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Abstract

From illegal fishing to drug smuggling, environmental protection, and threat prevention, it is evident that
maritime surveillance is of extreme importance. One of the key aspects of maritime surveillance is having
knowledge of the location of the ships. Since the ocean covers such a wide area, automatic algorithms are
necessary to monitor them. Recent advances in deep learning have substantially facilitated the development
of ship detection methods for synthetic aperture radar (SAR) images. However, most of the solutions are
supervised object detection methods, which require large amounts of labelled data. Labelling the images is an
extremely time-consuming process. To take advantage of the huge and increasing amount of SAR data, we
propose two unsupervised deep learning frameworks for SAR ship segmentation. The first framework is based
on an image-to-image translation model, the CycleGAN, in which we exploit the model’s unpaired image
style transfer capabilities to learn the mapping from the SAR image domain to a segmentation domain. The
second approach, the UDSEP (U-net Detect-Select-Erase-Paste) is a self-supervised segmentation framework,
in which we train a segmentation network with data from a novel algorithm that generates synthetic labelled
images from the original SAR unlabelled images. Experiments on the SAR-Ship-Dataset and on SSDD reveal
promising results but still inferior to those of the supervised methods.
Keywords: Deep learning, Unsupervised, Synthetic Aperture Radar, Ship Semantic Segmentation

1. Introduction

Maritime surveillance has attracted a lot of attention
in recent decades, particularly in vessel detection, as
knowledge of vessel placements is required to attain
complete maritime domain awareness [1]. From threat
prevention to national security, safety, and environ-
mental protection, it is crucial to provide relevant or-
ganizations, governments, and agencies with real-time
data on vessel localizations to assist decision-making
processes. Synthetic aperture radar (SAR) is the most
suitable type of radar to provide data for ship detection
since its resolution is constant even when far from the
observed targets, it can image wide areas at constant
resolution, and works regardless of daylight and cloud
cover [2].

Several ship detection methods have arisen since the
first SAR satellite was launched in 1978. Most tra-
ditional methods are based on a constant false alarm
rate (CFAR). These methods are frequently not robust
enough and have detection speeds incompatible to suit
the needs of real-time applications. Recently, with the
growth of artificial intelligence, various elegant deep
learning solutions have obtained state-of-the-art in the
SAR ship detection task. However, most of these so-
lutions are object detection methods, which are super-
vised and, therefore, require large amounts of labelled
data. Labelling the images is a process that requires
SAR specialists and is extremely time-consuming and
expensive. Unsupervised methods, which do not re-
quire the labelling of training images for feature extrac-
tion, can be a suitable alternative for ship detection,

especially given the extensive and expanding amount
of available SAR data.

This type of work has not been extensively explored.
Ferreira et al. [3] proposed an unsupervised framework
for SAR ship detection based on anomaly detection.
They start by learning the data representations with
a convolutional Variational Autoencoder (VAE) and
then perform anomaly detection based on those rep-
resentations with a clustering algorithm. Dias et al.
[4] also proposed an unsupervised anomaly detection
framework for ship detection. They train a Bidirec-
tional Generative Adversarial Network (BiGAN) with
non-ship images and then use its inability to recon-
struct images with ships to detect anomalies. In fact,
although referred to as unsupervised, both the men-
tioned works rely on a supervised preselection of non-
ship ocean images to train the models. Furthermore,
some weakly-supervised approaches have also been pro-
posed but for ship segmentation, where the authors
train the models with two global labels, ship or non-
ship [5], or with missing target level annotations [6].
In fact, to our best knowledge, no fully deep learning
unsupervised work has been proposed for either SAR
ship detection or segmentation.

The goal of this work is to develop unsupervised deep
learning methods for ship detection in SAR images,
which will be approached as a semantic segmentation
problem. Two distinct novel deep learning frameworks
are presented. The proposed work should contribute
to filling the void in the state-of-the-art of SAR ship
detection with unsupervised techniques.
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2. Background
In this section, the deep learning models relevant to
this thesis are revised.

2.1. U-net
Originally designed for biomedical segmentation, the
U-net [7] is a supervised state-of-the-art segmentation
network.
The basic architecture of the U-net is composed of

two paths: a contracting path and an expansion path.
Also known as the encoder, the contracting path fol-
lows a typical convolutional network architecture, con-
sisting of repeated convolutions followed by rectified
linear unit (ReLU) activations and max-pooling, that
allows for high-level feature extraction. Throughout
the contracting path, the number of feature channels
increases while the image size decreases. The expan-
sion path, or decoder, consists of up-convolutions fol-
lowed by convolutions and ReLU, and concatenations
with features that have been captured in the encoder.
Due to convolution, there is a loss of border pixels,
therefore, cropping is necessary. Thus, the pixel fea-
tures near the edges are removed, since they have the
least amount of contextual information. The full model
architecture resembles a u-shape that is able to prop-
agate contextual information throughout the network,
allowing to segment objects in an area using informa-
tion from a larger overlapping area. Several energy
functions have been proposed to optimise the U-net.
For binary classification, one of the most commonly
used energy functions is the Binary Cross Entropy
(BCE),

LBCE = − 1

N

N∑
i=1

yi log (ŷi)+(1− yi) log (1− ŷi) , (1)

where N is the number of pixels of the training image,
yi ∈ {0, 1} is the target value of pixel i, and ŷi ∈ [0, 1]
is the predicted probability for the pixel i.

2.2. CycleGAN
The CycleGAN [8] is an image-to-image translation
model that, unlike other GAN-based approaches such
as Pix2Pix [9], does not require paired examples to be
trained.
The goal of the method is to learn the mapping be-

tween the domains X and Y , and vice-versa, given the
training data xi ∈ X with i = 1, . . . , N and yj ∈ Y
with j = 1, . . . ,M1 with distributions x ∼ pdata (x)
and y ∼ pdata (y), respectively. The model includes
two generators G : X → Y and F : Y → X and two ad-
versarial discriminators, DX and DY , where DX aims
to distinguish between images {x} from the X domain
and translated images {F (y)}, and DY between im-
ages {y} from the Y domain and {G(x)}. To be able
to correctly translate domains, the authors proposed
three types of terms for the objective function: adver-
sarial loss, cycle consistency loss, and identity loss.
The adversarial loss is responsible for approximating

the distribution of the generated images to the target

1Subscripts i and j will be omitted for simplicity.

distribution. For the mapping function G : X → Y ,
G attempts to generate images G(x) that match the
Y domain. Then DY tries to distinguish the gener-
ated image from real samples, y ∈ Y . Therefore, the
objective is given by

LGAN (G,DY , X, Y ) = Ey∼pdata (y) [logDY (y)]

+Ex∼pdata (x) [log (1−DY (G(x))] ,

where G attempts to minimise it and DY aims to
maximise it, i.e., minG maxDY

LGAN (G,DY , X, Y ).
For the mapping function F : Y → X, the
process is similar, hence the goal is to solve
minF maxDX

LGAN (F,DX , Y,X). With the adversar-
ial loss, the generators are expected to generate plausi-
ble images in the target domain, indistinguishable from
the real ones. However, it does not guarantee an in-
dividual translation from input to the desired output,
thus the need to introduce the cycle consistency loss.

The cycle consistency loss is able to further reduce
the space of possible mapping functions by attempting
to make the mapping functions cycle-consistent via an
L1-norm reconstruction loss for a real image. For the
X domain, the cycle ought to be able to reconstruct
x, that is, x → G(x) → F (G(x)) ≈ x. For the Y
domain, the principle remains, thus, G and F should
be updated during the training to ensure that y can be
correctly reconstructed, i.e., y → F (y) → G(F (y)) ≈
y. To ensure this procedure, the cycle consistency loss
is defined as

Lcyc(G,F ) = Ex∼pdata (x) [∥F (G(x))− x∥1]
+Ey∼pdata (y) [∥G(F (y))− y∥1] ,

where ∥ · ∥1 represents the L1-norm.
Furthermore, the authors suggested the regularisa-

tion of the generators to force an identity mapping
when real samples of the target domain are provided
as input. Therefore, they defined the identity loss as

Lidty(G,F ) = Ey∼pdata (y) [∥G(y)− y∥1]
+Ex∼pdata (x) [∥F (x)− x∥1] .

Although this loss is not fully required to successfully
learn the mapping between the domains, it can improve
the results depending on the translation task. The in-
tuition behind the loss should be for the CycleGAN to
only change parts of the image if required. Therefore,
if something already looks like the target domain, the
model should learn that it does not need to be changed.

The full objective is given by the weighted sum of
the objectives referenced above:

L (G,F,DX , DY ) = LGAN (G,DY , X, Y )

+LGAN (F,DX , Y,X) + λLcyc(G,F ) + αLidty(G,F ),

(2)

where λ and α are parameters that determine the im-
portance of each objective. Moreover, the goal is to
obtain the generators that solve

G∗, F ∗ = argmin
G,F

max
Dx,DY

L (G,F,DX , DY ) .
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3. Proposed Approach
3.1. Dataset

Two well-known datasets from the SAR ship research
community were separately used to train and evalu-
ate the models proposed in this thesis: the SAR-Ship-
Dataset and the SSDD (SAR Ship Detection Dataset).

1) SAR-Ship-Dataset: The SAR-Ship-Dataset [10]
consists of 102 Chinese Gaofen-3 and 108 Sentinel-1
images that were processed and cropped to build a
dataset with 39729 256x256 ship images with a total
of 50885 ships. The ships vary considerably in size
and have distinct and complex backgrounds. One of
the models used in this work, the CycleGAN, has a
complex training architecture. Thus, due to extremely
long running times, it is unfeasible to train it with the
full dataset. Therefore, we were compelled to create a
more concise version of the dataset. In order to capture
the original dataset diversity in a balanced manner, we
propose to create it with images that are equally dis-
tributed in their Shannon entropy [11] value. There-
fore, we first compute the entropy of each image in the
original dataset, and then create the new dataset with
a total of 7000 entropy-distributed images. We call
this dataset the concise-SAR-Ship-Dataset. The im-
ages of this dataset and the test set, which was created
by randomly selecting 1000 of the remaining images
from the original dataset, were annotated with their
ship segmentation through a threshold-based segmen-
tation method supervised by us. This was done for
more accurate test results and to be able to train a
supervised comparison segmentation method. In addi-
tion, a binary label of the level of complexity (simple or
complex) is given to each test image. Typically, images
that are considered simple contain offshore ships of av-
erage size in calm to moderate sea conditions. Images
are deemed complex if the ships are excessively large,
or in inshore conditions, or with a significant amount
of spectral noise.

2) SSDD: The SSDD [12] consist of RadarSat-2,
TerraSAR-X, and Sentinel-1 images that were cropped
to build a dataset with 2456 ships in 1160 images,
which are labelled with their polygon segmentation.
This dataset has a diverse ship population, such as
small-sized ships, complex backgrounds, and dense ar-
rangements near harbors. We use the standards pro-
vided by the authors. Thus, the train and the test set
are made up of 928 and 232 images, respectively. The
authors also provided an offshore-inshore separation of
the images. Moreover, given that the image sizes vary
and in order to maintain consistency throughout the
models, each image was resized to 256x256 pixels.

3.2. Methods

3.2.1 CycleGAN

The first proposed approach is based on the CycleGAN.
In this framework, we aim to explore the image transla-
tion capabilities of the CycleGAN to provide semantic
segmentation. To this end, we propose for the Cycle-
GAN to learn the mapping between normal images and
binary segmentation masks, and vice-versa. In the con-
text of this thesis, and since we are only interested in

the segmentation, the main goal is for the CycleGAN to
learn the mapping between the SAR image domain and
a binary domain, corresponding to the ships’ semantic
segmentation. Moreover, one independent CycleGAN
model is trained for each of the datasets.

The CycleGAN is based on the original paper imple-
mentation [8]. Its simplified architecture is depicted
in Figure 1. The model consists of two discrimina-
tors, DL and DSAR and two generators, GL to SAR

and GSAR to L. The generator GL to SAR translates
images from the label domain to the SAR domain and
GSAR to L translates images from the SAR domain to
the label domain. The discriminators for the label do-
main and the SAR domain are DL and DSAR, respec-
tively.

Label Domain

SAR Domain

Figure 1: Simplified architecture of the CycleGAN.

The discriminators are deep convolutional neural
networks that receive an image as input and com-
pute the likelihood that it came from the training data
rather than being generated by the generators. Per
the paper’s specifications, the discriminators are 70x70
PatchGAN classifiers. The architecture of the Patch-
GAN discriminator is depicted in Figure 2.

128x128x64

16x16x512
32x32x256

16x16x1

256x256x1

Convolutional +
LeakyReLU
Convolutional +
InstanceNorm + 
 LeakyReLU

Input image

Convolutional

70x70 Patch
64x64x128

Figure 2: Schematic representation of the architecture
of the PatchGAN discriminators. The LeakyRelu acti-
vation function has a 0.2 slope for the negative values.
The numbers below the blocks represent the image size
at its output.

The generators receive an image from one of the do-
mains as input and translate it to the other domain.
To accomplish this, the generators have an encoder-
decoder architecture, where the input image is initially
down-sampled to a latent space that goes through a se-
ries of ResNet blocks [13], followed by an upsampling
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to the size of the output image. The architecture of
the generators is depicted in Figure 3.

256x256x1
256x256x64

128x128x128
64x64x256

9x ResNet block

ResNet block

Deconvolution + 
InstanceNorm + ReLU

Input image
Convolutional +
InstanceNorm + ReLU Deconvolution + 

InstanceNorm + Tahn
Skip connection (concatenate)

256x256x1
256x256x128

128x128x256

Figure 3: Schematic representation of the architecture
of the generators. The numbers below the boxes rep-
resent the image size at its output. The ResNet blocks
are made of a Convolution-InstanceNorm-ReLU block
followed by a Convolution-InstanceNorm block. The
convolutions of the ResNet block have a kernel size of
3x3 and a 1x1 stride. The input of each ResNet block
is concatenated to its output.

To train the model, it is necessary to provide data
from both domains. Since the data does not need to
be paired, we just need to ensure that it is represen-
tative of the domain. For the SAR image domain,
the concise-SAR-Ship-Dataset and the complete SSDD
training set are used for each of the models. For the
binary label domain, it is required to produce two new
datasets, Dlabel SSD and Dlabel SSDD, with binary ship
segmentation images. To obtain these images, we ap-
ply the spectral residual approach for saliency detec-
tion [14] followed by Otsu’s thresholding to low en-
tropy SAR images, given that we are guaranteed to
obtain finer and more accurate segmentation images
from this method for these simpler images. For the
SAR-Ship-Dataset, we apply this method to the 7000
images with the lowest entropy. For the SSDD, we ap-
ply the method to the 300 lowest entropy images, and
then augment the results until they match the number
of SAR images. A combination of scaling, translating,
rotating and elastic deformation [15] is used for the
data augmentation. Additionally, the obtained binary
images are post-processed using flood fill.

3.2.2 UDSEP
The second proposed framework, the UDSEP (U-net
Detect-Select-Erase-Paste), is a self-supervised seg-
mentation method. In this approach, we first gener-
ate synthetic labelled images from the original SAR
unlabelled images. Then we use the synthetic images
and the corresponding masks as training set for seman-
tic segmentation with the U-net. Since the U-net is a
supervised method, and in order to avoid generating
the segmentation masks manually, we propose a novel
algorithm to generate the new SAR images with the
corresponding masks, the DSEP (Detect-Select-Erase-
Paste) method. The overall framework of the UDSEP
method is depicted in Figure 4. The framework is di-
vided into a training phase (a) and an inference phase
(b). The training starts with the generation of the syn-
thetic labelled images where the DSEP method takes
as input a SAR image x, and outputs a pair of images
x1 and m1 where x1 is a new SAR image and m1 its

Training phase (a)

Inference phase (b)

DSEP

Figure 4: Framework for the UDSEP method.

segmentation mask. This process is repeated for each
image in the training set. Then, the generated image
pairs are used to train the U-net, Fϕ with parameters ϕ,
which is optimised to minimise the BCE loss (equation
1) between the output training masks and the target
generated masks. After training is complete, the opti-
mised U-net is used directly to obtain segmentations of
the test set. The detailed architecture of the U-net is
shown in Figure 5. Similar to the CycleGAN approach,
a separate UDSEP model is trained for each dataset.
To generate the labelled SAR images from the origi-

nal unlabelled data we introduced the DSEP method.
Named after its four main steps: Detect, Select, Erase,
and Paste, the DSEP is an unsupervised augmentation
process that receives as input an image with objects of
the same type and transforms it to a new image, ob-
taining the corresponding binary segmentation mask
with the location of the objects. The overall pipeline
of the method is depicted in Figure 6. In a concise
manner, the DSEP method consists of the following
steps:

• Detect the objects in an image.

• Select which of the detected objects to keep in the
image and add their segmentation to the mask.

• Erase the objects that were chosen not to keep in
the original image, by covering them with back-
ground.

• Optionally Paste augmented versions of the de-
tected objects randomly in the image where the
objects were erased, adding their segmentation to
the mask.

For the detection step, we use the previously trained
SAR to label generator from the CycleGAN model. To
select which objects to keep in the image and which
ones to cover, we start by rejecting objects whose size
deviates heavily from the mean, i.e., extremely large
or small objects. Then, we randomly keep up to Nkeep

objects. The rest of the objects are erased. To erase
the objects, we search the original image to find re-
gions big enough for cutting that were not detected by
the generator, i.e., regions of background, and paste
them at the locations of the objects to cover. The Se-
lect and Erase steps were introduced to mitigate the
damage that would come from poor initial detection.
Therefore, if the generator performs poorly and unduly
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Deconvolution Dropout

Input image

Convolutional + ReLU

Skip connection (concatenate)

BatchNorm

Max Pooling

Convolutional + Softmax
256x256

128x128

32

64

64x64

128

32x32

256

16x16

512

8x8

1024 16x16

512 32x32

256 64x64

128 128x128

64
256x256

2

256x256

1

Figure 5: Schematic representation of the architecture of the U-net. The number of channels at the output of
the boxes is shown on top of them, and the size of the feature maps at the bottom.

 B
Detect step Select step Keep:

Erase:

Output mask

Input SAR image

Output SAR image

Erase step
Augmented:

Paste step

Figure 6: Schematic representation of the DSEP
method.

detects a lot of objects, these steps make sure to miti-
gate the damage that would come from considering all
those objects in the segmentation mask. Lastly, in the
Paste step, there is a pa chance of augmenting each
of the kept objects and pasting them at a random lo-
cation in the image that resulted from the Erase step
and subsequently on the mask. The augmentation con-
sists of rotation and soft intensity jitter. Therefore, the
Paste step was introduced to attempt to increase the
amount of information contained in the images without
significantly altering them.

It is important to state that we aim to, as far as
possible, maintain the structure of the original image.
For instance, if the detected objects are all kept and if
the Paste step is not employed, the new transformed
image will in fact be equal to the original input im-
age. Thus, in practice, the method will work only as
a mask generator. Evidently, the quality of the images
produced by the DSEP approach is highly dependent
on the robustness of the initial object detector.

4. Results

This chapter presents the evaluation metrics and re-
sults for the proposed methods as well as comparison
methods. First, the data generated as a training set for
the models will be analysed. Then, the segmentation
and object detection results of the proposed methods
will be compared to those of two conventional unsu-
pervised methods, Saliency and CFAR, as well as a
supervised U-net. The Saliency approach consists of
a spectral residual approach for saliency detection fol-
lowed by Otsu’s thresholding. The CFAR method is
a two-parameter CFAR algorithm based on Rayleigh
distribution and morphological processing [16]. Both
the mentioned methods are traditional unsupervised
approaches that do not require any training and, thus,
are directly applied to the test set. The Supervised
U-net has the architecture of Figure 5 and is trained
directly with the supervised ship segmentations masks
that were provided for the SSDD and obtained for the
concise-SAR-Ship-Dataset. For the CycleGAN, and
following the paper recommendation [8], the cycle loss
is given ten times the weight of the adversarial loss and
double the weight of the identity loss, thus λ = 10 and
α = 5 (equation 2). For the UDSEP, pa is set to 0.2
to have a considerable chance of augmenting the ships,
and Nkeep is set to 4 since we have a moderate level of
confidence in the CycleGAN’s generator detections.

In addition, a discussion and analysis of the results,
an ablation study of the UDSEP method, and a com-
putation evaluation are provided. All the deep learning
algorithms were implemented with Python 3.9.10, Ten-
sorflow 2.6.2, Cuda 11.6, Intel(R) Core(TM) i5-7600K
CPU @ 3.80GHz, and NVIDIA GeForce GTX 1070
GPU.

4.1. Evaluation Metrics

The methods are evaluated with segmentation metrics
and object detection metrics. For the segmentation
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evaluation, the IoU (Intersection over Union) and the
F1-score for the ship class are computed pixel-wise.
The IoU (equation 3) is the area of overlap between
the ships’ ground truth masks and their prediction
masks divided by the area of union between the ships’
ground truth masks and their prediction masks. The
F1-score (equation 4) is a single evaluation metric that
combines precision and recall by taking their harmonic
mean. Precision (equation 5) refers to the proportion
of correctly assigned ship pixels across all segmentation
results, while recall (equation 6) refers to the propor-
tion of correctly segmented ship pixels across all ground
truth ship pixels. TP, FP, and FN stand for the pixel
number of true positives, false positives, and false neg-
atives, respectively.

IoU =
Area of overlap

Area of Union
(3)

F1-score =
2× Precision× Recall

Precision + Recall
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

For the detection evaluation, the F1-score is calculated
for the 0.5 IoU threshold. We define this metric as
F10.5. The equations are similar to those used for seg-
mentation evaluation, with the exception that TP, FN,
and FN are no longer defined by pixels but by objects.
A ship detection is considered a true positive if the IoU
value between the ground truth mask and its predic-
tion is greater or equal to 0.5. If the IoU value is lower
than 0.5, the detection is considered a false negative.
A false positive occurs if there is a detection with no
corresponding object in the ground truth.

4.2. Experimental Results and Analysis
4.2.1 Generated Data Analysis
Dlabel SSD & Dlabel SSDD : Figure 7 shows several ex-
amples of the obtained binary ship segmentation im-
ages that make up Dlabel SSD and Dlabel SSDD. The
proposed saliency-threshold method was able to suc-
cessfully generate binary segmentation masks from
simple SAR images where the sea is calm and there
is good contrast between ships and sea. Furthermore,
the augmentations implemented for the SSDD also re-
vealed valid results.
DSEP: Figure 8 shows a series of examples of the

DSEP transformations. As can be seen from the first
two rows of Figure 8 (a) and (b), the method performs
extremely well for offshore input images, even if they
have bright, noisy backgrounds. In these cases, the ini-
tial object detector usually has fewer than 4 detections.
Therefore, the method simply works as a mask gener-
ator, and given the success of the initial object detec-
tor, the obtained image pairs are comparable to those
of the desired supervised method. Furthermore, spo-
radic augmentations that seem to improve the amount
of information in the images can also be observed. For

(a)

(b)

Figure 7: Binary ship segmentation masks obtained
with the saliency-threshold method. (a) SAR-Ship-
Dataset, (b) SSDD.

inshore images, the quality of the image pairs gener-
ated considerably deteriorates. This was already ex-
pected given the limitations of the initial CycleGAN
based object detector. Nonetheless, it is on these im-
ages where we can better see the impact of the Se-
lect and Erase steps. For example, in the third row
from Figure 8 (a), due to the complexity of the input
image, the initial object detector identified 6 objects
when the ground truth only indicates the existence of
one ship. Since we defined 4 as the maximum number
of objects to keep, 2 of those detected objects were cov-
ered, avoiding training the U-net with that presumably
inadequate labelled data. Although we did not cover
all the non-ship objects, we managed to minimise the
impact of the poor CycleGAN detection. Moreover,
there is always a chance to cover a ship, but we believe
that unduly covering a ship from an image should have
less negative impact on the network than training it
with unlabelled ships. It is important to state that the
overall effectiveness of the DSEP method owes a great
deal to the CycleGAN generator’s robustness.

4.2.2 Results on SAR-Ship-Dataset
Table 1 presents the pixel-wise IoU and F1-score for
the methods described above.

Table 1: Segmentation results for the SAR-Ship-
Dataset.

Method IoU F1-score

Supervised:
U-net 0.773 0.841
Unsupervised:
Saliency 0.551 0.663
CFAR 0.441 0.564
CycleGAN 0.627 0.734
UDSEP 0.630 0.737

To provide a more in-depth understanding for these re-
sults, several segmentation results for images from the
test set is represented in Figure 9. Table 2 presents the
detection F10.5 for the complete test set, and computed
separately for simple and complex images.
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(a)

(b)

input image output SAR image
output segmentation 

mask

Figure 8: Original input SAR images and the result of
the DSEP method: SAR image and its segmentation
mask. (a) SAR-Ship-Dataset, (b) SSDD.

Table 2: Detection results for the SAR-Ship-Dataset.

Method F10.5

F10.5 for
simple
images

F10.5 for
complex
images

Supervised:
U-net 0.859 0.947 0.740
Unsupervised:
Saliency 0.187 0.715 0.0758
CFAR 0.574 0.704 0.420
CycleGAN 0.706 0.912 0.461
UDSEP 0.730 0.930 0.478
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Figure 9: Segmentation results for test images. The
original bounding box is represented in green, the
ground truth segmentation in red, and the predictions
in yellow.

First off, it should come as no surprise that the su-
pervised method outperformed all the remaining meth-
ods, which are all unsupervised. Moreover, the good
results for the supervised method validate the U-net
as the feature extractor for SAR ship semantic seg-
mentation. Furthermore, deep learning techniques
performed significantly better than conventional tech-
niques. Among the proposed methods, the UDSEP
marginally outperformed the CycleGAN. Given that
the CycleGAN generator serves as the foundation for
the UDSEP, the similarity of these results between the
proposed methods is not surprising. Nonetheless, the
integration of the DSEP transformation method with
the U-net improved the results of the original Cycle-
GAN. The ablation study provided later in this section
will help to better understand the impact of these ad-
ditions. Moreover, the results of the proposed methods
are still considerably lower than those of the supervised
method.
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When analysing the results separately for simple
and complex images, several conclusions can be made.
First, it is possible to notice that all methods per-
form reasonably well for simple images. Traditional
methods usually have bigger segmentation masks than
ground truth masks and, occasionally, have false de-
tections. Deep learning methods detect the vast ma-
jority of ships, with few to no false and missed detec-
tions. In fact, for simple images, the results between
the proposed unsupervised methods and the supervised
method are very comparable.

Furthermore, not only for the proposed methods but
also for the comparison methods, there is a signifi-
cant decline in results for the complex images. This
was already expected, given the high degree of similar-
ity between the ships and the background, which may
include islands, harbors, noise, etc. This inevitably
leads to more false positives. Nonetheless, there is a
significantly higher gap in performance between the
proposed and the supervised method for the complex
images. There are some factors that can account for
the lower performance of the proposed methods. First,
when training the CycleGAN, even with the efforts of
obtaining a concise training set with high image di-
versity, there is still a class imbalance in the training
data. This is due to the fact that there are considerably
more simple-to-medium-complex images than complex
ones. For this reason, the CycleGAN will likely learn
the mapping between simple images and the segmen-
tation domain more effectively. Moreover, being an
unsupervised method in which we simply fed images
from the two domains, other than the shape of the
provided segmentation images, there is nothing that
is forcing the CycleGAN to learn to differentiate be-
tween shore and ships. For these reasons, and since
the CycleGAN generator is directly related to the per-
formance of both proposed methods, it is normal for
the results to be worse for complex images. Neverthe-
less, the proposed methods still obtained satisfactory
results for numerous complex images. Moreover, it
is possible to observe that the saliency method differs
from other approaches in that it produces good results
for simple images but terrible for complex ones. This is
the reason that allowed the good extraction of the seg-
mentation masks for Dlabel SSD and Dlabel SSDD, but
only after a preselection of low entropy images.
Ablation study: To further understand the impact

of the components of the DSEP method, we conducted
an ablation study on the UDSEP. Table 3 presents
the conditions and the object detection results of the
carried experiments. Case 0 represents the original
UDSEP method. Case 5 corresponds to the UDSEP
method but using the Saliency as the initial object de-
tector instead of the CycleGAN generator. In case 1,
we directly use the CycleGAN predictions to train the
U-net, skipping the DSEP transformations. The same
is done in case 6, but using the Saliency predictions
instead. In the remaining cases, some components of
the DSEP transformation method are ignored.
By analysing the outcomes of cases 0 through 4, it is

extremely difficult to draw conclusions about the util-

Table 3: Conditions of the UDSEP ablation experi-
ment.
Case Detect Select Erase Paste F10.5
Case 0 GSAR to L ✓ ✓ ✓ 0.730
Case 1 GSAR to L ✗ ✗ ✗ 0.714
Case 2 GSAR to L ✓ ✓ ✗ 0.710
Case 3 GSAR to L ✗ ✗ ✓ 0.715
Case 4 GSAR to L ✓ ✗ ✓ 0.710
Case 5 Saliency ✓ ✓ ✓ 0.563
Case 6 Saliency ✗ ✗ ✗ 0.332

ity of the DSEP approach. Despite the fact that ap-
plying all the stages (case 0) results in a slightly better
model, the performance of the remaining models is still
extremely similar to the original. This can be explained
for two reasons. First, given that the CycleGAN gener-
ator is already a highly robust object extractor, there
are typically less than 4 object detections in the ma-
jority of the images. Therefore, the Select and Erase
steps, which were introduced as insurance, are unnec-
essary. Then, the SAR-Ship-dataset is very big, hence
the augmentations provided by the Paste step are not
that crucial. Therefore, although in our case the DSEP
is not that relevant, we aimed at proposing a generic
approach that could be used for a variety of scenar-
ios. To validate the relevance of the DSEP, we imple-
mented it with an initial less robust object detector,
the Saliency (case 5). In this case, the DSEP method
managed to increase the F1-score at the 0.5 threshold
by 0.23 points when compared with the model where
it was not implemented (case 6), and by 0.38 when
compared to the original model where the U-net was
not used (Saliency in Table 2), indicating substantial
improvements.

Computation Evaluation: Table 4 presents train-
ing and test time for all methods.

Table 4: Training time and inference time per image.
*The time taken to generate the images to train the
models is accounted for in the training time.

Method
Training

time (hours)
Avg. inference

time p/ image (ms)
Supervised U-net 1.3 34.9
Saliency - 1.7
CFAR - 1.08× 103

UDSEP* 9 34.9
CycleGAN* 60 82.1

Considering the deep learning models, the Cycle-
GAN model took considerably longer to train, which
was expected, given its increased model and training
complexity. However, training time is not the most
crucial factor. In fact, the inference time is more im-
portant given the goal of processing the SAR data in
real-time. The U-net-based methods have significantly
faster detection speeds than the CycleGAN. This is
due to the large model of the CycleGAN generators,
which includes a series of ResNet blocks, inherently
leading to more expensive computations. Further-
more, the detection speed of the proposed models is
lower than the state-of-the-art, especially for the Cy-
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cleGAN. Nonetheless, it is important to state that the
UDSEP not only managed to slightly increase the de-
tection performance of the CycleGAN but also man-
aged to transfer its knowledge to a U-net which has
2.35 faster detection times.

4.2.3 Results on SSDD

Table 5 presents the pixel-wise IoU and F1-score for the
methods described. Several segmentation results are
represented in Figure 10. Moreover, Table 6 presents
the detection F10.5 for the complete test set, and com-
puted separately for offshore and inshore images.

Table 5: Segmentation results for the SSDD.

Method IoU F1-score

Supervised:
U-net 0.763 0.857
Unsupervised:
Saliency 0.466 0.585
CFAR 0.483 0.624
CycleGAN 0.554 0.676
UDSEP 0.571 0.693

Table 6: Detection results for the SSDD.

Method F10.5
Offshore
F10.5

Inshore
F10.5

Supervised:
U-net 0.889 0.952 0.723
Unsupervised:
Saliency 0.233 0.282 0.109
CFAR 0.367 0.409 0.277
CycleGAN 0.578 0.801 0.167
UDSEP 0.625 0.833 0.257

The results are consistent with the previous data set.
The supervised method clearly outperformed the re-
maining unsupervised methods, and the deep learning
methods outperformed the traditional methods. Of
the proposed methods, the UDSEP obtained better
segmentation and detection results. In light of the
fact that the CycleGAN generator has lower perfor-
mance for this dataset, the improvements of the DSEP
method are more noticeable. In addition, the SSDD is
a considerably small dataset, thus the augmentations
provided by the Paste step likely had a bigger impact
than on the SAR-Ship-Dataset. Moreover, the UDSEP
managed to clearly outperform the CycleGAN model
for inshore images. This is likely due to mitigations
endorsed by the Select and Erase steps, which encour-
aged the U-net to not have as many false detections as
it otherwise would have.

Overall, the results for the proposed methods on
the SSDD dataset were worse than on the SAR-Ship-
Dataset. Several factors support this conclusion. First,
the SSDD has a significantly smaller size, which will
unavoidably result in models being more vulnerable to
overfitting. Then, the dataset is mainly composed of
ships of small size. Since the IoU becomes more sen-
sitive as the area of the object decreases, slight dis-
crepancies between the ground truth and the predic-
tion might result in low IoU values for small objects.
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Figure 10: Segmentation results for test images. The
ground truth segmentation is represented in red and
the predictions in yellow.

Moreover, smaller objects are naturally harder to de-
tect, given that their features may disappear in deeper
layers. Nevertheless, the models performed reasonably
well for the SSDD, validating the generalisability of the
presented methodologies.

5. Conclusions

The main goal of this thesis was to develop unsu-
pervised deep learning techniques for ship detection
in SAR images. For this purpose, two fully unsu-
pervised frameworks were proposed for ship segmen-
tation: the CycleGAN, an image-to-image translation
model which was explored for segmentation, and the
UDSEP, a U-net trained on synthetic generated data
from a novel augmentation process. Although still infe-
rior to those of the supervised method, the results ob-
tained for the two proposed methods were extremely
promising, especially given the full unsupervised na-
ture of the approaches. Evaluation on simple/offshore
images revealed overall competitiveness with the su-
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pervised method. Evaluation on complex/inshore im-
ages proved that the proposed methods are still insuf-
ficiently robust for this type of image. However, it is
important to state that ship detection in this type of
image is an active challenge, even for supervised re-
search. Given their essentially inferior robustness, the
struggle for unsupervised approaches is not surprising.
Moreover, the CycleGAN approach revealed to be ef-

fective and robust for domain translation between the
SAR domain and the ship segmentation domain. Con-
sequently, the UDSEP managed to enhance the Cycle-
GAN model in two aspects. First, there was a slight
improvement in detection quality. Then, there was a
severe reduction in detection time, with a decrease of
over 57%.

Furthermore, the author believes that the developed
work should inspire fellow researchers to develop un-
supervised frameworks for SAR ship detection, which
can fully exploit the amount of available raw SAR data
and the increasing GPU performance.

Future improvements could be made to attempt to
improve the accuracy of the models. First, further
studies could be employed to attempt to increase the
robustness of the models. For instance, the CycleGAN
could benefit from a distinct architecture for each of the
generators, which could be more task-specific to the do-
main translation. Moreover, the DSEP method could
benefit from improvements in the Select step. Cur-
rently, after a size-dependent preliminary removal, the
selection of the objects to keep and to erase is essen-
tially random. Several unsupervised strategies could
be employed to attempt to address this. For example,
a binary cluster could be conducted by K-means to try
to classify each object as a ship or non-ship. Then,
objects classified as ships would be kept, and objects
classified as non-ships would be marked to be erased.

Second, the low accuracy of the inshore scene should
be addressed. For the CycleGAN, resolving the class
imbalance between the offshore and inshore images
could be a good start. The strategy introduced by [17],
which used GAN and K-means to create a scene binary
cluster and then augmented the inshore scene images,
would be a good approach to augment these images in
an unsupervised manner. The UDSEP method would
indirectly benefit from this improvement.

Lastly, in an effort to make models suitable for real-
time detection, the original backbone structures of the
models could be replaced with lightweight versions. To
this end, we propose not to change the CycleGAN
model but experiment with lightweight versions of the
U-net to check if it would still be possible to fully trans-
fer the knowledge obtained with the current CycleGAN
model. Furthermore, to further test and refine the pro-
posed methods, it would be of interest to evaluate them
in other segmentation tasks using datasets other than
SAR ship.
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