiple of
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its frequency.

input forceh(t) = in− phase1(t)× sin(h× ω × t) + quadrature1(t)× sin(h× ω × t+ 90◦) (6.5)

The obtained signal is used as input for the simulation of the hth order SS model. After, the responses

from each SS model, i.e. from each order, are summed respecting the initial relation between excitation

frequency and response frequencies, leading to the desired multi-harmonic simulated response.

6.3 Application on a Simulated Lumped Parameter Model

The simulation system to be SS modelled refers to a 3 DOFs lumped parameter system, Figure 6.4, very

similar to the system introduced in section 4.1. This time, the cubic spring is between the 2nd and 3rd

mass. The structural parameters are also different, Table 6.1, and they were designed to have a strong

higher-order harmonics response at the first mode.

Figure 6.4: 3 DOF system, with cubic spring between mass 2 and 3.

Table 6.1: 3-DOFs system 2 parameters.

Mass(Kg) Stiffness (N/m) Nonlinear cubic stiffness (N/m3) Damping (Ns/m)

m1 = 10 k11 = 1.62× 104 knl = 1× 104 c11 = 30

m2 = 1 k12 = 3× 104 c12 = 1

m3 = 1 k23 = 1× 104 c23 = 1

k33 = 1× 104 c33 = 1

In order to obtain the time series of the response of the system, a 1000N constant amplitude logarithmic

swept-sine input force, bandwidth of 10 rad/s to 300 rad/s, was applied at the 1st mass. As done for the

previous simulation a Newmark solver derived the acceleration response signals. These signals were

processed using the MHDTF. Harmonics 1, 3 and 5 were tracked and the described procedure applied.

The applied cut-off ratio was 15%, due to the disturbance free response.

The estimated MHDTF NLFRCs and the synthesised NLFRCs of the modal model and the modal SS

model, for harmonics 1, 3 and 5 are plotted in Figure 6.5, 6.6 and 6.7, respectively. The fits are good for

harmonic 1, due to its trivial behaviour.
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Figure 6.5: Harmonic 1 MHDTF estimation NLFRCs, juxtaposed with modal model and state-space

model synthesised NLFRCs, for DOF3.
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Figure 6.6: Harmonic 3 MHDTF estimation NLFRCs, juxtaposed with modal model and state-space
model synthesised NLFRCs, for DOF3.

The fits of harmonics 3 and 5 are suboptimal. In the first and third modes of harmonic 3 the approxi-

mation is good. The same occurs for the first mode of harmonic 5. Since the contribution of the higher

orders is only significant at these peaks, it is important that the fit at these is good. Additionally, small

discrepancies are shown between the modal model and SS model. Moreover on harmonic 5, after the

amplitude limit level of the harmonic mitigation, experienced at around -200dB, the turbulent amplitude

levels were interfering with PolyMAX, therefore the estimations were leveled to pre-limit estimations.
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After, the remaining procedure was applied. In this case of a simulation system, the input force is trivially

modified since it is a known entity that was provided to the Newmark solver.
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Figure 6.7: Harmonic 5 MHDTF estimation NLFRCs, juxtaposed with modal model and state-space

model synthesised NLFRCs, for DOF3.
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Figure 6.8: DOF3 Newmark response solution simulation contrasted with state-space simulation.

The SS simulated time response is contrasted with the Newmark solution time series, in Figure 6.8.

However, since the contrast is not much noticeable, it is more convenient to plot the harmonic sum of the

SS simulation response instead, Figure 6.9. As visible, the simulated model presents acceptable results,

there is a noticeable correlation between the harmonic sum and the Newmark time series. However, at
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modes 1 and 3, there is a slight shift in the response and underestimation. The modelling error in only

considering the 1st harmonic is hence very clear, by the comparison of harmonic sum and harmonic 1

amplitudes.
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Figure 6.9: DOF3 Newmark response solution simulation contrasted with state-space simulation har-

monic sum and harmonic 1.
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Figure 6.10: DOF3 Newmark response solution simulation contrasted with state-space simulation har-
monic sum and harmonic 1, for lower sweep rate.

Additionally, due to the ease of creating simulation data with the Newmark solver, an investigation on the

model adaptability to different conditions than the ones who originated it can be made. Consequently, to
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the already created multi-harmonic SS model was applied two different forces, one with a lower sweep

rate and one with a 10% force increase. The comparison is then made with the Newmark solution for the

different conditions. As seen in Figure 6.10, a slower sweep rate of the excitation provided an identical

comparison as the original sweep rate. For the 10% force increase, Figure 6.11, the SS could not

keep up with the strong nonlinear increase in amplitude of nonlinear systems, the simulated response is

underestimated in every mode.
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Figure 6.11: DOF3 Newmark response solution simulation contrasted with state-space simulation har-

monic sum and harmonic 1, for 10% force increase.

6.4 Application on a Demo Airplane Experimental Setup

The experimental setup to be modelled is the same as discussed in chapter 5, where it was shown to

present a strong harmonic 2 and 3 contribution. Again, for ease of processing, only the wing and pylons

DOFs were considered.

The procedure starts with the measured signals MHDTF processing. For this application, a 5% cut-off

ratio was prioritized to ensure high-quality NLFRCs. From the estimated MHDTF NLFRCs, the synthe-

sised NLFRCs of the modal model and the SS model, for harmonics 1, 2 and 3 were constructed. They

are plotted in Figure 6.12, 6.13 and 6.14, particular to the LWing1/LWing Force.

Regarding harmonic 1, the fit is overall adequate. Harmonics 2 and 3 as well, specially when comparing

to the fits of the higher-orders of the simulatied system in Figure 6.6 and Figure 6.7. In this comparison,

the experimental model has the advantage of having a strong higher-order contribution that facilitates

PolyMAX’s work. However, the model fit is not good when disturbances are present in the NLFRC: in

the 10Hz to 60Hz range of harmonic 2 and 15Hz to 90Hz for harmonic 3. It fails to predict the system
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underlined in the noise. Additionally, the wing DOFs fit is better comparing to the pylon DOFs, since the

NLFRCs estimations of the first, Figure 5.7 are clearer when comparing to the latter, Figure 5.6.

Figure 6.12: Harmonic 1 MHDTF estimation NLFRCs (red), juxtaposed with modal model (green) and

state-space model (blue) synthesised NLFRCs, for LWing1/LWing Force.

Figure 6.13: Harmonic 2 MHDTF estimation NLFRCs (red), juxtaposed with modal model (green) and

state-space model synthesised NLFRCs, for LWing1/LWing Force.

The simulated time series are calculated following the remaining procedure, with the input force modifi-

cation as detailed for the higher orders.

The harmonic sum and harmonic 1 amplitudes of the SS simulated time response are contrasted with

the measured time series in Figure 6.15 and 6.16. It is possible to see, not only the accuracy of the

SS model, by comparing the time series with the harmonic sum, but also the improvement of including

higher-order harmonics in the model by comparing the harmonic sum and the harmonic 1 amplitudes. In

74



Figure 6.14: Harmonic 3 MHDTF estimation NLFRCs (red), juxtaposed with modal model (green) and
state-space model (blue) synthesised NLFRCs, for LWing1/LWing Force.

general, the wing DOFs presented a greater prediction overall when comparing to the pylon DOFs. This

is observed at 480s in Figure 6.16, the simulated amplitude underestimates the actual response and if

not for the multi-harmonic inclusion it would only be worse. This comes at no surprise since the fits of

the pylon DOFs were poor. The reason may be the overall complexity of the behaviour of the pylon, as

visualized by comparing Figure 5.7 and Figure 5.6. Nevertheless, even for experimental measurements,

that present strong nonlinear effects and disturbances in the signal, this technique achieved a numerical

prediction with adequate results that satisfactorily improved with the inclusion of higher-order harmonics

in the model.
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Figure 6.15: LWing6, sweep 1 measured response contrasted with state-space simulation harmonic

sum and harmonic 1 amplitudes.
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Figure 6.16: LPyl2, sweep 2 measured response contrasted with state-space simulation harmonic sum

and harmonic 1 amplitudes.
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Chapter 7

Conclusions and Future Work

As indicated in chapter 1, the main objective of this dissertation was to extend the DTF procedure to

nonlinear structures, thus estimating the amplitude and phase of a measured response not only for

its fundamental harmonic but also for the higher-orders. Additionally, it is also an objective to explore

the capabilities of the multi-harmonic contributions, provided by the MHDTF, on the nonlinear system

identification field.

7.1 Conclusions and Achievements

The principal objective of developing a procedure able to perform, with particular emphases to offline

processing, multi-harmonic identification of nonlinear responses was achieved, and to an extent, suc-

cessfully so. The main validation comes from the comparison with the numerical computation results of

the HB method, Figure 4.15. In this context, several implementations of the procedure contributed to the

identifications and validation observed, namely, the acausal filtering, with the use of the filtfilt function, to

assure zero phase filtering and the correct relation between the estimations and the time/frequency that

they occur at, as realized in Figure 3.13. Harmonic interference mitigation also played a big roll on the

simulation results, reducing the impact that the harmonics may have with each other when the amplitude

difference is significant. The impact of this stage is visualized by comparing Figure 4.7 and Figure 4.8,

as without it, validation is only possible up to the vicinity of -100 dB amplitude level. This stage, however,

is disused in the presence of signal disturbances, associated with experimental testing.

These are also the main contributors for the better results obtained when comparing to the ones of the

adaptive filter for simulation data, Figure 4.13 and Figure 4.14. Moreover on this comparison, processing

experimental data corrupted by nonlinearity and noise with both methods, Figure 5.11, confirmed the

very good suitability of the MHDTF to reject noise disturbances, as its precursor, the single-harmonic

DTF, already suggested.

The MHDFT is also presented as a technique with good flexibility, depending on user preference. The
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influence of the cut-off ratio presents a clear compromise: either tracking accuracy or efficient noise

rejection, as interpreted in subsection 5.2.1.

The development of a multi-harmonic state-space modelling procedure was also one of the challenges

for this dissertation. Possible due to the estimations of the MHDTF, it was shown that there is clear

improvement by considering the higher-orders contributions, partially achieving the proposed goal as its

accuracy is only at the level of excitation used during the identification, due to the underlying linearisa-

tion.

7.2 Future Work

Future developments on the MHDTF should focus on the lowpass filtering stage. In the end, this is

where the good disturbance attenuation capabilities of this technique originate from. The employment of

a variable BW lowpass filter, instead of the discrete implementation in this work, will lead to decreased

CPU times. As a consequence, the interference indicator will need adaptation.

Additionally, the MHDTF identification of sub-harmonics was not explored in this dissertation. The al-

ready developed should be able to track these responses, however, it is expected that they may suffer

more heavily from harmonic interference.

To improve the multi-harmonic SS model prediction, the use of Polymax and MLMM to obtain a good fit of

the higher-order NLFRC should be further investigated. However, the underlying linearisation does not

allow to obtain a good model behaviour at arbitrary excitation amplitudes. To overcome this limitation,

the model in Equation 6.3 should include additional terms to account for the nonlinearity. This has

similarly be done by Paduart et al. [40], where two additional terms represent the relation between state

and outputs with the nonlinearity. The cited approach is based on the use of a periodic pseudorandom

excitation with the Best Linear Approximation (BLA) framework. The novelty of this approach would then

be the use of a swept-sine excitation together with the MHDTF, that maintain a deterministic relation

between excitation and response frequencies. The applicability of this approach is however yet to be

verified.
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Appendix A

MATLAB code

A.1 Multi-Harmonic Digital Tracking Filter

A.1.1 Without Harmonic Interference Mitigation

1 % MULTI-HARMONIC DIGITAL TRACKING FILTER - EDUARDO SOUSA 2022

2 %

3 % MHDTF script, without interference mitigation

4 % considering the signal to be tracked as x

5

6 %% SIGNAL VARIABLES

7

8 sweepmode = 'logarithmic';

9 f start = 1; % signal start frequency, in Hz

10 f end = 10; % signal end frequency, in Hz

11 T = 10; % signal period

12 fs = 1000; % sample frequency

13

14 time vec = linspace(0, T, T*fs); % time vector

15

16 %% USER DEFINED DTF SETTINGS

17

18 h sel = [1 2 3]; % selection of the harmonics to track

19 N = 10; % number of sub-intervals, N = 1 for constant cut-off frequency

20 cut off ratio = 0.15; % cut-off frequency ratio

21 interval splitting = 1; % 0 - sample/time based , 1 - frequency based

22 filter order = 4; % butterworth filter order, advised to remain always 4

23

24 %% COMPUTATION VARIABLES

25

26 nh = length(h sel); % number of harmonics

27 n samples = length(time vec); % number of samples
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28

29 aux1 = zeros(1,N); % sample location of sub-interval start

30 aux2 = zeros(1,N); % sample location of sub-interval end

31 switch sweepmode

32 case char('linear')

33 f vec = linspace(f start,f end,n samples);

34 S = (2*pi)*(f end - f start)/T; % linear sweep rate

35 aux1(1,:) = 1+round((0:N-1)*n samples/N);

36 case char('logarithmic')

37 f vec = logspace(log10(f start),log10(f end),n samples);

38 S = (60/T)*log2(f end/f start); % logarithmic sweep rate, in octaves per minute

39 switch interval splitting

40 case 0

41 aux1(1,:) = 1+round((0:N-1)*n samples/N);

42 case 1

43 aux1 = 1 + round(log2((0:N-1)/(N)*(f end/f start - 1) + ...

1)/log2(f end/f start)*(n samples));

44 end

45 end

46 aux2 = aux1(1,2:end) - 1; aux2(N) = n samples;

47

48 % COLA reference signals

49 sin cola = zeros(nh,n samples); cos cola = zeros(nh,n samples);

50 for h id = 1:nh

51 sin cola(h id,:) = chirp(time vec,h sel(h id)*f start,T,h sel(h id)*f end,sweepmode,-90);

52 cos cola(h id,:) = chirp(time vec,h sel(h id)*f start,T,h sel(h id)*f end,sweepmode);

53 end

54

55 %% VECTOR/MATRIX PREALLOCATION

56

57 in phase = zeros(nh, n samples); % in-phase component

58 quad = zeros(nh, n samples); % quadrature component

59

60 rec = zeros(1,n samples); % recreated signal

61

62 %% MULTI DUAL PHASE HOMODYNING (MIXING)

63

64 mix sin = x.*sin cola;

65 mix cos = x.*cos cola;

66

67 %% FILTERING LOOP

68

69 for h id = 1:nh % h id - harmonic identifier of the interference row

70 for n = 1:N

71 [b,a] = butter(filter order,h sel(h id)*cut off ratio*f vec(aux1(n))/(fs/2));

72 aux early = aux1(n) - 250000;

73 aux late = aux2(n) + 250000;

74

75 if aux early < 1 | | n == 1; aux early = 1; end
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76 if aux late > n samples | | n == N; aux late = n samples; end

77

78 filter aux1 = filtfilt(b,a,squeeze(mix sin(h id, aux early:aux late)));

79 filter aux2 = filtfilt(b,a,squeeze(mix cos(h id, aux early:aux late)));

80

81 in phase(h id,aux1(n):aux2(n)) = ...

2*filter aux1((aux1(n)-aux early+1):(aux2(n)-aux early+1));

82 quad(h id,aux1(n):aux2(n)) = ...

2*filter aux2((aux1(n)-aux early+1):(aux2(n)-aux early+1));

83 end

84 end

85

86 %% AMPLITUDE AND PHASE ESTIMATION

87 x amp = sqrt(quad.ˆ2 + in phase.ˆ2);

88 x phase = atan2(quad, in phase);

89

90 %% SIGNAL RECREATION

91 for h id = 1:nh

92 rec = rec + in phase(h id,:).*sin cola(h id,:) + quad(h id,:).*cos cola(h id,:);

93 end

A.1.2 With Harmonic Interference Mitigation

1 % MULTI-HARMONIC DIGITAL TRACKING FILTER - EDUARDO SOUSA 2022

2 %

3 % MHDTF script, with or without interference mitigation

4 % considering the signal to be tracked as x

5

6 %% SIGNAL VARIABLES

7

8 sweepmode = 'logarithmic';

9 f start = 1; % signal start frequency, in Hz

10 f end = 10; % signal end frequency, in Hz

11 T = 10; % signal period

12 fs = 1000; % sample frequency

13

14 time vec = linspace(0, T, T*fs); % time vector

15

16 %% USER DEFINED MHDTF SETTINGS

17

18 h sel = [1 2 3]; % selection of the harmonics to track

19 N = 4; % number of intervals, N = 1 for constant cut-off frequency

20 mitigation = 1; % 1 = with interference mitigation, 2 = no mitigation

21 cut off ratio = 0.15; % cut-off frequency ratio

22 leap detection = 5; % jump detection sensivity, in dB

23 leap percentage = 0.3; % percentage of jumps per interval number "allowed" before ...

disregarding

24 interval splitting = 1; % 0 - sample/time based , 1 - frequency based
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25 filter order = 4; % butterworth filter order, advised to remain always 4

26

27 %% COMPUTATION VARIABLES

28

29 nh = length(h sel); % number of harmonics

30 n samples = length(x); % number of samples

31

32 aux1 = zeros(1,N); % sample location of sub-interval start

33 aux2 = zeros(1,N); % sample location of sub-interval end

34 switch sweepmode

35 case char('linear')

36 f vec = linspace(f start,f end,n samples);

37 S = (2*pi)*(f end - f start)/T; % linear sweep rate

38 aux1(1,:) = 1+round((0:N-1)*n samples/N);

39 case char('logarithmic')

40 f vec = logspace(log10(f start),log10(f end),n samples);

41 S = (60/T)*log2(f end/f start); % logarithmic sweep rate, in octaves per minute

42 switch interval splitting

43 case 0

44 aux1(1,:) = 1+round((0:N-1)*n samples/N);

45 case 1

46 aux1 = 1 + round(log2((0:N-1)/(N)*(f end/f start - 1) + ...

1)/log2(f end/f start)*(n samples));

47 end

48 end

49 aux2 = aux1(1,2:end) - 1; aux2(N) = n samples;

50

51 if mitigation == 2; int m = 1:nh; % interference matrix

52 else

53 int m = ones(factorial(nh-1), nh); int m(:,2:end) = perms(setdiff(1:nh,1));

54 end

55

56 % COLA reference signals

57 sin cola = zeros(nh,n samples); cos cola = zeros(nh,n samples);

58 for h id = 1:nh

59 sin cola(h id,:) = chirp(time vec,h sel(h id)*f start,T,h sel(h id)*f end,sweepmode,-90);

60 cos cola(h id,:) = chirp(time vec,h sel(h id)*f start,T,h sel(h id)*f end,sweepmode);

61 end

62

63 %% VECTOR/MATRIX PREALLOCATION

64

65 int vec valid = ones(1,size(int m,1)); % interference vector validation

66 % 0 - presence of jumps in the vector / 1 - everything fine

67

68 h valid = mitigation.*ones(1,nh); % harmonic validation

69 % 0 - presence of jumps / 1 - normal state / 2 - interference caused by this harmonic is ...

already mitigated

70

71 in phase = zeros(nh, n samples); % in-phase component
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72 quad = zeros(nh, n samples); % quadrature component

73

74 rec = zeros(1,n samples); % recreated signal

75

76 %% MULTI DUAL-PHASE HOMODYNING (MIXING)

77

78 mix sin = x.*sin cola;

79 mix cos = x.*cos cola;

80

81 %% LOWPASS FILTERING AND HARMONIC INTERFERENCE MITIGATION LOOP

82

83 for int m id = 1:size(int m,1) % int m id = interference row from interference matrix

84 for vec id = 1:nh % vec id = vector identifier of the interference row

85

86 curr h = int m(int m id, vec id);

87 if int vec valid(int m id) == 0

88 continue

89 end

90 for n = 1:N

91 [b,a] = butter(filter order,h sel(curr h)*cut off ratio*f vec(aux1(n))/(fs/2));

92 aux early = aux1(n) - 250000;

93 aux late = aux2(n) + 250000;

94

95 if aux early < 1 | | n == 1; aux early = 1; end

96 if aux late > n samples | | n == N; aux late = n samples; end

97

98 filter aux1 = filtfilt(b,a,squeeze(mix sin(curr h, aux early:aux late)));

99 filter aux2 = filtfilt(b,a,squeeze(mix cos(curr h, aux early:aux late)));

100

101 in phase(curr h,aux1(n):aux2(n)) = ...

2*filter aux1((aux1(n)-aux early+1):(aux2(n)-aux early+1));

102 quad(curr h,aux1(n):aux2(n)) = ...

2*filter aux2((aux1(n)-aux early+1):(aux2(n)-aux early+1));

103 end

104

105 if vec id == nh | | h valid(curr h) == 2

106 continue

107 end

108

109 % interference indicator

110 h valid(curr h) = interference indicator(leap detection, leap percentage, ...

111 (in phase(curr h,aux1(2:end))), (in phase(curr h,aux1(2:end) - 1)), ...

112 (quad(curr h,aux1(2:end))), (quad(curr h,aux1(2:end) - 1))) ;

113

114 if h valid(curr h) == 0

115 int vec valid(int m id) = 0;

116 continue

117 end

118
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119 % recreated single harmonic signal

120 rec harm = in phase(curr h,:).*sin cola(curr h,:) + ...

quad(curr h,:).*cos cola(curr h,:);

121

122 %interference mitigation

123 for vec id int = (vec id+1):nh

124 mix sin(int m(int m id, vec id int),:) = squeeze(mix sin(int m(int m id, ...

vec id int),:)) - rec harm.*sin cola(int m(int m id, vec id int),:);

125 mix cos(int m(int m id, vec id int),:) = squeeze(mix cos(int m(int m id, ...

vec id int),:)) - rec harm.*cos cola(int m(int m id, vec id int),:);

126 end

127 h valid(curr h) = 2;

128 end

129 end

130

131 %% AMPLITUDE AND PHASE EXTRACTION

132

133 x amp = sqrt(quad.ˆ2 + in phase.ˆ2);

134 x phase = atan2(quad, in phase);

135

136 %% SIGNAL RECREATION

137 for h id = 1:nh

138 rec = rec + in phase(h id,:).*sin cola(h id,:) + quad(h id,:).*cos cola(h id,:);

139 end

A.2 Harmonic Interference Indicator

1 % INTERFERENCE INDICATOR - EDUARDO SOUSA 2022

2 %

3 % function that checks if the corresponding harmonic is composed of

4 % interference (valid = 0) or not (valid = 1)

5 %

6 % inputs:

7 % leap detection - leap height, expressed in dB

8 % leap percentage - percentage of jumps, per number of N-1, required for invalidation

9 % in phase1, in phase2 - in phase component before and at each interval start

10 % quad1, quad2 - quadrature component before and at each interval start

11

12 function valid = interference indicator(jump detection, jump percentage, in phase1, ...

in phase2, quad1, quad2)

13 n jumps = 0;

14 amp1 = sqrt(in phase1.ˆ2 + quad1.ˆ2); amp2 = sqrt(in phase2.ˆ2 + quad2.ˆ2);

15 for jump id = 1:length(amp1)

16 if abs(db(amp1(jump id)) - db(amp2(jump id))) > jump detection

17 n jumps = n jumps + 1;

18 end

19 end
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20 if n jumps >= ceil(jump percentage*(length(amp1)))

21 valid = 0; % composed of interference

22 else

23 valid = 1; % not composed of interference

24 end

25 end

A.3 Harmonic Sum

1 % HARMONIC SUM - EDUARDO SOUSA 2022

2 %

3 % outputs the harmonic sum

4 % inputs:

5 % amp, phase - 2D matrix containing the amplitude and phase tracking, for

6 % each harmonic-order

7 % h sel - contains the selected harmonics

8

9 function out = harmonic sum(amp, phase, h sel)

10 nh = length(h sel);

11 n samples = length(amp);

12 if nh == 1; amp = amp'; phase = phase'; end

13 period samples = 0:0.1:2*pi;

14 for sample id = 1:n samples

15 k = 0;

16 for h id = 1:nh

17 k = k + amp(h id,sample id).*sin(h sel(h id)*period samples + phase(h id,sample id));

18 end

19 out(sample id) = max(k);

20 end

21 end

A.4 H1 Estimator

1 % H1 ESTIMATOR algorithm - EDUARDO SOUSA 2022

2 %

3 % function outputs the H1 estimator complex valued FRF

4 %

5 % the inputs are as follows:

6 % amp - 3D matrix containing the response amplitude tracking for each

7 % DOF and each sweep

8 % phase - 3D matrix containing the response phase tracking for each DOF

9 % and each sweep

10 % f phase - 3D matrix containing the amplitude tracking for each input

11 % force and each sweep

12 % sweep and each input force
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13 % f phase - 3D matrix containing the phase tracking for each input force

14 % and each sweep

15

16 function h1 = h1 algorithm(amp, phase, f amp, f phase)

17 % vector preallocation

18 h1 = zeros(size(amp,1), size(f amp, 1), length(amp));

19

20 % translation to complex coordinates

21 X = amp.*exp(1i*phase);

22 F = f amp.*exp(1i*f phase);

23

24 % H1 estimator computation loop

25 for sample id = 1:length(amp)

26 xx = squeeze(X(:,:,sample id));

27 ff = squeeze(F(:,:,sample id));

28

29 g ff(:,:) = ff*ff'; % input autopower matrix

30 g xf(:,:) = xx*ff'; % output-input crosspower matrix

31 h1(:,:,sample id) = g xf(:,:)/g ff(:,:);

32 end

33 end
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Appendix B

SIMULINK Block Diagram

In the present appendix, the block diagrams of the online Multi-Harmonic Digital Tracking Filter (MHDTF)

are displayed. In Figure B.1, the MHDTF block diagram for a single harmonic-order is visible. This block

takes as inputs the response signal to track, identified as y, the time value of the excitation frequency,

freq, in rad/s and the harmonic order of the block, h order. Figure B.2 exemplifies the combination of

three blocks referent to harmonic 1,2 and 3 to create the MHDTF.

Figure B.1: Single harmonic-order SIMULINK block diagram.
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Figure B.2: MHDTF procedure SIMULINK block diagram.
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